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Abstract
With the help of CN-inequality, we study fixed point of multi-valued mappings with
closed bounded images and establish some strong convergence theorems involving
a countable family of demicontractive mappings in Hadamard spaces. Furthermore,
we use the established theorems to deduce some theorems involving a family of
minimization problems, variational inequality problems, and monotone inclusion
problems. We finally give examples to illustrate the results. The results obtained
herein generalise some recent results in the literature.
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1 Introduction
Let (H ,ρ) be a metric space and D be a nonempty subset of H . A point u ∈ D is said to
be a fixed point of a single-valued map g : D → H if g(u) = u. For a multi-valued map
T : D → 2H , a point v ∈ D is said to be a fixed point of T if u ∈ Tu. In what follows, we
denote the fixed points set of T by F(T), that is, F(T) = {x ∈ D : x ∈ Tx}. The problem of
finding fixed points of certain mapping(s) is known as the Fixed Point Problem (FPP). It
is known that many problems that arise from engineering, biology, economics, and math-
ematics can be reduced to FPP (see, e.g., [1, 2]). Moreover, for certain nonlinear map-
pings, FPP solves Minimization Problem (MP), Variational Inequality Problem (VIP), and
Monotone Inclusion Problem (MIP), which play significant role in optimization, semi-
group theory, graph theory, and differential equations and have applications in control
theory, chaos theory, nonlinear programming, image restorations, and radiation therapy
(for more details, see, e.g., [3, 4]).

The study of fixed point problems (for both single-valued and multi-valued) has at-
tracted the attentions of many researchers. They usually focused on the existence, unique-
ness, and/or approximations of fixed points of certain nonlinear mappings in various set-
tings. For instance, Banach proved that a single-valued contractive mapping g defined on
a complete metric space always had a unique fixed point and the sequence un = g(un–1)
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converges to the fixed point [5]. Banach’s result is indeed remarkable because it not only
shows the existence and uniqueness of fixed point of contractive mapping but also es-
tablishes an iterative scheme that approximate the point. However, it is known that (see,
e.g., [1, 2]) contractive mappings are not always common in applications, and many prob-
lems result in more general nonlinear mappings, where identifying the fixed point, even
if it exists, is a difficult task. As a result, many iterative schemes for approximating fixed
point(s) of various generalizations of contractive mappings (for single-valued) are devel-
oped in linear spaces, namely in Banach and Hilbert spaces. For example, Mann iteration,
Ishikawa iteration, and Noor iteration were developed in [6, 7], and [8], respectively. The
convergence results obtained from the named iterative schemes are mostly weak conver-
gence. However, in an infinite dimensional space, strong convergence is more desirable.
As a result, several modified iterative schemes using various techniques are developed to
obtain strong convergence results [9–11].

In [12], Nadler proved a multi-valued version of Banach’s result in a complete metric
space [12]. Since then, the study of fixed point theory for multi-valued mappings has ex-
tensively attracted the attention of many scholars. This is, perhaps, because it incorpo-
rates single-valued fixed point theory and has additional applications from Game The-
ory, Market Economy, and Non-smooth Deferential Equation/Inclusions. Moreover, iter-
ative schemes for single-valued mappings are extended to multi-valued setting (see, e.g.,
[10, 13–17]).

Scholars recently used CN-inequality to extend many results in fixed point theory from
linear setting (e.g., Hilbert spaces) to nonlinear setting (CAT(0) spaces), as the inequality
allows CAT(0) to incorporate linear spaces (e.g., pre-Hilbert space) and nonlinear spaces
(e.g., R-tree, Hadamard Manifold) [18]. Moreover, CAT(0) spaces capture a wide range of
problems in addition to that of Hilbert spaces. For example, non-convex sets in the classi-
cal sense can be seen as convex set in CAT(0); non-convex functional in linear spaces can
be convex functional in CAT(0) spaces; constrained optimization problems can be an un-
constrained problem in some sense [19, 20]. Additionally, some problems that cannot be
fitted in Hilbert spaces, such as the asymptotic behavior of the Calabi flow in Kahler geom-
etry, have been properly analyzed in CAT(0) spaces [21]. For further existing applications
of these spaces and fixed point theory in various mathematical fields, see [17, 22–26].

Regarding the fixed points of nonlinear mappings in a CAT(0) space, Kirk studied fixed
point theory and proved that a nonexpansive mapping on a convex closed and bounded set
of a Hadamard space possesses a fixed point [27]. After that, Dhompongsa and Panyanak
obtained some �-convergence theorems for the so-called Mann and Ishikawa iterations
involving a single mapping in CAT(0) spaces [28]. In 2014, Chidume et al. proved strong
and �-convergence theorems using the Krasnoselskii-type scheme to approximate a finite
family of demicontractive maps in CAT(0) spaces. For recent development concerning
fixed point theory in a geodesic/CAT(0) space, the reader is referred to [29–33] and the
references therein.

On the other hand, inspired by the Noor iteration, Phuengrattana and Suantai intro-
duced SP iteration and proved that for a continuous function g on a closed interval E with
a fixed point, SP is bounded if and only if it converges to a fixed point of g [34]. The authors
further analyzed that if g is a nondecreasing function, the convergence due to SP is faster
than that of Mann, Ishikawa, and Noor iterations. Very recently, Chaolamjiak et al. [11]
incorporated SP iteration with an inertial term to approximate a common fixed point of
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three multi-valued quasi-nonexpansive mappings and established the following theorem,
among others:

Theorem 1.1 Let D be a convex closed subset of a real Hilbert space. Let Ti, i = 1, 2, 3 be
three quasi-nonexpansive multi-valued mappings on D with closed bounded images with
F :=

⋂3
i F(Ti) �= ∅ and each Tip = {p} for all p ∈ F . Suppose that each I – Ti is demiclosed

at 0 and consider a sequence {un} defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0, u1 ∈ C chosen arbitrary,

w(0)
n = (1 + θn)un – θnun–1,

w(1)
n ∈ β

(1)
n w(0)

n + (1 – β
(1)
n )T1w(0)

n ,

w(2)
n ∈ β

(2)
n w(1)

n + (1 – β
(2)
n )T2w(1)

n ,

un+1 ∈ β
(3)
n w(2)

n + (1 – β
(3)
n )T3w(2)

n ,

(1)

where {β (i)
n } ⊂ (0, 1), i = 1, 2, 3. If

+∞∑

n=1

θn‖un – un–1‖ < +∞ and 0 < lim inf
n→+∞ β (i)

n < lim sup
n→+∞

β (i)
n < 1, i = 1, 2, 3, (2)

then the sequence {un} converges weakly to an element of F .

In addition, the authors incorporated hybrid CQ shrinking projection to the iterative
scheme in (1) to obtain strong convergence results with the assumption that (2) holds.

Knowing that strong convergence is more desirable in infinite dimensional spaces, and
projection is difficult to compute in most cases, it is natural to ask if one can have strong
convergence without using projection, also if the such result could hold for any number of
families, not just for 3, or even hold for a wider class of mappings than quasi-nonexpansive.
Considering the recent line of research, it is also worth asking if the results can be extended
to more general spaces than real Hilbert spaces, such as Hadamard Manifold, R-tree, and
so on. We as well ask if some assumptions in (2) can be relaxed to weaker assumptions.

This work gives an affirmative answer to the naturally raised questions, thereby estab-
lishing strong convergence theorems for a countable family of multi-valued demicon-
tractive mappings in the setting of Hadamard spaces. Moreover, as an application, this
work establishes additional convergence theorems for solving a collection of minimiza-
tion problems, variational inequality problems for inverse strongly monotone mappings,
and monotone inclusion problems.

The paper is organized as follows: In Sect. 2, preliminaries consisting of lemmas, def-
initions, and some characterizations, which are essential for the convergence analysis of
the proposed scheme, are stated in the setting of Hadamard spaces. The proposed scheme
and its convergence analysis are presented in Sect. 3. Finally, in Sect. 4, the applications
and computational illustrations to show the implementation of our method are given.

2 Preliminaries
In this section, we state some definitions and basic facts that will be useful in our con-
vergence analysis in Sect. 3. We start by recalling some basic and required ingredients
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consisting of definitions, characterizations, and lemmas in Hadamard spaces, which can
be found in [18, 22].

Let (H ,ρ) be a metric space and u, v be two points in H . A map τ : [0, r] ⊂ R → H is a
geodesic path from u to v if the followings hold.

