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Abstract
In this paper, we investigate the existence of a least-energy sign-changing solutions
for the following Kirchhoff-type equation:

–
(
1 + b

∫

R2
K (x)|∇u|2 dx

)
div(K (x)∇u) = K (x)f (u), x ∈ R

2,

where f has exponential subcritical or exponential critical growth in the sense of the
Trudinger–Moser inequality. By using the constrained variational methods,
combining the deformation lemma and Miranda’s theorem, we prove the existence
of a least-energy sign-changing solution. Moreover, we also prove that this
sign-changing solution has exactly two nodal domains.
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1 Introduction and main results
In this present paper, we consider the existence of the least energy sign-changing solutions
for the following equation:

–
(

1 + b
∫

R2
K(x)|∇u|2 dx

)
div

(
K(x)∇u

)
= K(x)f (u), x ∈R

2, (1.1)

where K(x) = exp(|x|2/4), b is a positive constant, and we assume that f satisfies:
(f0) f (t) ∈ C1(R,R);
(f1) f (t) = o(|t|) as |t| → 0;
(f2) lim|t|→∞ F(t)

t4 = ∞, where F(t) =
∫ t

0 f (s) ds;
(f3) f (t)

t3 is an increasing function on R\{0};
(f4) There exist

p > 4 and �0 >
[

4mp

(
p – 2
p – 4

)
α0

π

] p–2
2

,
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such that

tf (t) ≥ �0|t|p,

for all t ∈R, where α0 > 0 and mp is attained in a ground state nodal energy of Eq. (1.1)
when f (u) = |u|p–2u.

As we all know, we call problems of type (1.1) nonlocal problems because there is an inte-
gral over R2. Such problems were first posed by G. Kirchhoff in [1] as an extension of the
classical D’Alembert wave equation for free vibrations of elastic strings.

Similar nonlocal problems also model several physical and biological systems, where u
describes a process which depends on the average of itself, for example, the population
density, see [2] and the references therein. After J.L. Lions [3] proposed the functional
analysis method of the equation

utt –
(

a + b
∫

�

|∇u|2 dx
)

�u = f (x, u), (1.2)

where a, b > 0, and � ⊂ R
N is a bounded domain, the steady-state form of the problem

(1.2) has received a lot of attention. At the same time, many more results were obtained; we
refer to [4–9] for bounded domains. In [6] the authors obtained sign-changing solutions
to the nonlocal quasilinear elliptic boundary value problem using variational methods and
invariant sets of descent flow in the subcritical case.

For the entire space R
N (N ≥ 3), we know that the embedding H1(RN ) ↪→ Lq(RN )

(2 ≤ q < 2∗) is not compact. In order to overcome the lack of compactness, many re-
searchers introduced the potential function V (x), to study the Kirchhof-type equation of
the following form:

–
(

a + b
∫

RN
|∇u|2 dx

)
�u + V (x)u = f (x, u), (1.3)

restoring spatial compactness by making different assumptions about V (x). In [10], the
author showed that problem (1.3) has sign-changing solutions, if we assume V ∈ C(R3,R)
satisfies infx∈R3 V (x) ≥ a1 > 0 and, for each A > 0, meas{x ∈ R

3 : V (x) ≤ A} < ∞, with a1

being a constant and meas denoting the Lebesgue measure in R
3. In [11], the author got

a positive solution to the problem (1.3), considering V (x) as a locally Hölder continuous
function, and assuming there is a constant α such that V (x) ≥ α > 0 for all x ∈ R

3 and
infx∈� V (x) < minx∈∂� V (x), where � is an open bounded set. There are many diverse re-
sults for equations of type (1.3) in R

N ; we refer to [12–15] and the references therein. In
fact, by observation, we can see that our problem can be viewed as a generalization of the
constant-coefficient Kirchhoff equation, when K(x) = 1, it is exactly the Kirchhoff equa-
tion as in (1.3). At the same time, we use the properties of function K(x) to avoid using
potential function V (x) to overcome the problem of lost space embedding compactness.

It is well known that the critical growth for nonlinear terms also leads to the loss of
compactness for the embedding H1(RN ) ↪→ L2∗ (RN ), where the critical Sobolev expo-
nent is 2∗ = 2N/(N – 2) (N > 3). When N = 2, the critical exponential growth is related to
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Trudinger–Moser inequality, which appears in the pioneer work [16, 17], that is,

sup
‖u‖H1

0 (�)≤1

∫

�

eαu2 ≤ C(α)

for all α ≤ 4π and � ⊂ R
2. Motivated by this inequality, de Figueiredo et al. [18] intro-

duced the notion of subcritical and critical growth in the plane, i.e.,
(f5) f ∈ C(R,R) and there exists α0 ≥ 0 such that

lim|t|→∞
f (t)
eα|t|2 =

⎧⎨
⎩

0, α > α0,

∞, α < α0.

If the above holds for all α > 0, we say that f has exponential subcritical growth at +∞, and
if there exists α0 > 0 as above then f has exponential critical growth at +∞. When dealing
with the entire space, we need a new version of the Trudinger–Moser inequality. It asserts
that

sup
‖u‖H1

0 (R2)≤1

∫

R2

(
eαu2

– 1
) ≤ C(α)

for all α ≤ 4π ; see [19, 20] and the references therein.
To obtain our results, we consider using the variational method in a weighted Sobolev

space consisting of rapidly decaying functions at infinity, where the embedding of R2 is
recovered in the weighted Sobolev space. This idea was first proposed by M. Escobedo
and O. Kavian in [21], mainly used to find a self-similar solution of the heat equation in
R

N , more precisely, they define the weighting function

K(x) := exp

( |x|2
4

)
, for x ∈R

N .

For scholars interested in weighted Sobolev spaces, we recommend [22–28]. In [27],
the author proves that the weighted semilinear elliptic problem has a sign-changing so-
lution in the critical case, where the nonlinear term f satisfies the standard Ambrosetti–
Rabinowitz superlinearity condition (namely, there exists θ > 2 such that tf (t) ≥ θF(t) > 0).
In our paper, we directly use the Trudinger–Moser inequality in the weighted space con-
sidered in [29]; see Lemma 2.1.

Now, we introduce our work space. Consider C∞
c (R2), the space of infinitely differen-

tiable functions with compact support, and denote by X the closure of C∞
c (R2) with re-

spect to the norm

‖u‖ =
(∫

R2
K(x)|∇u|2 dx

) 1
2

,

which is induced by the inner product

〈u, v〉 =
∫

R2
K(x)∇u∇v dx.
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Define the weighted spaces for each s ≥ 2 as

Ls
K
(
R

2) =
{

u measurable in R
2 :

∫

R2
K(x)|u|s dx < ∞

}
.

By the results from [21, 22, 28] and Lemma 2.1 of [29], the space X is complete and the em-
bedding X ↪→ Ls

K (R2) is continuous and compact for all s ∈ [2,∞). Note that X � L∞
K (R2),

thus we use the Trudinger–Moser inequality in R
2 as a substitution of the Sobolev in-

equality.
From (f1), for all ε > 0, there exists δ > 0 such that, when |t| < δ, we have

∣∣f (t)
∣∣ ≤ ε|t|. (1.4)

Let α > α0 be given by (f5) and q ≥ 2. By using the critical growth of f , we obtain

lim
t→+∞

|f (t)|
|t|q–1(eαt2 – 1)

= 0. (1.5)

Therefore, for all ε > 0, t ∈R, there exists Cε such that

max
{∣∣f (t)t

∣∣, ∣∣F(t)
∣∣} ≤ ε|t|2 + Cε|t|q

(
eαt2

– 1
)
. (1.6)

The problem (1.1) corresponds to the energy functional I : X → R which can be con-
structed as

Ib(u) =
1
2

∫

R2
K(x)|∇u|2 dx +

b
4

(∫

R2
K(x)|∇u|2 dx

)2

–
∫

R2
K(x)F(u) dx. (1.7)

By assumptions on f and a standard argument, we can affirm that Ib is a well-defined
C1 functional, and its derivative can be computed as

〈
I ′

b(u),ϕ
〉

=
(
1 + b‖u‖2)

∫

R2
K(x)∇u∇ϕ dx –

∫

R2
K(x)f (u)ϕ dx, (1.8)

for all ϕ ∈ X. Furthermore, u is a sign-changing solution of system (1.1) if and only if u is
a critical point of Ib and u± �= 0, where

u+ := max(u, 0), u– := min(u, 0).

Motivated by [5, 10], in order to find a sign-changing solution of equation (1.1), we make
the following decompositions for u ∈ X:

Ib(u) = Ib
(
u+)

+ Ib
(
u–)

+
b
2

∫

R2
K(x)

∣∣∇u+∣∣2 dx
∫

R2
K(x)

∣∣∇u–∣∣2 dx, (1.9)

〈
I ′

b(u), u+〉
=

〈
I ′

b
(
u+)

, u+〉
+ b

∫

R2
K(x)

∣∣∇u+∣∣2 dx
∫

R2
K(x)

∣∣∇u–∣∣2 dx, (1.10)

〈
I ′

b(u), u–〉
=

〈
I ′

b
(
u–)

, u–〉
+ b

∫

R2
K(x)

∣∣∇u+∣∣2 dx
∫

R2
K(x)

∣∣∇u–∣∣2 dx. (1.11)
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Meanwhile, we consider the Nehari manifold and Nehari nodal set associated to (1.7)
defined respectively by

N =
{

u ∈ X\{0} :
〈
I ′

b(u), u
〉

= 0
}

and

M =
{

u ∈ X; u± �= 0 :
〈
I ′

b(u), u+〉
=

〈
I ′

b(u), u–〉
= 0

}
.

In this paper, we have the following result.

Theorem 1.1 (Subcritical case) Assuming (f5) with α0 = 0 and (f0)–(f3) hold, equation (1.1)
has a least-energy sign-changing solution, which has precisely two nodal domains.

Theorem 1.2 (Critical case) Assuming (f5) with α0 > 0 and (f0)–(f4) hold, equation (1.1)
has a least-energy sign-changing solution, which has precisely two nodal domains.

We organize this paper as follows. In Sect. 2 we give some useful preliminary lemmas
which pave the way for getting a least-energy sign-changing solution. Then Sect. 3 is de-
voted to proving Theorems 1.1 and 1.2.

2 Some preliminary lemmas
According to [29], the following version of the Trudinger–Moser inequality holds:

Lemma 2.1 For any r ≥ 0, u ∈ X, we have K(x)|u|r+2 ∈ L1(R2). If ‖u‖ ≤ M, ςM2 < 4π , then
there exists C = C(M, r,ς ) > 0 such that

∫

R2
K(x)|u|2+r[exp

(
ςu2) – 1

]
dx ≤ C(M, r,ς )‖u‖r . (2.1)

Proof See [29, Theorem 1.1 and Corollary 1.2]. �

Next, we prove that the set M is nonempty. In this proof, we adopt in part the idea of
Zhong and Tang [30].

Lemma 2.2 Suppose that f satisfies (f0)–(f3). For any u ∈ X with u± �= 0, there exists
a unique pair of numbers su, tu > 0 such that suu+ + tuu– ∈ M and Ib(suu+ + tuu–) =
maxs,t≥0 Ib(su+ + tu–).