(i) τ (0) = u and τ (r) = v;
(ii) ρ(τ (t1), τ (t2)) = |t1 – t2| for every t1, t2 ∈ [0, r].

The image τ ([0, r]) of τ is a geodesic segment joining u and v, when τ ([0, r]) is unique, it
is denoted by [u, v]. A metric space (H ,ρ) is a geodesic space if every two elements u, v
in H are joined by a geodesic segment and is said to be a uniquely geodesic space if every
two points u, v are joined by a unique geodesic segment [u, v] in H . A geodesic triangle
�(u, v, w) in H is a set of three points u, v, w (called the vertices of �) together with three
geodesic segments connecting each pair. For a uniquely geodesic space the triangle � is
simply

�(v, u, w) = [v, w] ∪ [w, u] ∪ [u, v], (3)

where u, v, w are the vertices, and [u, v], [v, w], [w, u] are the edges of �. A comparison
triangle of a geodesic triangle �(u, v, w) is a triangle in the Euclidean space (R2,‖ · ‖2)
denoted by �̄(ū, v̄, w̄) satisfying

ρ(u, v) = ‖ū – v̄‖2; ρ(v, w) = ‖v̄ – w̄‖2; ρ(u, w) = ‖ū – w̄‖2.

For any point z ∈ �(u, v, w), if z lies in the segment connecting u and v, then a compari-
son point of z in a comparison triangle �̄(ū, v̄, w̄) is the point z̄ ∈ [ū, v̄] ⊂ �̄(ū, v̄, w̄) with
ρ(u, z) = ‖ū – z̄‖2. For points in the triangle �(u, v, w), their corresponding comparison
points are defined in a similar way with that of z.

A metric space (H ,ρ) is called a CAT(0) space if it is a geodesic space, and every geodesic
triangle � in H is as thin as its comparison triangle in (R2,‖ · ‖2), in the sense that for a
geodesic triangle �(u, v, w) with a comparison triangle �̄(ū, v̄, w̄),

ρ(x, z) ≤ ‖x̄ – z̄‖2, (4)

where x and z are arbitrary points in �(u, v, w) with corresponding comparison points x̄
and z̄. Equivalently, a geodesic space (H ,ρ) is a CAT(0) space if and only if it satisfies the
CN-inequality of Bruhat and Tits [35] as follows: Let w, v ∈ H and z be a midpoint of a
geodesic segment connecting w and v, then

d2(z, y) ≤ 1
2

d2(w, y) +
1
2

d2(v, y) –
1
4

d2(w, v), (5)

for every y ∈ H . This CN-inequality guaranteed that CAT(0) spaces are unique geodesic
spaces and subsequently yield to the notation ⊕, which we will defined later. Example
of CAT(0) spaces includes pre-Hilbert spaces [22], Hilbert balls [36], Hyperbolic metrics
[37], Euclidean buildings [38], R-trees [23], and Hadamard manifolds. A complete CAT(0)
space is called a Hadamard space.

In the sequel, unless otherwise stated, we denote a Hadamard space by (H ,ρ), nonempty
subset of H by E, convex closed nonempty subset of H by D and denote the family of
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nonempty closed bounded subsets of H by CB(H), and set

ρH (A, B) := max
{

sup
a∈A

dist(a, B), sup
b∈B

dist(b, A)
}

,

where A, B are any two nonempty closed bounded subsets of H and dist(u, D) :=
inf{ρ(u, v) : v ∈ D} for any u ∈ H . A multi-valued map T : E → CB(H) is said to be

(i) contractive if there exists a ∈ [0, 1) such that

ρH(Tu, Tw) ≤ aρ(u, w) for all u, w ∈ E;

(ii) nonexpansive if

ρH(Tu, Tw) ≤ ρ(u, w) for all u, w ∈ E;

(iii) quasi-nonexpansive if F(T) �= ∅ and

ρH(Tu, Tp) ≤ ρ(u, p) for all u ∈ E and p ∈ F(T);

(iv) demicontractive if F(T) �= ∅, and there exists k ∈ [0, 1) such that

ρ2
H(Tu, Tp) ≤ ρ2(u, p) + dist2(u, Tu) for all u ∈ E and p ∈ F(T);

(v) hybrid if

3ρ2
H (Tu, Tw) ≤ ρ2(u, w) + dist2(u, Tw) + dist2(w, Tu), for all u, w ∈ D.

It is well known that if F(T) �= ∅, then

(i) �⇒ (ii) �⇒ (v) �⇒ (iii) �⇒ (iv).

Let {un} be a bounded sequence in H , and let ρ(·, {un}) : H → [0,∞) be defined by

ρ
(
u, {un}

)
:= lim sup

n→∞
ρ(u, un), u ∈ H .

If ρ({un}) is given by

ρ
({un}

)
:= inf

u∈H
ρ
(
u, {un}

)
,

then the asymptotic center A({un}) of {un} is the set

A
({un}

)
:=

{
u ∈ H : ρ

(
u, {un}

)
= ρ

({un}
)}

.

According to [39, Proposition 7], A({un}) is a singleton set.

Lemma 2.1 ([40]) The asymptotic centre A({un}) of any bounded sequence {un} in D is
in D.
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A bounded sequence {un} �-converges to a point u in H if u is the unique asymptotic
centre for every subsequence {unk } of {un}. In other words, if the lim supk→∞ ρ(unk , u) ≤
lim supk→∞ ρ(unk , y) for every subsequence {unk } of {un} and for every y ∈ X [41]. In this
case, we write �-limn→∞ un = u and call u the �-limit of {un}. Recall that {un} converges
strongly to a point u in H if limn→∞ d(un, u) = 0, and we write limn→∞ un = u and call
u the strong limit of {un}. We say that a multi-valued map T : D ⊆ H → CB(H), has
demiclosedness-type property if for any sequence {un} ⊆ D and u ∈ D,

�- lim
n→∞ un = u

lim
n→∞ dist(un, Tun) = 0

⎫
⎪⎬

⎪⎭
�⇒ u ∈ Tu.

Lemma 2.2 ([41, Proposition 3.6]) Every bounded sequence {un} in D has a �-convergent
subsequence {unk } in D.

Lemma 2.3 ([41, Proposition 3.7]) For a single-valued nonexpansive map g : D → H , the
conditions {un} �-converges to u and ρ(un, gun) → 0 imply u ∈ D and Tu = u.

In the next section, we provide a multi-valued version of Lemma 2.3.
Berg and Nokilaev denoted (u, w) ∈ H × H by −→uw and defined a quasilinearization map

〈·, ·〉 : (H × H) × (H × H) →R by

〈−→uw,−→vz 〉 =
1
2
(
ρ2(u, z) + ρ2(w, v) – ρ2(u, v) – ρ2(w, z)

)
, (u, v, w, z ∈ H).

Lemma 2.4 ([42, Theorem 2.6]) A bounded sequence {un} �-converges to a point u in H
if and only if lim supn→∞〈−→unu,−→wu〉 ≤ 0 for all w ∈ H .

Lemma 2.5 ([43, Lemma 3.1]) Let {�n} be a sequence in R such that there exists a subse-
quence {nj} of {n} with �nj < �nj+1 for every j ∈N. Then there exists a nondecreasing sequence
{mk} ⊂N such that mk → ∞ and for a sufficiently large number k ∈N,

�mk ≤ �mk +1 and �k ≤ �mk +1.

In fact, mk = max{i ≤ k : �i < �i+1}.

Lemma 2.6 ([9, Lemma 2.5]) Let {�n} be a sequence in [0, +∞) ⊂R with

�n+1 ≤ (1 – σn)�n + σnφn + γn, n ≥ 1, (6)

where {σn}, {φn}, and {γn} satisfy the following conditions:
(i) {σn} ⊂ [0, 1],

∑∞
n=1 σn = ∞,

(ii) lim supn→∞ φn ≤ 0, and
(iii) {γn} ⊂ [0,∞),

∑∞
n=1 γn < ∞.

Then limn→∞ �n = 0.

Lemma 2.7 ([28, Lemma 2.1 (iv)]) Let u, v in H . Then for each α ∈ [0, 1], there exists a
unique point w ∈ [u, v] such that

ρ(u, w) = αρ(u, v) and ρ(v, w) = (1 – α)ρ(u, v).
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In the sequel, w is denoted by (1 – α)u ⊕ αv.

Lemma 2.8 ([28, Lemma 2.4]) Let u1, u2 be points in H and a ∈ [0, 1]. Then

ρ
(
(1 – a)u1 ⊕ au2, u3

) ≤ (1 – a)ρ(u1, u3) + aρ(u2, u3),

for every u3 ∈ H .