Proof Fix u ∈ X with u± �= 0. We first verify the existence of (su, tu). Write

Ib
(
su+ + tu–)

=
1
2
∥∥su+ + tu–∥∥2 +

b
4
∥∥su+ + tu–∥∥4 –

∫

R2
K(x)F

(
su+ + tu–)

dx

=
1
2

s2∥∥u+∥∥2 +
b
4

s4∥∥u+∥∥4 –
∫

R2
K(x)F

(
su+)

dx +
b
2

s2t2∥∥u+∥∥2∥∥u–∥∥2

+
1
2

t2∥∥u–∥∥2 +
b
4

t4∥∥u–∥∥4 –
∫

R2
K(x)F

(
tu–)

dx.
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Let Φ(s, t) = Ib(su+ + tu–) and use Φu to represent the gradient at (s, t), i.e., Φu =
(Φ ′

s(s, t),Φ ′
t(s, t)) = (I ′

b(su+ + tu–)u+, I ′
b(su+ + tu–)u–), and then

⎧⎨
⎩

Φ ′
s(s, t) = s‖u+‖2 + bs3‖u+‖4 + bst2‖u+‖2‖u–‖2 –

∫
R2 K(x)f (su+)(u+) dx,

Φ ′
t(s, t) = t‖u–‖2 + bt3‖u–‖4 + bs2t‖u+‖2‖u–‖2 –

∫
R2 K(x)f (tu–)(u–) dx.

(2.2)

Combining (f1)–(f3), it is easy to verify Φ ′
s(s, s) > 0, Φ ′

t(s, s) > 0 for s > 0 small enough and
Φ ′

s(t, t) < 0, Φ ′
t(t, t) < 0 for t > 0 large enough. Then there exists 0 ≤ r ≤ R such that

Φ ′
s(r, r) > 0, Φ ′

t(r, r) > 0; Φ ′
s(R, R) < 0, Φ ′

t(R, R) < 0. (2.3)

By the monotonicity with respect to s > 0 (resp. t > 0) if t > 0 (resp. s > 0) is fixed, one has

Φ ′
s(r, t) > 0, Φ ′

s(R, t) < 0, for all t ∈ [r, R],

Φ ′
t(s, r) > 0, Φ ′

t(s, R) < 0, for all s ∈ [r, R].

It follows from the Miranda’s theorem [31] that there exists a pair (su, tu) ∈ [r, R] × [r, R]
such that

Φ ′
s(su, tu) = 0, Φ ′

t(su, tu) = 0,

which implies that suu+ + tuu– ∈M, i.e., M �= ∅.
Next, we will prove that the positive number pair (su, tu) is unique. We suppose that

there are two pairs of positive numbers (su1 , tu1 ), (su2 , tu2 ) satisfying Φ ′
s(sui , tui ) = 0, i = 1, 2.

Without loss of generality, we assume su1 < su2 and that there exists a unique su such that
Φ ′

s(su, tu) = 0. From Φ ′
s(sui , tui ) = 0 we derive that

su1

∥∥u+∥∥2 + bs3
u1

∥∥u+∥∥4 + bsu1 t2
u
∥∥u+∥∥2∥∥u–∥∥2 =

∫

R2
K(x)f

(
su1 u+)(

u+)
dx (2.4)

and

su2

∥∥u+∥∥2 + bs3
u2

∥∥u+∥∥4 + bsu2 t2
u
∥∥u+∥∥2∥∥u–∥∥2 =

∫

R2
K(x)f

(
su2 u+)(

u+)
dx, (2.5)

and then, combing (2.4) with (2.5), we have

(
1

s2
u1

–
1

s2
u2

)∥∥u+∥∥2 + b
(

1
s2

u1

–
1

s2
u2

)
t2
u
∥∥u+∥∥2∥∥u–∥∥2

=
∫

R2
K(x)

(
f (su1 u+)
(su1 u+)3 –

f (su2 u+)
(su2 u+)3

)(
u+)4 dx. (2.6)

We know that the left-hand side of the latter equality is positive due to assumption su1 <
su2 . At the same time, using hypothesis (f3), we can see that the right-hand side is negative,
which leads to a contradiction. Therefore, we have su1 = su2 , so su is unique. The proof of
tu uniqueness is similar.
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The existence of an extreme value of Φ(s, t) at (su, tu) is verified by using the sufficient
condition for the existence of an extreme value of a binary function:

⎧⎪⎪⎨
⎪⎪⎩

Φ ′′
ss(s, t) = ‖u+‖2 + 3bs2‖u+‖4 + bt2‖u+‖2‖u–‖2 –

∫
R2 K(x)f ′(su+)(u+)2 dx,

Φ ′′
st(s, t) = 2bst‖u+‖2‖u–‖2 = Φ ′′

ts(s, t),

Φ ′′
tt(s, t) = ‖u–‖2 + 3bt2‖u–‖4 + bs2‖u+‖2‖u–‖2 –

∫
R2 K(x)f ′(tu–)(u–)2 dx.

(2.7)

Substituting point (su, tu) into (2.7), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ ′′
ss(su, tu) = ‖u+‖2 + 3bs2

u‖u+‖4 + bt2
u‖u+‖2‖u–‖2

–
∫
R2 K(x)f ′(suu+)(u+)2 dx,

Φ ′′
st(su, tu) = 2bsutu‖u+‖2‖u–‖2 = Φ ′′

ts(su, tu),

Φ ′′
tt(su, tu) = ‖u–‖2 + 3bt2

u‖u–‖4 + bs2
u‖u+‖2‖u–‖2

–
∫
R2 K(x)f ′(tuu–)(u–)2 dx,

(2.8)

then, combing Φ ′
s(su, tu) = 0 with hypothesis (f3), we obtain that

Φ ′′
ss(su, tu) =

∥∥u+∥∥2 + 3bs2
u
∥∥u+∥∥4 + bt2

u
∥∥u+∥∥2∥∥u–∥∥2 –

∫

R2
K(x)f ′(suu+)(

u+)2 dx

<
∥∥u+∥∥2 + 3bs2

u
∥∥u+∥∥4 + bt2

u
∥∥u+∥∥2∥∥u–∥∥2 – 3

∫

R2
K(x)f

(
suu+) 1

su

(
u+)

dx

= –2
∥∥u+∥∥2 – 2t2

ub
∥∥u+∥∥2∥∥u–∥∥2 (2.9)

and

Φ ′′
tt(su, tu) =

∥∥u–∥∥2 + 3bt2
u
∥∥u–∥∥4 + bs2

u
∥∥u+∥∥2∥∥u–∥∥2 –

∫

R2
K(x)f ′(suu–)(

u–)2 dx

<
∥∥u–∥∥2 + 3bt2

u
∥∥u–∥∥4 + bs2

u
∥∥u+∥∥2∥∥u–∥∥2 – 3

∫

R2
K(x)f

(
suu–) 1

su

(
u–)

dx

= –2
∥∥u–∥∥2 – 2s2

ub
∥∥u+∥∥2∥∥u–∥∥2 (2.10)

hold. Since, obviously,

Φ ′′
ss(su, tu) < 0,

from (2.8)–(2.10) we get

Φ ′′
ss(su, tu)Φ ′′

tt(su, tu) – Φ ′′2
st (su, tu)

>
(
2
∥∥u+∥∥2 + 2t2

ub
∥∥u+∥∥2∥∥u–∥∥2)(2

∥∥u–∥∥2 + 2s2
ub

∥∥u+∥∥2∥∥u–∥∥2)

–
(
2bsutu

∥∥u+∥∥2∥∥u–∥∥2)2

> 0. (2.11)

Thus we can get the maximum value of Φ(s, t) at (su, tu). The proof is complete. �
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Lemma 2.3 Assume that (f0)–(f3) and (f5) hold, as well as u ∈ X and u± �= 0. Then we have:
(i) If Φ ′

s(1, 1) ≤ 0, Φ ′
t(1, 1) ≤ 0, there is a unique positive number pair (su, tu) obtained in

Lemma 2.2, satisfying 0 < su, tu ≤ 1, such that suu+ + tuu– ∈M.
(ii) If Φ ′

s(1, 1) ≥ 0, Φ ′
t(1, 1) ≥ 0, there is a unique positive number pair (su, tu) obtained in

Lemma 2.2, satisfying su, tu ≥ 1, such that suu+ + tuu– ∈M.

Proof (i) Assuming that su ≥ tu > 0, in view of suu+ + tuu– ∈M, we have

su
∥∥u+∥∥2 + bs3

u
∥∥u+∥∥4 + bs3

u
∥∥u+∥∥2∥∥u–∥∥2 ≥ su

∥∥u+∥∥2 + bs3
u
∥∥u+∥∥4 + bsut2

u
∥∥u+∥∥2∥∥u–∥∥2

=
∫

R2
K(x)f

(
suu+)(

u+)
dx. (2.12)

From the hypothesis Φ ′
s(1, 1) ≤ 0, we have

∥∥u+∥∥2 + b
∥∥u+∥∥4 + b

∥∥u+∥∥2∥∥u–∥∥2 ≤
∫

R2
K(x)f

(
u+)(

u+)
dx. (2.13)

Combing (2.12) with (2.13), we get

(
1
s2

u
– 1

)∥∥u+∥∥2 ≥
∫

R2
K(x)

[
f (suu+)
(suu+)3 –

f (u+)
(u+)3

](
u+)4 dx. (2.14)

If su > 1, then the left-hand side of this inequality is negative, but from (f3) the right-hand
side is positive, so (2.14) yields a contradiction. Therefore we conclude su ≤ 1. Using a
similar method, we can prove that tu ≤ 1.

(ii) Similarly, assuming that 0 < su ≤ tu and using the fact that suu+ + tuu– ∈M, we get

su
∥∥u+∥∥2 + bs3

u
∥∥u+∥∥4 + bs3

u
∥∥u+∥∥2∥∥u–∥∥2 ≤ su

∥∥u+∥∥2 + bs3
u
∥∥u+∥∥4 + bsut2

u
∥∥u+∥∥2∥∥u–∥∥2

=
∫

R2
K(x)f

(
suu+)(

u+)
dx. (2.15)

From the assumption Φ ′
s(1, 1) ≥ 0, we have

∥∥u+∥∥2 + b
∥∥u+∥∥4 + b

∥∥u+∥∥2∥∥u–∥∥2 ≥
∫

R2
K(x)f

(
u+)(

u+)
dx. (2.16)

Now combing (2.15) with (2.16), we get

(
1
s2

u
– 1

)∥∥u+∥∥2 ≤
∫

R2
K(x)

[
f (suu+)
(suu+)3 –

f (u+)
(u+)3

](
u+)4 dx. (2.17)

If su < 1, then the two sides of (2.17) are contradictory, therefore we conclude su ≥ 1. Using
a similar method, we can prove that tu ≥ 1. �

Lemma 2.4 Assume that (f0)–(f3) and (f5) hold. Then there exists ρ > 0 such that ‖u‖ ≥ ρ

for all u ∈M. Furthermore, m := inf{Ib(u) : u ∈M} > 0.
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Proof Suppose, to the contrary, that there exists {un} ⊂ M such that ‖un‖ → 0. Using
(1.6), we obtain

‖un‖2 ≤ ‖un‖2 + b‖un‖4

≤ ε

∫

R2
K(x)|un|2 dx + Cε

∫

R2
K(x)|un|q

(
eαu2

n – 1
)

dx

= ε

∫

R2
K(x)|un|2 dx + Cε

∫

R2
K(x)|un|q

(
eα‖un‖2( un‖un‖ )2

– 1
)

dx. (2.18)

Using Sobolev embedding theorem and Hölder’s inequality with s′, s > 1, we get

‖un‖2 ≤ εS–1
2 ‖un‖2 + Cε

(∫

R2
K(x)|un|qs′ dx

) 1
s′
(∫

R2
K(x)

(
eα‖un‖2( un‖un‖ )2

– 1
)s dx

) 1
s
,

which after a rearrangement yields

(
1 – εS–1

2
)‖un‖2 ≤ Cε

(∫

R2
K(x)|un|qs′ dx

) 1
s′
(∫

R2
K(x)

(
eα‖un‖2( un‖un‖ )2

– 1
)s dx

) 1
s
.