Lemma 2.9 ([28, Lemma 2.5]) Let u1, u2, u3 be points in H and a ∈ [0, 1]. Then

ρ2((1 – a)u1 ⊕ au2, u3
) ≤ (1 – a)ρ2(u1, u3) + aρ2(u2, u3) – a(1 – a)ρ2(u1, u2),

for every u3 ∈ H .

Lemma 2.10 ([44, Lemma 2.7]) Let u1, u2 be points in H and a ∈ [0, 1]. Then

ρ2((1 – a)u1 ⊕ au2, u3
) ≤ (1 – a)2ρ2(u1, u3) + a2ρ2(u2, u3) + 2a(1 – a)〈−−→u1u3,−−→u2u3〉,

for every u3 ∈ H .

3 Main results
Recall that (H ,ρ) denotes a Hadamard space, and D denotes a nonempty convex closed
subset of H . We start by proving a multi-valued version of the result in Lemma 2.3.

Theorem 3.1 A multi-valued nonexpansive map T : D → CB(D) has demiclosedness-type
property.

Proof Let {un} ⊂ D such that

�- lim
n→∞ = u, (7)

lim
n→∞ dist(un, Tun) = 0. (8)

Then by Lemma 2.1, u ∈ D. Now let y ∈ Tu. We show that y = u. Assume, on the contrary,
that y �= u. Then by uniqueness of asymptotic center, we have

lim sup
n→∞

ρ(un, u) < lim sup
n→∞

ρ(un, y). (9)

However,

ρ(un, y) ≤ ρ(un, zn) + ρ(zn, y)

≤ ρ(un, zn) + ρH(Tun, Tu), for every zn ∈ Tun.

This implies that

ρ(un, y) ≤ dist(un, Tun) + ρH (Tun, Tu)

≤ dist(un, Tun) + ρ(un, u).
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By (8), we have

lim sup
n→∞

ρ(un, y) < lim sup
n→∞

ρ(un, u)

that contradicts (9). �

Lemma 3.2 For any bounded sequence {un} in D, there exists a point u that is a �-limit of
some subsequence {unj} of {un} and

lim sup
n→∞

〈−→unu,−→yu〉 ≤ 0, for all y ∈ H .

Proof Let y, z ∈ H . Since {un} is bounded, there exists a subsequence {unk } of {un} such
that

lim sup
n→∞

〈−→unz,−→yz 〉 = lim
k→∞

〈−−→unk z,−→yz 〉. (10)

Also, by the boundedness of {unk } and Lemma 2.2, there exists a subsequence {unj} of {unk }
such that {unj} �-converges to some point u and by Lemma 2.1, u ∈ D. By Lemma 2.4 and
(10), we have

lim sup
n→∞

〈−→unu,−→yu〉 = lim
k→∞

〈−−→unk u,−→yu〉

= lim
j→∞〈−−→unj u,−→yu〉

= lim sup
j→∞

〈−−→unj u,−→yu〉

≤ 0.

(11)

This completes the proof. �

We now consider countably infinite family of demicontractive mappings with common
fixed point.

Lemma 3.3 Let Ti : D → CB(D), i ∈ N be a family of multi-valued demicontractive map-
pings with constants {ki} ⊂ (0, 1), F :=

⋂
i∈N F(Ti) �= ∅ and each Tip = {p} for all p ∈ F .

Suppose that {un} is a sequence generated by

⎧
⎪⎪⎨

⎪⎪⎩

v(0)
n = (1 – αn)un ⊕ αnu1, u1 ∈ D,

v(i)
n = β

(i)
n v(i–1)

n ⊕ (1 – β
(i)
n )w(i–1)

n , w(i–1)
n ∈ Tiv(i–1)

n , i = 1, . . . , n – 1,

un+1 = β
(n)
n v(n–1)

n ⊕ (1 – β
(n)
n )w(n–1)

n , w(n–1)
n ∈ Tnv(n–1)

n , n ≥ 1,

(12)

with {αn} ⊂ [0, 1], {β (i)
n } ⊂ [ki, 1] and αn → 0 as n → ∞. Then

(i) {un} is bounded, and
(ii) lim supn→∞(ρ(un, p)2 – ρ(un+1, p)2) = 0, for all p ∈F .
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Proof Let p ∈ F and let n ∈ N. By Lemma 2.9, scheme (12), and the assumptions on T ′
i s,

we have

ρ2(v(i)
n , p

) ≤ β (i)
n ρ2(v(i–1)

n , p
)

+
(
1 – β (i)

n
)
ρ2(w(i–1)

n , p
)

– β (i)
n

(
1 – β (i)

n
)
ρ2(vi–1

n , w(i–1)
n

)

≤ β (i)
n ρ2(v(i–1)

n , p
)

+
(
1 – β (i)

n
)

dist2(w(i–1)
n , Tip

)

– β (i)
n

(
1 – β (i)

n
)
ρ2(v(i–1)

n , w(i–1)
n

)

≤ β (i)
n ρ2(v(i–1)

n , p
)

+
(
1 – β (i)

n
)
ρ2

H
(
Tiv(i–1)

n , Tip
)

– β (i)
n

(
1 – β (i)

n
)
ρ2(v(i–1)

n , w(i–1)
n

)

≤ β (i)
n ρ2(v(i–1)

n , p
)

+
(
1 – β (i)

n
)[

ρ2(v(i–1)
n , p

)
+ kiρ

2(v(i–1)
n , w(i–1)

n
)]

– β (i)
n

(
1 – β (i)

n
)
ρ2(v(i–1)

n , w(i–1)
n

)

≤ ρ2(v(i–1)
n , p

)
+

(
1 – β (i)

n
)(

ki – β (i)
n

)
ρ2(v(i–1)

n , w(i–1)
n

)

= ρ2(v(i–1)
n , p

)
–

(
1 – β (i)

n
)(

β (i)
n – ki

)
ρ2(v(i–1)

n , w(i–1)
n

)
,

for each i ∈ {1, . . . , n – 1}. Also,

ρ2(un+1, p) ≤ β (n)
n ρ2(v(n–1)

n , p
)

+
(
1 – β (n)

n
)
ρ2(w(n–1)

n , p
)

– β (n)
n

(
1 – β (n)

n
)
ρ2(vn–1

n , w(n–1)
n

)

≤ β (n)
n ρ2(v(n–1)

n , p
)

+
(
1 – β (n)

n
)

dist2(w(n–1)
n , Tnp

)

– β (n)
n

(
1 – β (n)

n
)
ρ2(v(n–1)

n , w(n–1)
n

)

≤ β (n)
n ρ2(v(n–1)

n , p
)

+
(
1 – β (n)

n
)
ρ2

H
(
Tnv(n–1)

n , Tnp
)

– β (n)
n

(
1 – β (n)

n
)
ρ2(v(n–1)

n , w(n–1)
n

)

≤ β (n)
n ρ2(v(n–1)

n , p
)

+
(
1 – β (n)

n
)[

ρ2(v(n–1)
n , p

)
+ knρ

2(v(n–1)
n , w(n–1)

n
)]

– β (n)
n

(
1 – β (n)

n
)
ρ2(v(n–1)

n , w(n–1)
n

)

≤ ρ2(v(n–1)
n , p

)
+

(
1 – β (n)

n
)(

ki – β (n)
n

)
ρ2(v(n–1)

n , w(n–1)
n

)

= ρ2(v(n–1)
n , p

)
–

(
1 – β (n)

n
)(

β (n)
n – ki

)
ρ2(v(n–1)

n , w(n–1)
n

)

≤ ρ2(v(n–2)
n , p

)
–

(
1 – β (n–1)

n
)(

β (n–1)
n – kn–1

)
ρ2(v(n–2)

n , w(n–2)
n

)

–
(
1 – β (n)

n
)(

β (n)
n – kn

)
ρ2(v(n–1)

n , w(n–1)
n

)
.

Thus, we obtain that

ρ2(un+1, p) ≤ ρ2(v(n–2)
n , p

)
–

(
1 – β (n–1)

n
)(

β (n–1)
n – kn–1

)
ρ2(v(n–2)

n , w(n–2)
n

)

–
(
1 – β (n)

n
)(

β (n)
n – kn

)
ρ2(v(n–1)

n , w(n–1)
n

)

≤ ρ2(v(n–3)
n , p

)
–

n∑

i=n–2

(
1 – β (i)

n
)(

β (i)
n – ki

)
ρ2(v(i–1)

n , w(i–1)
n

)
(13)
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...