Arguing as in the proof of Lemma 3.4 in [32], there exists C̃ε such that

(
1 – εS–1

2
)‖un‖2 ≤ C̃ε

(∫

R2
K(x)|un|qs′ dx

) 1
s′
(∫

R2
K(x)

(
esα‖un‖2( un‖un‖ )2

– 1
)

dx
) 1

s
.

Let vn := un
‖un‖ , then ‖vn‖2 = 1. Since ‖un‖ → 0, there exists β < 4π such that sα‖un‖2 < β

holds. For q > 2, using Lemma 2.1 and the embedding theorem, there exists a constant C̃ε

such that

(
1 – εS–1

2
)‖un‖2 ≤ MC̃ε

(∫

R2
K(x)|un|qs′ dx

) 1
s′ ≤ MC̃εS– q

2
qs′ ‖un‖q.

By simplifying we get

(1 – εS–1
2 )

MC̃εS– q
2

qs′
≤ ‖un‖q–2.

By arbitrariness of ε, there is a constant ρ = [ (1–εS–1
2 )

MC̃εS
– q

2
qs′

]
1

q–2 > 0 such that ‖un‖ ≥ ρ > 0.

Now assume that {un} ⊂ M is a minimizing sequence for m. Using hypothesis (f3), we
get

m = lim
n→∞ inf

[
I(un) –

1
4
〈
I ′(un), un

〉] ≥ 1
4

lim
n→∞ inf‖un‖2 ≥ 1

4
ρ2 > 0, (2.19)

which completes the proof. �
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Because {un} is bounded in X, there exists u ∈ X such that u±
n ⇀ u± in X. Since {un} ⊂

M, one has 〈I ′(un), u±
n 〉 = 0, i.e.,

∫

R2
K(x)

∣∣∇u±
n
∣∣2 dx + b

∫

R2
K(x)|∇u|2 dx

∫

R2
K(x)

∣∣∇u±
n
∣∣2 dx

=
∫

R2
K(x)f

(
u±

n
)(

u±
n
)

dx. (2.20)

Since ‖u±
n ‖ ≥ ρ > 0, using (1.6), we have

ρ2 ≤ ∥∥u±
n
∥∥2 ≤

∫

R2
K(x)f

(
u±

n
)(

u±
n
)

dx

≤ ε

∫

R2
K(x)

∣∣u±
n
∣∣2 dx + Cε

∫

R2
K(x)

∣∣u±
n
∣∣q(eα(u±

n )2
– 1

)
dx. (2.21)

By the boundedness of {un} in X, there exists C1 such that

ρ2 ≤ εC1 + Cε

∫

R2
K(x)

∣∣u±
n
∣∣q(eα(u±

n )2
– 1

)
dx

≤ εC1 + C̃ε

(∫

R2
K(x)

∣∣u±
n
∣∣qs′

) 1
s′
(∫

R2
K(x)

(
eαs(u±

n )2
– 1

)
dx

) 1
s
, (2.22)

from which we get

ρ2 – εC1 ≤ MC̃ε

(∫

R2
K(x)

∣∣u±
n
∣∣qs′ dx

) 1
s′

. (2.23)

Choosing ε = ρ2

2C1
, we have

0 <
ρ2

2MC̃ε

≤
(∫

R2
K(x)

∣∣u±
n
∣∣qs′ dx

) 1
s′

. (2.24)

Since qs′ > 2, we conclude that u±
n → u± in Lqs′ (R2). So, we have

(∫

R2
K(x)

∣∣u±∣∣qs′ dx
) 1

s′ ≥ ρ2

2MC̃ε

> 0. (2.25)

Therefore u± �= 0.

3 Proof of theorems
In this section, we will prove our main results. We first deal with the subcritical case (α0 =
0), it is related to the convergence of involved functions f and F , see (f0)–(f5).

Lemma 3.1 Let {u±
n } ⊂M be a minimizing sequence for m. Then there exists u± ∈ X such

that
∫

R2
K(x)f

(
u±

n
)(

u±
n
)

dx →
∫

R2
K(x)f

(
u±)(

u±)
dx (3.1)
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and
∫

R2
K(x)F

(
u±

n
)

dx →
∫

R2
K(x)F

(
u±)

dx. (3.2)

Proof According to Lemma 2.4, there exists M1 > 0 such that

∥∥u±
n
∥∥2 ≤ M1, ∀n ∈N, (3.3)

and there exists a function u ∈ X such that u±
n (x) → u±(x) and f (u±

n (x))(u±
n (x)) →

f (u±(x))(u±(x)) a.e. in R
2. In order to prove the first limit, the generalized Lebesgue con-

vergence theorem is used here. Letting g : R →R and g ∈ L1(R2), and using (1.6), we have
that

K(x)f
(
u±

n (x)
)(

u±
n (x)

) ≤ εK(x)
∣∣u±

n (x)
∣∣2 + CεK(x)

∣∣u±
n (x)

∣∣q(eα(u±
n (x))2 – 1

)
:= g

(
u±

n (x)
)
.

We will prove that g(u±
n ) is convergent in L1(R2). First, note that

∫

R2
K(x)

∣∣u±
n
∣∣2 dx →

∫

R2
K(x)

∣∣u±∣∣2 dx.