≤ ρ2(v(0)
n , p

)
–

n∑

i=1

(
1 – β (i)

n
)(

β (i)
n – ki

)
ρ2(v(i–1)

n , w(i–1)
n

)
.

Therefore, we have

ρ(un+1, p) ≤ ρ
(
v(0)

n , p
)

for every n ∈N.

Moreover, by Lemma 2.8, we have

ρ(un+1, p) ≤ (1 – αn)ρ(un, p) + anρ(u1, p)

≤ max
{
ρ(un, p),ρ(u1, p)

}

≤ max
{
ρ(un–1, p),ρ(u1, p)

}

...

≤ ρ(u1, p).

This proves (i). To show (ii), let p ∈F . We consider the following two cases:
Case I: Assume that {ρ2(un, p)} is a monotonically nonincreasing sequence, that is,

ρ2(un+1, p) ≤ ρ2(un, p), n ∈N.

Then by the boundedness of {un}, we have that {ρ2(un, p)} converges and, consequently,
(ii) hold.

Case II: Suppose that there exists a subsequence {nj} of {n} such that ρ2(unj , p) ≤
ρ2(unj+1, p) for every j ∈ N. Then, by Lemma 2.5, there exists a subsequence {mk} ⊂ N

such that mk → ∞,

ρ2(umk , p) < ρ2(umk +1, p).

Thus,

0 ≤ lim
k→∞

(
ρ2(umk +1, p) – ρ2(umk , p)

)

≤ lim sup
n→∞

(
ρ2(un+1, p) – ρ2(un, p)

)

≤ lim sup
n→∞

(
ρ2(un, p) + αnρ(u1, u) – ρ2(un)

)

≤ lim sup
n→∞

(
αnρ(u1, u)

)

= 0.

Therefore, by Case I and II, the proof is complete. �

Lemma 3.4 Let Ti : D → CB(D), i ∈ N be a family of multi-valued Lipschitzian demicon-
tractive mappings with constants {ki} ⊂ (0, 1), F :=

⋂
i∈N F(Ti) �= ∅ and each Tip = {p} for
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all p ∈F . Let {un} be defined by iterative process (12) with {β (i)
n } ⊂ [ki, 1], lim infn→∞ β

(i)
n ∈

(ki, 1) and αn → 0. Then limn→∞ dist(un, Tiun) = 0 for all i ∈ N.

Proof From (13) and scheme (12), we have

ρ(un+1, p)2 ≤ (1 – αn)ρ(un, p)2 + αnρ(u1, p)

–
n∑

i=1

(
1 – β (i)

n
)(

β (i)
n – ki

)
ρ
(
v(i–1)

n , w(i–1)
n

)2

≤ ρ(un, p)2 + αnρ(u1, p) –
n∑

i=1

(
1 – β (i)

n
)(

β (i)
n – ki

)
ρ
(
v(i–1)

n , w(i–1)
n

)2.

Let i ∈N. Then for n ≥ i, we have

(
1 – β (i)

n
)(

β (i)
n – ki

)
ρ
(
v(i–1)

n , w(i–1)
n

)2 ≤
n∑

i=1

(
1 – β (i)

n
)(

β (i)
n – ki

)
ρ
(
v(i–1)

n , w(i–1)
n

)2

≤ ρ(un, p)2 – ρ(un+1, p)2 + αnρ(u1, p).

(14)

Thus, by Lemma 3.3(ii) and the assumption on {αn}, we have

lim sup
n→∞

(
1 – β (i)

n
)(

β (i)
n – ki

)
ρ
(
v(i–1)

n , w(i–1)
n

)2 = 0 for every i ∈ {1, 2, . . . , m},

which implies

lim
n→∞

(
1 – β (i)

n
)(

β (i)
n – ki

)
ρ
(
v(i–1)

n , w(i–1)
n

)2 = 0, for every i ∈N.

Consequently, by the assumption on {β (i)
n }, we have

lim
n→∞ρ

(
v(i–1)

n , w(i–1)
n

)
= 0, for every i ∈N. (15)

Now, let i ∈N. Then,

ρ
(
un, w(i–1)

n
) ≤ ρ

(
v(0)

n , v(1)
n

)
+ ρ

(
v(1)

n , v(2)
n

)
+ · · · + ρ

(
v(i–2)

n , v(i–1)
n

)

+ ρ
(
v(i–1)

n , w(i–1)
n

)

≤ ρ
(
v(0)

n , w(0)
n

)
+ ρ

(
v(1)

n , v(2)
n

)
+ · · · + ρ

(
v(i–2)

n , v(i–1)
n

)

+ ρ
(
v(i–1)

n , w(i–1)
n

)

≤ ρ
(
v(0)

n , w(0)
n

)
+ ρ

(
v(1)

n , w(1)
n

)
+ · · · + ρ

(
v(i–2)

n , v(i–1)
n

)

+ ρ
(
v(i–1)

n , w(i–1)
n

)

...

≤ ρ
(
v(0)

n , w(0)
n

)
+ ρ

(
v(1)

n , w(1)
n

)
+ · · · + ρ

(
v(i–2)

n , w(i–2)
n

)

+ ρ
(
v(i–1)

n , w(i–1)
n

)

≤
i∑

k=1

ρ
(
v(k–1)

n , w(k–1)
n

)
.
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This implies that

lim
n

ρ
(
un, w(i–1)

n
)

= 0, for each i ≥ 1. (16)

Now using the assumption that {Ti} are Lipschitzian maps, we get

dist(un, Tiun) ≤ ρ
(
un, w(i–1)

n
)

+ dist
(
w(i–1)

n , Tiun
)

≤ ρ
(
un, w(i–1)

n
)

+ ρH
(
Tiv(i–1)

n , Tiun
)

≤ ρ
(
un, w(i–1)

n
)

+ Liρ
(
v(i–1)

n , un
)

≤ ρ
(
un, w(i–1)

n
)

+ Li
[
ρ
(
v(i–1)

n , wi–1
n

)
+ ρ

(
wi–1

n , un
)]

≤ (1 + Li)ρ
(
un, w(i–1)

n
)

+ Liρ
(
v(i–1)

n , wi–1
n

)
.

Therefore, by the consequence of (15) and (16), the proof is complete. �

Theorem 3.5 Let Ti : D → CB(D), i ∈N be a family of multi-valued Lipschitzian demicon-
tractive mappings satisfying the demiclosedness-type property with constants {ki} ⊂ (0, 1),
F :=

⋂
i∈N F(Ti) �= ∅ and each Tip = {p} for all p ∈F . Then the sequence {un} generated by

iterative scheme (12) with
(i) αn → 0 as n → ∞,

∑∞
n=1 αn = ∞, and

(ii) {β (i)
n } ⊂ [ki, 1], lim infn→∞ β

(i)
n ∈ (ki, 1) for all i ∈N,

strongly converges to a point in F .

Proof From Lemma 3.3(i), {un} is bounded. By Lemma 3.2, there exist u ∈ D and subse-
quence {unj} of {un} with u = � limj→∞ unj and

lim sup
n→∞

〈−→unu,−→yu〉 ≤ 0, for every y ∈ H . (17)

By Lemma 3.4, we have dist(unj , Tiunj ) → 0 for every i ∈N. Using the fact that each Ti has
demiclosedness-type property for each i ∈N, we have u ∈F . By (13) and Lemma 2.10, we
get

ρ2(un+1, u) ≤ ρ2(v(0)
n , u

)

≤ (1 – αn)2ρ2(un, u) + α2
nρ

2(u1, u) + 2αn(1 – αn)〈−→unu,−→u1u〉
≤ (1 – αn)ρ2(un, u) + αn

[
anρ

2(u1, u) + 2(1 – αn)〈−→unu,−→u1u〉]

= (1 – αn)ρ2(un, u) + αnφn,

where φn = [anρ
2(u1, u) + 2(1 – αn)〈−→unu,−→u1u〉]. Now, by (17) and the assumption (i), we

have

lim sup
n→∞

φn ≤ 0.

Consequently, by Lemma 2.6, {un} converges strongly to u. �
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Corollary 3.6 Let Ti : D → CB(D), i ∈ N be a family of multi-valued quasi-nonexpansive
mappings with demiclosedness-type property, F :=

⋂
i∈N F(Ti) �= ∅ and each Tip = {p} for

all p ∈F . Then the sequence {un} generated by iterative scheme (12) with
(i) αn → 0,

∑∞
n=1 αn = ∞, and

(ii) {β (i)
n } ∈ [0, 1], lim infn→∞ β

(i)
n ∈ (0, 1) for all i ∈ N,

strongly converges to a point in F .

Remark 3.7 Since every hybrid mapping with a fixed point is quasi-nonexpansive, Corol-
lary 3.6 holds for a countable family of hybrid mappings.

We have the following result from Theorem 3.5.

Corollary 3.8 Let Ti : D → CB(D), i ∈ N be a family of multi-valued nonexpansive map-
pings with F :=

⋂
i∈N F(Ti) �= ∅. Then the sequence {un} generated by iterative scheme (12)

with
(i) αn → 0 as n → ∞,

∑∞
n=1 αn = ∞, and

(ii) {β (i)
n } ⊂ [0, 1], lim infn→∞ β

(i)
n ∈ (0, 1) for i ∈N,

strongly converges to a point in F .

Next, we consider a finite family of demicontractive mappings with fixed points. The
results are analogous to the previous discussion.

Lemma 3.9 Let Ti : D → CB(D), i = 1, 2, . . . , m be a family of multi-valued demicontractive
mappings with constants {ki} ⊂ (0, 1), F :=

⋂m
i=1 F(Ti) �= ∅ and each Tip = {p} for all p ∈F .

Suppose that {un} is a sequence generated by

⎧
⎪⎪⎨

⎪⎪⎩

v(0)
n = (1 – αn)un ⊕ αnu1, u1 ∈ D,

v(i)
n = β

(i)
n v(i–1)

n ⊕ (1 – β
(i)
n )w(i–1)

n , w(i–1)
n ∈ Tiv(i–1)

n , i = 1, . . . , m – 1,

un+1 = β
(m)
n v(m–1)

n ⊕ (1 – β
(m)
n )w(m–1)

n , w(m–1)
n ∈ Tnv(m–1)

n , n ≥ 1,

(18)

with {αn} ⊂ [0, 1], {β (i)
n } ⊂ [ki, 1] and αn → 0 as n → ∞. Then

(i) {un} is bounded, and
(ii) lim supn→∞(ρ(un, p)2 – ρ(un+1, p)2) = 0, for all p ∈F .

Proof The proof follows similar arguments as the proof of Lemma 3.3, and therefore we
skip it. �

Lemma 3.10 Let Ti : D → CB(D), i = 1, 2, . . . , m be a family of multi-valued Lipschitzian
demicontractive mappings with constants {ki} ⊂ (0, 1), F :=

⋂m
i=1 F(Ti) �= ∅ and each

Tip = {p} for all p ∈ F . Let {un} be defined by iterative process (18) with {β (i)
n } ⊂ [ki, 1],

lim infn→∞ β
(i)
n ∈ (ki, 1) and αn → 0. Then limn→∞ dist(un, Tiun) = 0 for all i ∈ {1, 2, . . . , m}.

Proof The proof follows similar arguments as the proof of Lemma 3.4, and therefore we
skip it. �

Theorem 3.11 Let Ti : D → CB(D), i = 1, 2, . . . , m be a family of multi-valued Lipschitzian
demicontractive mappings satisfying demiclosedness-type property with constants {ki} ⊂
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(0, 1), F :=
⋂m

i F(Ti) �= ∅ and each Tip = {p} for all p ∈F . Then the sequence {un} generated
by iterative process (18) with

(i) αn → 0 as n → ∞,
∑∞

n=1 αn = ∞, and
(ii) {β (i)

n } ⊂ [ki, 1], lim infn→∞ β
(i)
n ∈ (ki, 1) for i ∈ {1, 2, . . . , m},

strongly converges to a point in F .

Proof The proof follows similar lines as the proof of Theorem 3.5 with i ∈ {1, 2, . . . , m}
only. �

We immediately have the following corollaries:

Corollary 3.12 Let Ti : D → CB(D), i = 1, 2, . . . , m be a family of multi-valued quasi-
nonexpansive mappings with demiclosedness-type property, F :=

⋂m
i=1 F(Ti) �= ∅ and each

Tip = {p} for all p ∈F . Then the sequence {un} generated by iterative scheme (18) with
(i) αn → 0 as n → ∞,

∑∞
n=1 αn = ∞, and

(ii) {β (i)
n } ∈ [0, 1], lim infn→∞ β

(i)
n ∈ (0, 1) for all i ∈ {1, 2, . . . , m},

strongly converges to a point in F .

Remark 3.13 Since every hybrid mapping with fixed point is quasi-nonexpansive, Corol-
lary 3.12 holds for a finite family of hybrid mappings.

From Theorem 3.1 and Corollary 3.12, we have the following corollary:

Corollary 3.14 Let Ti : D → CB(D), i = 1, 2, . . . , m be a family of multi-valued nonex-
pansive mappings with F :=

⋂m
i=1 F(Ti) �= ∅. Then the sequence {un} generated by iterative

scheme (18) with
(i) αn → 0 as n → ∞,

∑∞
n=1 αn = ∞, and

(ii) {β (i)
n } ⊂ [0, 1], lim infn→∞ β

(i)
n ∈ (0, 1) for all i ∈ {1, 2, . . . , m},

strongly converges to a point in F .

4 Applications and numerical examples
In this section, we apply the proposed scheme to solve a family of minimization prob-
lems, variational inequality problems, and monotone inclusion problems. We then give
numerical examples, one in non-Hilbert space and the other in Hilbert space, to show the
implementation, applicability, and effectiveness of the proposed scheme.

4.1 Application to minimization problems
Let g : D →R∪ {+∞} be a map. The problem of finding

u ∈ H such that g(u) ≤ g(v), ∀v ∈ D (19)

is known as a Minimization Problem (MP). This problem has applications in nonlinear
analysis and optimization as different models can be reduced to MP.

A function g : H →R∪ {+∞} is called convex if

g
(
tu ⊕ (1 – t)v

) ≤ tg(u) + (1 – t)g(v) for all t ∈ (0, 1) and u, v ∈ H .
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If the set D(g) := {u ∈ H : g(u) < +∞} �= ∅, then g is said to be proper. The function g is
said to be lower semi-continuous at a point u ∈ D(g) if g(u) ≤ lim infn→∞ g(un) for any
convergent sequence {un} in D(g) with limit u ∈ D. If g is lower semi-continuous at every
point in D(g) then it is lower semi-continuous on D(g). It is known (see, e.g., [4]) that for
a nonempty closed and convex subset D of a Hadamard space H , the function δD : H →R

defined by δD(u) = 0, if u ∈ D and +∞, elsewhere is an example of a proper, convex, lower
semi-continuous function.

For μ > 0, the map Jg
μ is defined by

Jg
μ(u) = arg min

v∈H

[

g(v) +
1

2μ
ρ2(u, v)

]

.

Ariza-Ruiz et al. reported that, for a convex proper lower semi-continuous map g on D, the
solution set of problem (19) coincides with the fixed point set F(Jg

μ) [45, Proposition 6.5].
Moreover, by Lemma 4 of [46], we have that Jg

μ is nonexpansive mapping. Since every
nonexpansive mapping with a fixed point is demicontractive with demiclosedness-type
property, the following results are immediate.

Theorem 4.1 Let gi : H →R∪ {+∞}, i ∈ N be a family of convex, proper and lower semi-
continuous functions with 
 :=

⋂
i∈N arg minu∈H gi(u) �= ∅. Then, for u1 ∈ D, the sequence

{un} defined by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v(0)
n = (1 – αn)un ⊕ αnu1,

v(i)
n = β

(i)
n v(i–1)

n ⊕ (1 – β
(i)
n )Jgi

μ v(i–1)
n , i = 1, . . . , n – 1,

un+1 = β
(n)
n v(n–1)

n ⊕ (1 – β
(n)
n )Jgi

μ v(n–1)
n ,

{αn} ⊂ [0, 1], {β (i)
n } ⊂ [0, 1], i = 1, . . . , n, n ≥ 1,

with
(i) αn → 0 as n → ∞ and

∑∞
n=1 αn = ∞,

(ii) β
(i)
n ∈ [0, 1], lim infn→∞ β

(i)
n ∈ (0, 1) for all i ∈N;

strongly converges to a point in 
.