Choosing s′, s > 1 such that 1
s + 1

s′ = 1, we have

K(x)
1
s′
∣∣u±

n
∣∣q → K(x)

1
s′
∣∣u±∣∣q in Ls′(

R
2). (3.4)

Using (3.3) and choosing α < 4π

sM2
1

, we conclude by Lemma 2.1 that

∫

R2
K(x)

(
eαs(u±

n (x))2
– 1

)
dx ≤

∫

R2
K(x)

(
e
αsM2

1( u±
n (x)

‖u±
n ‖ )2

– 1
)

dx

≤
∫

R2
K(x)

(
e

4π ( u±
n (x)

‖u±
n ‖ )2

– 1
)

dx ≤ M2. (3.5)

Because

K(x)eαs|u±
n (x)|2 → K(x)eαs|u±(x)|2 a.e. in R

2,

we can use Lemma 4.8 of [33] and conclude that

K(x)eαs|u±
n |2 ⇀ K(x)eαs|u±|2 . (3.6)

Using (3.4) and (3.6), as well as Lemma 4.8 of [33] again, we conclude

∫

R2
K(x)f

(
u±

n
)(

u±
n
)

dx →
∫

R2
K(x)f

(
u±)(

u±)
dx.

Analogously,
∫
R2 K(x)F(u±

n ) dx → ∫
R2 K(x)F(u±) dx.

Using the lower semicontinuity of convex functions, one has

∥∥u±∥∥2 ≤ lim inf
n→∞

∥∥u±
n
∥∥2. (3.7)
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Using (3.1), (3.2), and Lemma 2.3, there exists (su, tu) ∈ (0, 1] × (0, 1] such that

ū := suu+ + tuu–.

By (f3), we have

m ≤ Ib(ū) = Ib(ū) –
1
4
〈
I ′

b(ū), ū
〉

=
1
4
‖ū‖2 +

1
4

∫

R2
K(x)

[
f (ū)ū – 4F(ū)

]
dx

=
1
4
∥∥suu+∥∥2 +

1
4

∫

R2
K(x)

[
f
(
suu+)(

suu+)
– 4F

(
suu+)]

dx

+
1
4
∥∥tuu–∥∥2 +

1
4

∫

R2
K(x)

[
f
(
tuu–)(

tuu–)
– 4F

(
tuu–)]

dx

≤ 1
4
‖u‖2 +

1
4

∫

R2
K(x)

[
f (u)u – 4F(u)

]
dx

≤ lim inf
n→∞

[
‖un‖2 +

1
4

∫

R2
K(x)

[
f (un)un – 4F(un)

]
dx

]

= lim inf
n→∞

(
I(un) –

1
4
〈
I ′(un), un

〉)
= m. (3.8)

Thus we conclude that su = tu = 1. So ū = u, Ib(u) = m. �

Lemma 3.2 Assuming (f0)–(f3) and (f5) hold, and u ∈ M, one has Φ(s, t) < Φ(1, 1) = Ib(u)
for all (s, t) ∈ C(R+,R+)\{(1, 1)}. Furthermore, det(Φu)′(1, 1) > 0.

Proof Letting u ∈ M and noting that 〈I ′
b(u), u±〉 = 〈I ′

b(u+ + u–), u±〉 = 0, we get that (1, 1)
is a critical point of Φ , i.e.,

Φu(1, 1) =
(

∂Φ

∂s
(1, 1),

∂Φ

∂t
(1, 1)

)
= (0, 0).

According to Lemma 2.2, we know that Φ(s, t) reaches its maximum at (su, tu), so from
(3.8) we conclude that su, tu = 1. To verify det(Φu)′(1, 1) > 0, first note that

(
Φu)′(s, t) =

(
g ′

1(s) 0
0 g ′

2(t)

)
,

where

g1(s) := Φu
1
(
su+)

u+ = s
∥∥u+∥∥2 + bs3∥∥u+∥∥4 –

∫

R2
K(x)f

(
su+)

u+,

g2(s) := Φu
2
(
tu–)

u– = t
∥∥u–∥∥2 + bt3∥∥u–∥∥4 –

∫

R2
K(x)f

(
tu–)

u–.
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Because u+ ∈N , it follows from the definition of g1(s) and (f3) that

g ′
1(1) =

∥∥u+∥∥2 + 3b
∥∥u+∥∥4 –

∫

R2
K(x)f ′(u+)(

u+)2

= –2
∥∥u+∥∥2 +

∫

R2
K(x)

[
3f

(
u+)

u+ – f ′(u+)(
u+)2]dx < 0. (3.9)

Similarly, g ′
2(1) < 0, and therefore we conclude that

det
(
Φu)′(1, 1) > 0. �

Lemma 3.3 Assume (f0)–(f3) and (f5) hold. If u ∈M and

Ib(u) = m := inf
v∈M

I(v),

then I ′
b(u) = 0.

Proof Suppose to the contrary that the conclusion is not valid. Then there are δ,λ > 0 such
that ‖I ′

b(u)‖ > λ whenever ‖u – v‖ < 3δ. Let D ⊂ R
2 be such that (1, 1) ∈ D, and define a

continuous mapping g : D → X by g(s, t) = su+ + tu–. From Lemma 3.2, we conclude that

α := max
(s,t)∈∂D

Ib ◦ g < m. (3.10)

For 0 < ε < min{(m – α)/2,λδ/8} and S := Bδ(v), using Lemma 2.3 of [34], there exists η ∈
C([0, 1] × X, X) verifying:

(a1) η(1, u) = u, u /∈ I–1
b ([m – 2ε, m + 2ε]);

(a2) η(1, Im+ε
b ∩ S) ⊂ Im–ε

b ;
(a3) Ib(η(1, u)) ≤ Ib(u), ∀u ∈ X .