Theorem 4.2 Let gi : H →R∪ {+∞}, i = 1, . . . , m be a family of convex, proper, and lower
semi-continuous functions with 
 :=

⋂m
i=1 arg minu∈H gi(u) �= ∅. Then, for u1 ∈ D, the se-

quence {un} defined by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v(0)
n = (1 – αn)un ⊕ αnu1,

v(i)
n = β

(i)
n v(i–1)

n ⊕ (1 – β
(i)
n )Jgi

μ v(i–1)
n , i = 1, . . . , m – 1,

un+1 = β
(m)
n v(m–1)

n ⊕ (1 – β
(m)
n )Jgi

μ v(m–1)
n ,

{αn} ⊂ [0, 1], {β (i)
n } ⊂ [0, 1], i = 1, . . . , m, n ≥ 1,

with
(i) αn → 0 as n → ∞ and

∑∞
n=1 αn = ∞,

(ii) β
(i)
n ∈ [0, 1], lim infn→∞ β

(i)
n ∈ (0, 1) for all i ∈ {1, 2, . . . , m};

strongly converges to a point in 
.
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Furthermore, some combined problems involving MP can be obtained from our result.
For example, the main result in [29] can be obtained using scheme (18) as follows:

Theorem 4.3 Let g : D →R∪{+∞} be a convex, proper, and lower semi-continuous func-
tion, and let Ti : D → D, i = 1, . . . , m be a family of single-valued nonexpansive mappings
with 
 :=

⋂m
i=1 F(Ti) ∩ arg minu∈H g(u) �= ∅. Then, for u1 ∈ D, the sequence {un} defined by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v(0)
n = (1 – αn)un ⊕ αnu1,

v(i)
n = β

(i)
n v(i–1)

n ⊕ (1 – β
(i)
n )Tiv(i–1)

n , i = 1, . . . , m,

un+1 = β
(m+1)
n v(m)

n ⊕ (1 – β
(m+1)
n )Jg

μv(m)
n ,

{αn} ⊂ [0, 1], {β (i)
n } ⊂ [0, 1], i = 1, . . . , m + 1, n ≥ 1,

with
(i) αn → 0 as n → ∞ and

∑∞
n=1 αn = ∞,

(ii) β
(i)
n ∈ [0, 1], lim infn→∞ β

(i)
n ∈ (0, 1) for all i ∈ {1, 2, . . . , m + 1};

strongly converges to a point in 
.

4.2 Application to variational inequality problems
Let f : D → H be a single-valued map. The problem of finding

u ∈ D such that 〈−→fuu,−→uw〉 ≥ 0, for every w ∈ D (20)

is known as a Variational Inequality Problem (VIP), and it has several applications in
optimizations (see, e.g., [47]). We denote the set of solution of VIP by VI(D, f ). It is
known that for any u ∈ H , there exists a unique point PDu in D such that ρ(u, PDu) =
minw∈H ρ(u, w) [22, Proposition 2.4]. Furthermore, as in [48, Theorem 2.2], y = PDu if and
only if 〈−→uy,−→yw〉 ≥ 0 for every w ∈ D. Thus, the fixed point set F(PDf ) coincides with the
solution of (20).

Recall that a single-valued map T : D → H is said to be α-inverse strongly monotone if
there exist α > 0 such that for every u, w ∈ D,

ρ2(u, w) – 〈−−→fufw,−→uw〉 ≤ αρ2(u, w) + αρ2(fu, fw) – 2α〈−−→fufw,−→uw〉. (21)

It is known (see, e.g., [49, Lemma 2]) that if f is α-inverse strongly monotone then the map
f (λ) defined by f (λ)u = (1 – λ)u ⊕ λfu with λ ∈ (0, 2α) is nonexpansive and F(f (λ)) = F(f ).
Thus, F(PDf (λ)) = VI(D, f ), and we have the following results.

Theorem 4.4 Let fi : D → H , i ∈ N be a family of αi-inverse strongly monotone mappings
with 
 :=

⋂
i∈N VI(D, fi) �= ∅. Then, for u1 ∈ D, the sequence {un} defined by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v(0)
n = (1 – αn)un ⊕ αnu1,

v(i)
n = β

(i)
n v(i–1)

n ⊕ (1 – β
(i)
n )PDf (λi)

i v(i–1)
n , i = 1, . . . , n – 1,

un+1 = β
(n)
n v(n–1)

n ⊕ (1 – β
(n)
n )PDf (λi)

i v(n–1)
n ,

{αn} ⊂ [0, 1], {β (i)
n } ⊂ [0, 1], λi ∈ (0, 2αi) ∩ (0, 1], n ≥ 1,

with
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(i) αn → 0 as n → ∞ and
∑∞

n=1 αn = ∞,
(ii) β

(i)
n ∈ [0, 1], lim infn→∞ β

(i)
n ∈ (0, 1) for all i ∈N;

strongly converges to a point in 
.

Theorem 4.5 Let fi : D → H , i = 1, . . . , m be a family of inverse strongly monotone map-
pings with 
 :=

⋂m
i=1 VI(D, fi) �= ∅. Then, for u1 ∈ D, the sequence {un} defined by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v(0)
n = (1 – αn)un ⊕ αnu1,

v(i)
n = β

(i)
n v(i–1)

n ⊕ (1 – β
(i)
n )PDf (λi)

i v(i–1)
n , i = 1, . . . , m – 1,

un+1 = β
(m)
n v(m–1)

n ⊕ (1 – β
(m)
n )PDf (λi)

i v(m–1)
n ,

{αn} ⊂ [0, 1], {β (i)
n } ⊂ [0, 1], λi ∈ (0, 2αi) ∩ (0, 1], n ≥ 1,

with
(i) αn → 0 as n → ∞ and

∑∞
n=1 αn = ∞,

(ii) β
(i)
n ∈ [0, 1], lim infn→∞ β

(i)
n ∈ (0, 1) for all i ∈ {1, 2, . . . , m};

strongly converges to a point in 
.

4.3 Application to monotone inclusion problems
A multi-valued mapping A : D(A) → 2H∗ is called monotone if

〈
u∗ – v∗,−→uv

〉 ≥ 0 ∀u, v ∈ D(A), u∗ ∈ Au, v∗ ∈ Av,

where D(A) := {u ∈ H : Au �= ∅}. The problem of finding

u ∈ D(A) such that 0 ∈ Au, (22)

is known as a Monotone Inclusion Problem (MIP). This problem composes many other
problems and has significant applications in nonlinear analysis and optimizations.

The resolvent of A of order μ > 0 is the multi-valued mapping JA
μ : H → 2H defined by

JA
μ (w) :=

{

v ∈ H :
[

1
μ

−→vw
]

∈ Av
}

,

where [t−→vw] := {s−→xy : t〈−→vw,−→uz〉 = s〈−→xy ,−→uz〉,∀u, z ∈ H}. It is shown in [50, Theorem 3.9] that
for any monotone mapping A satisfying the range condition and μ > 0, the resolvent op-
erator JA

μ is firmly nonexpansive, and the fixed point set F(JA
μ ) coincides with the solution

set of (22). Consequently, we have the following results.

Theorem 4.6 Let Ai : D(A) → 2H∗ , i ∈ N be a family of monotone mappings that satisfy
the range condition with 
 :=

⋂
i∈N A–1

i (0) �= ∅. Then, for u1 ∈ D, the sequence {un} defined
by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v(0)
n = (1 – αn)un ⊕ αnu1,

v(i)
n = β

(i)
n v(i–1)

n ⊕ (1 – β
(i)
n )w(i–1)

n , w(i–1)
n ∈ JAi

μ v(i–1)
n , i = 1, . . . , n – 1,

un+1 = β
(n)
n v(n–1)

n ⊕ (1 – β
(n)
n )w(n–1)

n , w(n–1)
n ∈ JAi

μ v(n–1)
n ,

{αn} ⊂ [0, 1], {β (i)
n } ⊂ [0, 1], μ > 0, i = 1, . . . , n, n ≥ 1,
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with
(i) αn → 0 as n → ∞ and

∑∞
n=1 αn = ∞,

(ii) β
(i)
n ∈ [0, 1], lim infn→∞ β

(i)
n ∈ (0, 1) for all i ∈N;

strongly converges to a point in 
.

Theorem 4.7 Let Ai : D(A) → 2H∗ , i = 1 · · · , m be a family of monotone mappings that
satisfy the range condition with 
 :=

⋂m
i=1 A–1

i (0) �= ∅. Then, for u1 ∈ D, the sequence {un}
defined by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v(0)
n = (1 – αn)un ⊕ αnu1,

v(i)
n = β

(i)
n v(i–1)

n ⊕ (1 – β
(i)
n )w(i–1)

n , w(i–1)
n ∈ JAi

μ v(i–1)
n , i = 1, . . . , m – 1,

un+1 = β
(m)
n v(m–1)

n ⊕ (1 – β
(m)
n )w(m–1)

n , w(m–1)
n ∈ JAi

μ v(m–1)
n ,

{αn} ⊂ [0, 1], {β (i)
n } ⊂ [0, 1], μ > 0, i = 1, . . . , m, n ≥ 1,

with
(i) αn → 0 as n → ∞ and

∑∞
n=1 αn = ∞,

(ii) β
(i)
n ∈ [0, 1], lim infn→∞ β

(i)
n ∈ (0, 1) for all i ∈ {1, . . . , m};

strongly converges to a point in 
.

4.4 Numerical examples
In this part, we give two examples, one from non-Hilbert space and the other from Hilbert
space. Moreover, we set the control parameters {αn} = { 1√

n }, {β (i)
n } = { n+i

5n+i } and consider
different initial points in showing the convergence result. All codes are written and ex-
ecuted in Matlab (8.3.0.532) and run on HP Compaq (Presario Cq56) AMD Dual-core
laptop.

Example 4.1 Let H = R
2 and ρ : H × H → [0,∞) be a radial metric defined by

ρ(u, v) =

⎧
⎨

⎩

‖u – v‖2, if u = γ v for some γ ∈ R,

‖u‖2 + ‖v‖2, otherwise.

Then, (H ,ρ) is a CAT(0) space with the geodesic path connecting u, v defined by τ v
u(t) =

(1 – t)u + tv if u = γ v for some γ in R, otherwise

τ v
u(t) :=

⎧
⎨

⎩

(1 – t ρ(u,v)
ρ(0,u) )u, if 0 ≤ t ≤ ρ(0,u)

ρ(u,v) ,
ρ(0,u)
ρ(u,v) (t ρ(u,v)

ρ(0,u) – 1)v, if ρ(0,u)
ρ(u,v) ≤ t ≤ 1.

Let � > 0. Take D := [0,�] × [0,�]; then for i ∈ N, consider the map Ti : D → CB(D)
defined by Tiu :=

∏2
j=1[0, �uj

�+i ], for every u = (u1, u2) ∈ D. Then all the assumptions of
Theorem 3.5 are satisfied. Moreover, F = {0} and Ti0 = {0} for every i ∈ N. Now, set-
ting w(i–1)

n = �
�+i v

(i–1)
n and taking the starting points as Case 1: u1 = (672, 218)T , Case 2:

u1 = (305, 471)T , Case 3: u1 = (182, 391)T , Case 4: u1 = (728, 639)T , we have Figs. 1–4 due
to Theorem 3.5.
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Figure 1 Convergence result of Theorem 3.5 with starting point of Case 1

Figure 2 Convergence result of Theorem 3.5 with starting point of Case 2
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Figure 3 Convergence result of Theorem 3.5 with starting point of Case 3

Figure 4 Convergence result of Theorem 3.5 with starting point of Case 4
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Figure 5 Convergence result of Theorem 3.11 with starting point of Case 1

Figure 6 Convergence result of Theorem 3.11 with starting point of Case 2

Now, if we consider the same example but for a finite family of the mappings taking only
first 200 of them, i.e., {Ti : i = 1, 2, . . . , 200}, then, it is easy to see that the assumptions of
Theorem 3.11 are satisfied. Moreover, using the same initial points given in Cases 1–4, we
have Figs. 5–8 due to Theorem 3.11. Also, Table 1 provides the approximate values of few
terms of the sequence {un} in Example 4.1 using the starting points of Case 1 and Case 2
for both infinite and finite family of the mappings.
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Figure 7 Convergence result of Theorem 3.11 with starting point of Case 3

Figure 8 Convergence result of Theorem 3.11 with starting point of Case 4
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Table 1 Some values of {un} from Example 4.1 with starting points of Case 1 and 2

n u1 = (672, 218), infinite u1 = (305, 471), infinite u1 = (672, 218),m = 200 u1 = (305, 471),m = 200

un un un un

1 (672, 218) (305, 471) (672, 218) (305, 471)
2 (671.5524, 217.8548) (304.7969, 470.6863) (346.9873, 112.5643) (157.4868, 243.2009)
3 (670.4874, 217.5093) (304.3135, 469.9398) (167.8756, 54.4597) (76.1936, 117.6628)
4 (668.5767, 216.8895) (303.4462, 468.6006) (79.9849, 25.9475) (36.3027, 56.0609)
5 (665.6416, 215.9373) (302.1141, 466.5434) (41.1475, 13.3485) (18.6756, 28.84)
6 (661.5287, 214.6031) (300.2474, 463.6608) (23.0989, 7.4934) (10.4839, 16.1898)
7 (656.1094, 212.845) (297.7878, 459.8624) (13.8878, 4.5053) (6.3032, 9.7338)
8 (649.2807, 210.6298) (294.6884, 455.0762) (8.7931, 2.8525) (3.9909, 6.163)
9 (640.9668, 207.9327) (290.915, 449.2491) (5.7981, 1.8809) (2.6316, 4.0639)
10 (631.1207, 204.7386) (286.4461, 442.348) (3.9521, 1.2821) (1.7938, 2.77)
11 (619.7253, 201.0418) (281.2741, 434.3611) (2.7701, 0.89864) (1.2573, 1.9416)
12 (606.7948, 196.8471) (275.4054, 425.2981) (1.9888, 0.64517) (0.90265, 1.3939)
13 (592.3742, 192.169) (268.8603, 415.1908) (1.4581, 0.47301) (0.66178, 1.022)
14 (576.5391, 187.032) (261.6733, 404.0921) (1.089, 0.35329) (0.49428, 0.76329)
15 (559.394, 181.4701) (253.8916, 392.0753) (0.82698, 0.26828) (0.37534, 0.57963)
16 (541.0697, 175.5256) (245.5748, 379.2319) (0.63745, 0.20679) (0.28932, 0.44678)
17 (521.7193, 169.2482) (236.7922, 365.6693) (0.49805, 0.16157) (0.22605, 0.34908)
18 (501.5146, 162.6937) (227.6219, 351.508) (0.39397, 0.12781) (0.17881, 0.27613)
19 (480.6403, 155.922) (218.1478, 336.8774) (0.31519, 0.10225) (0.14305, 0.22091)
20 (459.2891, 148.9956) (208.4571, 321.9125) (0.2548, 0.082659) (0.11565, 0.17859)
...

...
...

...
...

100 (2.4355, 0.79007) (1.1054, 1.707) (0.00055682, 0.00018063) (0.00025272, 0.00039027)
101 (2.2624, 0.73395) (1.0269, 1.5857) (0.0005406, 0.00017537) (0.00024536, 0.0003789)
102 (2.1008, 0.6815) (0.95347, 1.4724) (0.00052508, 0.00017034) (0.00023832, 0.00036803)
103 (1.9498, 0.63251) (0.88493, 1.3666) (0.00051022, 0.00016552) (0.00023157, 0.00035761)
104 (1.8088, 0.58677) (0.82094, 1.2678) (0.00049598, 0.0001609) (0.00022511, 0.00034763)
105 (1.6772, 0.54409) (0.76122, 1.1755) (0.00048233, 0.00015647) (0.00021892, 0.00033806)
106 (1.5544, 0.50427) (0.70551, 1.0895) (0.00046924, 0.00015222) (0.00021297, 0.00032889)
107 (1.44, 0.46714) (0.65357, 1.0093) (0.00045668, 0.00014815) (0.00020727, 0.00032008)
108 (1.3333, 0.43254) (0.60516, 0.93452) (0.00044461, 0.00014423) (0.0002018, 0.00031163)
109 (1.234, 0.4003) (0.56006, 0.86487) (0.00043303, 0.00014048) (0.00019654, 0.00030351)
110 (1.1414, 0.37029) (0.51806, 0.80003) (0.00042189, 0.00013686) (0.00019148, 0.0002957)

...
...

...
...