By Lemma 3.2, (a2), and (a3), it follows that

max
(s,t)∈D

Ib
(
η
(
1, g(s, t)

))
< m. (3.11)

It follows from the definition of Φu and u ∈M that Φu(s, t) = 0 if and only if (s, t) = (1, 1) ∈
D. Therefore, from the Brouwer degree theory and Lemma 3.2, we get

deg
(
Φu, D, 0

)
= sgn det

(
Φu)′(1, 1) = 1. (3.12)

Let h(s, t) := η(1, g(s, t)) and

�(s, t) :=
(
s–1I ′

b
(
h(s, t)

)
h(s, t)+, t–1I ′

b
(
h(s, t)

)
h(s, t)–)

. (3.13)

By the choice of ε > 0, (3.10), and (a1), we have g = h in ∂D. Thus, the definition of Φu and
(3.13) imply Φu = � in ∂D, from which we get

det(� , D, 0) = det
(
Φu, D, 0

)
= 1.
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So, there exists (s, t) ∈ D such that h(s, t) ∈M, which is in contradiction with (3.11). Thus
we get I ′

b(u) = 0. �

Proof of Theorem 1.1 Letting {un} ⊂ M be a minimizing sequence for Ib under the con-
straint set M, we know that the sequence {un} is bounded in X by Lemma 2.4. Also there
exists u ∈ X such that un ⇀ u in X. Combining (2.25), (3.8), and Lemma 3.3, we have
Ib(u) = m, I ′

b(u) = 0, and u± �= 0. Therefore, when α0 = 0, Eq. (1.1) has a least-energy sign-
changing solution u.

Next, it is proved that u has two nodal domains through contradictory assumptions.
First, by Fatou’s lemma, one can easily observe that

〈
I ′

b(u), u±〉 ≤ lim inf
n→∞

〈
I ′

b(un), u±
n
〉

= 0.

Now, we assume

u = u1 + u2 + u3 (3.14)

with ui �= 0, u1 > 0, u2 < 0, u3 ≥ 0, supp(ui) ∩ supp(uj) = ∅, i �= j (i, j = 1, 2, 3), and

〈
I ′

b(u), ui
〉

= 0, i = 1, 2, 3.

Let v := u1 + u2, v+ = u1 and v– = u2, as well as v± �= 0. Then, by Lemma 2.3(i), there exists
(sv, tv) ∈ (0, 1] × (0, 1] such that

svv+ + tvv– = svu1 + tvu2 ∈M, Ib(svu1 + tvu2) ≥ m. (3.15)

Through direct calculation, we have

Ib
(
svv+ + tvv–)

= Ib
(
svv+)

+ Ib
(
tvv–)

+
bs2

vt2
v

2
‖v+‖2‖v–‖2

=
s2

v
4

‖u1‖2 +
1
4

∫

R2
K(x)

[
f (svu1)svu1 – 4F(svu1)

]
dx

+
t2
v
4

‖u2‖2 +
1
4

∫

R2
K(x)

[
f (tvu2)tvu2 – 4F(tvu2)

]
dx

≤ 1
4
‖u1‖2 +

1
4

∫

R2
K(x)

[
f (u1)u1 – 4F(u1)

]
dx

+
1
4
‖u2‖2 +

1
4

∫

R2
K(x)

[
f (u2)u2 – 4F(u2)

]
dx

= Ib(u1) + Ib(u2) +
b
2
‖u1‖2‖u2‖2 +

b
4
‖u1‖2‖u3‖2

+
b
4
‖u2‖2‖u3‖2. (3.16)
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In addition,

0 =
1
4
〈
I ′

b(u), u3
〉

=
1
4
‖u3‖2 +

b
4
‖u‖2‖u3‖2 –

1
4

∫

R2
K(x)f (u3)u3 dx

< Ib(u3) +
b
4
‖u1‖2‖u3‖2 +

b
4
‖u2‖2‖u3‖2. (3.17)

From (3.15)–(3.17), we get the following contradiction:

m ≤ Ib(svu1 + tvu2)

< Ib(u1) + Ib(u2) + Ib(u3) +
b
2
‖u1‖2‖u2‖2 +

b
2
‖u1‖2‖u3‖2 +

b
2
‖u2‖2‖u3‖2

= Ib(u) = m. (3.18)

So u3 = 0, and u exactly does have two nodal domains. �

In order to prove Theorem 1.2, we first introduce an auxiliary equation

–
(

1 + b
∫

R2
K(x)|∇u|2 dx

)
div

(
K(x)∇u

)
= K(x)|u|p–2u, (3.19)

where p > 4 is given by (f4). The energy functional corresponding to equation (3.19) is

Ip(u) =
1
2

∫

R2
K(x)|∇u|2 dx +

b
4

(∫

R2
K(x)|∇u|2 dx

)2

–
1
p

∫

R2
K(x)|u|p dx. (3.20)

The corresponding Nehari manifold and Nehari nodal set are

Np =
{

u ∈ X\{0}; u �= 0 :
〈
I ′

p(u), u
〉

= 0
}

(3.21)

and

Mp =
{

u ∈ X; u± �= 0 :
〈
I ′

p(u), u+〉
=

〈
I ′

p(u), u–〉
= 0

}
. (3.22)

When p > 4, the embedding X ↪→ Lp
K
(
R

2) is compact. We use the previous proof to estab-
lish the existence of wp ∈ X satisfying Ip(wp) = mp, I ′

p(wp) = 0, and such that

mp = inf
u∈Mp

Ip(u) > 0 (3.23)

holds.
For the critical case, we need to control m below the threshold to restore compactness,

and now we estimate the value of m.
Let {un} ⊂Mp be a minimizing sequence for Ip(un) → mp.