...
190 (0.00038278, 0.00012417) (0.00017373, 0.00026828) (0.0001086, 3.5231e–05) (4.9292e–05, 7.6119e–05)
191 (0.00033863, 0.00010985) (0.00015369, 0.00023734) (0.00010739, 3.4839e–05) (4.8743e–05, 7.5272e–05)
192 (0.00029941, 9.7131e–05) (0.00013589, 0.00020986) (0.00010621, 3.4454e–05) (4.8205e–05, 7.444e–05)
193 (0.00026459, 8.5835e–05) (0.00012009, 0.00018545) (0.00010504, 3.4077e–05) (4.7676e–05, 7.3625e–05)
194 (0.00023369, 7.581e–05) (0.00010606, 0.00016379) (0.0001039, 3.3707e–05) (4.7158e–05, 7.2825e–05)
195 (0.00020629, 6.692e–05) (9.3627e–05, 0.00014458) (0.00010278, 3.3343e–05) (4.665e–05, 7.204e–05)
196 (0.000182, 5.904e–05) (8.2602e–05, 0.00012756) (0.00010168, 3.2987e–05) (4.6151e–05, 7.1269e–05)
197 (0.00016048, 5.206e–05) (7.2836e–05, 0.00011248) (0.0001006, 3.2637e–05) (4.5661e–05, 7.0513e–05)
198 (0.00014143, 4.5879e–05) (6.4189e–05, 9.9124e–05) (9.9546e–05, 3.2293e–05) (4.5181e–05, 6.9771e–05)
199 (0.00012457, 4.041e–05) (5.6537e–05, 8.7309e–05) (9.8506e–05, 3.1956e–05) (4.4709e–05, 6.9042e–05)
200 (0.00010966, 3.5574e–05) (4.9771e–05, 7.686e–05) (9.7485e–05, 3.1625e–05) (4.4246e–05, 6.8327e–05)

Example 4.2 Let (H ,ρ) = (R4,‖ · ‖2). Then (H ,ρ) is a Hadamard space with the geodesic
path connecting u, v defined by τ v

u(t) = (1 – t)u + tv for every t ∈ [0, 1]. Take D :=
∏4

i=1[–30, 30] and consider the map Ti : D → CB(D) defined by

Tiu :=
{(

u1 + 8i – 2
4i

,
2u2 + 6i – 3

4i
,

2u3 + 7i – 7
2i

,
u4 + 3i – 3

i

)}

,

for every u = (u1, u2, u3, u4) ∈ D and i = 1, 2, 3. Then all the assumptions of Theorem 3.11
are satisfied. Moreover, p = (2, 3

2 , 7
2 , 3) is the only element of F and Tip = {p} for ev-
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Figure 9 Convergence result of Theorem 3.11 with starting point of Case 5

Figure 10 Convergence result of Theorem 3.11 with starting point of Case 6

ery i. Now, using Case 5: u1 = (–20, 5, 17, –10), Case 6: u2 = (22, –20, –19, 30), Case 7:
u1 = (23, –30, –28, 24), and case 8: u1 = (27, –20, –19, 30), we have Figs. 9–12 due to Theo-
rem 3.11. Also, Table 2 displays the approximate values of few terms of the sequence {un}
in Example 4.2 using the starting points of Case 5 and Case 6.
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Figure 11 Convergence result of Theorem 3.11 with starting point of Case 7

Figure 12 Convergence result of Theorem 3.11 with starting point of Case 8
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Table 2 Some values of {un} from Example 4.2 with starting points of Case 1 and Case 2

n u1 = (–20, 5, 17, –10) u1 = (22, –20, –19, 30)

un un

1 (–20, 5, 17, –10) (22, –20, –19, 30)
2 (–0.97917, 2.2778, 9.9286, –3.1905) (4.7083, –3.2778, –7.2143, 15.8571)
3 (0.64369, 1.9189, 7.9934, –1.327) (3.233, –1.0735, –3.989, 11.9868)
4 (1.1364, 1.7873, 6.9845, –0.35548) (2.7851, –0.2648, –2.3076, 9.9691)
5 (1.3545, 1.7239, 6.3979, 0.20944) (2.5868, 0.12431, –1.3298, 8.7958)
6 (1.476, 1.687, 6.0195, 0.57383) (2.4763, 0.35138, –0.69914, 8.039)
7 (1.5535, 1.6626, 5.7545, 0.82898) (2.4059, 0.50103, –0.25753, 7.509)
8 (1.6074, 1.6452, 5.5573, 1.0189) (2.3569, 0.60777, 0.071223, 7.1145)
9 (1.6472, 1.6322, 5.4036, 1.1669) (2.3208, 0.68821, 0.32728, 6.8073)
10 (1.6778, 1.6219, 5.2798, 1.2861) (2.2929, 0.75132, 0.53363, 6.5596)
11 (1.7022, 1.6136, 5.1774, 1.3847) (2.2707, 0.80236, 0.70433, 6.3548)
12 (1.7222, 1.6067, 5.0909, 1.468) (2.2525, 0.84464, 0.8485, 6.1818)
13 (1.7389, 1.6009, 5.0166, 1.5396) (2.2374, 0.88036, 0.97231, 6.0332)
14 (1.7531, 1.5959, 4.9519, 1.6019) (2.2245, 0.911, 1.0801, 5.9038)
15 (1.7653, 1.5915, 4.8949, 1.6567) (2.2134, 0.93765, 1.1751, 5.7899)
16 (1.7759, 1.5877, 4.8442, 1.7055) (2.2037, 0.96108, 1.2596, 5.6885)
17 (1.7853, 1.5843, 4.7988, 1.7493) (2.1951, 0.98188, 1.3354, 5.5975)
18 (1.7937, 1.5813, 4.7577, 1.7889) (2.1875, 1.0005, 1.4039, 5.5154)
19 (1.8012, 1.5786, 4.7203, 1.8249) (2.1807, 1.0173, 1.4662, 5.4406)
20 (1.8079, 1.5761, 4.6861, 1.8578) (2.1746, 1.0325, 1.5231, 5.3722)
...

...
...

300 (1.9576, 1.5176, 3.7984, 2.7127) (2.0385, 1.3917, 3.0027, 3.5968)
...

...
...

500 (1.9673, 1.5136, 3.7317, 2.7769) (2.0297, 1.4163, 3.1139, 3.4634)
501 (1.9673, 1.5136, 3.7315, 2.7771) (2.0297, 1.4164, 3.1142, 3.4629)
502 (1.9674, 1.5136, 3.7312, 2.7773) (2.0297, 1.4164, 3.1146, 3.4625)
503 (1.9674, 1.5136, 3.731, 2.7776) (2.0296, 1.4165, 3.115, 3.462)
504 (1.9674, 1.5136, 3.7308, 2.7778) (2.0296, 1.4166, 3.1154, 3.4615)
505 (1.9675, 1.5136, 3.7305, 2.778) (2.0296, 1.4167, 3.1158, 3.4611)
506 (1.9675, 1.5135, 3.7303, 2.7782) (2.0296, 1.4168, 3.1161, 3.4606)
507 (1.9675, 1.5135, 3.7301, 2.7784) (2.0295, 1.4169, 3.1165, 3.4602)
508 (1.9676, 1.5135, 3.7299, 2.7786) (2.0295, 1.4169, 3.1169, 3.4597)
509 (1.9676, 1.5135, 3.7296, 2.7789) (2.0295, 1.417, 3.1173, 3.4593)
510 (1.9676, 1.5135, 3.7294, 2.7791) (2.0294, 1.4171, 3.1176, 3.4589)

...
...

...
1000 (1.9769, 1.5096, 3.6643, 2.8418) (2.021, 1.4409, 3.2261, 3.3287)

...
...

...
2000 (1.9837, 1.5068, 3.6165, 2.8878) (2.0148, 1.4582, 3.3058, 3.233)

...
...

...
10,000 (1.9927, 1.503, 3.5523, 2.9496) (2.0066, 1.4813, 3.4128, 3.1046)

5 Conclusions
A new iterative scheme is proposed for a countable family of multi-valued mappings in
Hadamard spaces. The proposed scheme does not involve the CQ hybrid projection tech-
nique to show that it strongly converges to a common fixed point of a family of demi-
contractive mappings. Moreover, some modified schemes, derived from the proposed it-
erative scheme, were given as applications for solving the family of minimization, vari-
ational inequality, and monotone inclusion problems. Furthermore, the results obtained
here also hold in all complete CAT(k < 0), Hadamard manifolds, Hilbert spaces, and so
on. Our results generalized some recent results, for instance, result of [11] follows from
Corollary 3.12, and result of [29] follows from Theorem 4.3, and so on.
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We have proved strong and � convergences for Lipschitzian multivalued demicon-
tractive mappings with the demiclosedness-type property. For future work, one might
ask wether the Lipschitzian condition or even the demiclosedness-type property can be
dropped and/or wether the result obtained here could be generalized to wider classes of
mappings, such as a class of hemicontractive mappings, as well as applying the fixed point
results in handling risk assessment model [51].
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