Lemma 3.4 For b > 0, we have 0 < m < π
2α0

.
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Proof Let w = w+ + w– and w± �= 0 be the sign-changing solution of (3.19). Then we have

〈
I ′

p(w), w+〉
=

〈
I ′

p(w), w–〉
=

〈
I ′

p(w), w
〉

= 0 (3.24)

and

mp = Ip(w) = Ip(w) –
1
4
〈
I ′

p(w), w
〉 ≥ p – 4

4p
|w|pp. (3.25)

Using (f4) and (3.24), we have 〈I ′
b(w), w±〉 ≤ 0, while using Lemmas 2.3 and 2.4, there is a

unique number pair (s, t) ∈ (0, 1] × (0, 1] such that sw+ + tw– ∈ M. Combing (f4), (3.24),
(3.25), for (s, t) ∈ (0, 1] × (0, 1], we obtain

m ≤ Ib
(
sw+ + tw–)

≤ s2

2
∥∥w+∥∥2 +

t2

2
∥∥w–∥∥2 +

bs4

4
∥∥w+∥∥4 +

bt4

4
∥∥w–∥∥4

+
bs2t2

2
∥∥w+∥∥2∥∥w–∥∥2 –

�0sp

p
∣∣w+∣∣p

p –
�0tp

p
∣∣w–∣∣p

p

=
s2

2

[∫

R2
K(x)

∣∣w+∣∣p dx – b
∥∥w+∥∥4 – b

∥∥w+∥∥2∥∥w–∥∥2
]

+
bs4

4
∥∥w+∥∥4

+
t2

2

[∫

R2
K(x)

∣∣w–∣∣p dx – b
∥∥w–∥∥4 – b

∥∥w–∥∥2∥∥w–∥∥2
]

+
bt4

4
∥∥w–∥∥4

+
bs2t2

2
∥∥w+∥∥2∥∥w–∥∥2 –

�0sp

p
∣∣w+∣∣p

p –
�0tp

p
∣∣w–∣∣p

p

≤ max
ξ>0

(
ξ 2

2
–

�0ξ
p

p

)
|w|pp –

bs2

4
∥∥w+∥∥4(2 – s2) –

bt2

4
∥∥w–∥∥4(2 – t2)

–
s2 + t2 – s2t2

2
b
∥∥w+∥∥2∥∥w–∥∥2

≤ max
ξ>0

(
ξ 2

2
–

�0ξ
p

p

)
|w|pp =

p – 2
2p

�
– 2

p–2
0 |w|pp

≤ 2(p – 2)
p – 4

�
– 2

p–2
0 mp. (3.26)

�

Lemma 3.5 Suppose {un} ⊂M is a minimizing sequence for m. Then

lim sup
n→∞

‖un‖2 <
2π

α0
.

Proof From the assumption, we have Ib(un) → m, 〈I ′
b(un), un〉 = 0, when n → +∞. From

(f3), we have

m + o(1) = Ib(un) –
1
4
〈
I ′

b(un), un
〉 ≥ 1

4
‖un‖2.
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From Lemma 2.4, we have

lim sup
n→∞

‖un‖2 ≤ 4m ≤ 8(p – 2)
p – 4

�
– 2

p–2
0 mp.

Using (f4), we get lim supn→∞‖un‖2 < 2π
α0

. �

Lemma 3.6 Assume {un} ⊂M is a minimizing sequence for m. Then

∫

R2
K(x)f

(
u±

n
)(

u±
n
)

dx →
∫

R2
K(x)f

(
u±)(

u±)
dx

and
∫

R2
K(x)F

(
u±

n
)

dx →
∫

R2
K(x)F

(
u±)

dx.

Proof We only prove the first limit here, as the second is obtained similarly. By Lemma 3.5,
we have lim supn→∞‖un‖2 ≤ 2π

α0
and, up to a subsequence, u±

n (x) → u±(x) and

f
(
u±

n (x)
)(

u±
n (x)

) → f
(
u±(x)

)(
u±(x)

)
a.e. in R

2.

Arguing as in the proof of Lemma 3.1, introducing g : R→R, g ∈ L1(R2), and using (1.6),
we have

K(x)f
(
u±

n (x)
)(

u±
n (x)

) ≤ εK(x)
∣∣u±

n (x)
∣∣2 + CεK(x)

∣∣u±
n (x)

∣∣q(eα(u±
n (x))2

– 1
)

:= g
(
u±

n (x)
)
.

We will prove that g(u±
n ) converges in L1(R2). First, note that

∫

R2
K(x)

∣∣u±
n
∣∣2 dx →

∫

R2
K(x)

∣∣u±∣∣2 dx.

Considering s′, s > 1 such that 1
s + 1

s′ = 1 and s → 1+, we obtain

K(x)
1
s′
∣∣u±

n
∣∣q → K(x)

1
s′
∣∣u±∣∣q in Ls′(

R
2). (3.27)

Now, choosing α > α0 and close to α0, using Lemma 2.1, there exists M2 > 0 such that

∫

R2
K(x)

(
eαs(u±

n (x))2
– 1

)
dx =

∫

R2
K(x)

(
e
αs‖u±

n ‖2( u±
n (x)

‖u±
n ‖ )2

– 1
)

dx

≤
∫

R2
K(x)

(
e

4π ( u±
n (x)

‖u±
n ‖ )2

– 1
)

dx ≤ M2. (3.28)

Since

K(x)eαs|u±
n (x)|2 → K(x)eαs|u±(x)|2 a.e. in R

2,

we use Lemma 4.8 of [33] and conclude that

K(x)eαs|u±
n |2 ⇀ K(x)eαs|u±|2 in Ls(

R
2). (3.29)
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Using (3.27), (3.29), and Lemma 4.8 of [33] again, we conclude

∫

R2
K(x)f

(
u±

n
)(

u±
n
)

dx →
∫

R2
K(x)f

(
u±)(

u±)
dx. �

Proof of Theorem 1.2 The proof is similar to that of Theorem 1.1. We conclude that in the
critical case, Ib has a least-energy sign-changing solution which has precisely two nodal
domains. �

Funding
This research was funded by National Natural Science Foundation of China (No. 11661021; No. 11861021).

Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Declarations

Competing interests
The authors declare no competing interests.

Author contributions
The authors make the same contribution throughout the whole paper writing.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 19 November 2022 Accepted: 9 March 2023

References
1. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)
2. Chipot, M., Lovat, B.: Some remarks on nonlocal elliptic and parabolic problems. Nonlinear Anal. 30, 4619–4627 (1997)
3. Lions, J.L.: On some questions in boundary value problems of mathematical physics. North-Holl. Math. Stud. 30,

284–346 (1978)
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