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Abstract
A thermostat model described by a second-order fractional difference equation is
proposed in this paper with one sensor and two sensors fractional boundary
conditions depending on positive parameters by using the Lipschitz-type inequality.
By means of well-known contraction mapping and the Brouwer fixed-point theorem,
we provide new results on the existence and uniqueness of solutions. In this work by
use of the Caputo fractional difference operator and Hyer–Ulam stability definitions
we check the sufficient conditions and solution of the equations to be stable, while
most researchers have examined the necessary conditions in different ways. Further,
we also establish some results regarding Hyers–Ulam, generalized Hyers–Ulam,
Hyers–Ulam–Rassias, and generalized Hyers–Ulam–Rassias stability for our discrete
fractional-order thermostat models. To support the theoretical results, we present
suitable examples describing the thermostat models that are illustrated by graphical
representation.
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1 Introduction
A thermostat is a device that senses a physical system’s temperature and performs actions
to maintain the system’s temperature at a desired set point. A thermostat maintains the
exact temperature, by controlling the switching on or off of the heating or cooling devices
or by controlling the flow of heat-transfer fluid as necessary. In applications, ranging from
ambient air control to automotive coolant control, a thermostat may often be the only
control unit for a heating or cooling system.
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Thermostats are used in an appliance or a system that heats or cools at a set-point tem-
perature, such as house heating, air conditioning, central heating, water heaters, kitchen
equipment like stoves and refrigerators, and medical and scientific incubators. Ther-
mostats use various sensor types to measure the temperature. For one type, the mechanical
thermostat, a coil-shaped bimetallic strip directly controls electrical contacts that control
the source of heating or cooling. Alternatively, electronic thermostats use a thermistor or
other semiconductor sensor to monitor the heating or cooling equipment, which includes
amplification and processing.

Due to the rapid expansion in the literature of fractional calculus, there are many ad-
vanced techniques in the development of fractional-order ordinary and partial differen-
tial equations. They were used as excellent sources and methods for modeling many phe-
nomena in the various fields of science, engineering, and technology, see the monographs
[1–3]. Furthermore, the thermostat model, Burgers equation, Navier–Stokes equations,
or Kirchhoff–Schrodinger-type equations are some of the real-world problems. Thus, dif-
ferent methods and techniques have been suggested for modeling these types of problems
[4, 5].

Over the past three decades, many researchers have widely studied the topic of the clas-
sical initial boundary value problem (BVP) for ordinary and partial differential equations
with integer and fractional order by using different methods. Stability analysis is an impor-
tant branch of the qualitative theory of differential equations, as we know that sometimes
finding the exact solution is quite challenging. Therefore, various numerical techniques
were developed to find a solution. The most important type of stability is Ulam–Hyers sta-
bility. From a numerical and optimization point of view, Ulam–Hyers stability is essential
because it provides a bridge between the exact and numerical solutions. Ulam–Hyers (or
Ulam–Hyers–Rasssias) stability has been used extensively to study stability and has found
applications in real-life problems such as in economics, biology, population dynamics, etc.
[6–21].

However, only a few results have been obtained for linear and nonlinear ordinary and
partial differential equations with the Caputo fractional derivative method and nonlocal
boundary conditions [22–25]. The Caputo time fractional derivative can be used to model
memory systems, since it includes all the context of the past. One of the most important
classes of the thermostat models is the fractional thermostat equations that has been dis-
cussed and used in various fields of science. As is well known, different types of thermostat
models have been studied by several researchers [26–34]. Very recently, Kaabar et al. [35]
proved the existence of solutions for the fractional strongly singular thermostat model
using nonlinear fixed-point techniques and investigated a hybrid version of the fractional
thermostat control model. The study of thermostat models enables the development of
efficient equipment used in several mechanical and electronic devices.

In 2006 [31], Infante and Webb developed a thermostat model, insulated at κ = 0 with a
controller adding or removing heat at κ = 1 depending on the temperature detected by a
sensor point at η

⎧
⎨

⎩

u′′(κ) + ψ(κ , u(κ)) = 0, κ ∈ [0, 1],

u′(0) = 0, δu′(1) + u(η) = 0,
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where η ∈ [0, 1] is a real constant and δ is a positive parameter. By applying the fixed-point
index theory on Hammerstein integral equations, they obtained existence results for the
BVP. Recently, Nieto and Pimentel [32] extended the fractional thermostat model to the
three-point boundary conditions (BCs) of order ϑ ∈ (1, 2]

⎧
⎨

⎩

CDϑu(κ) + ψ(κ , u(κ)) = 0, κ ∈ [0, 1],

u′(0) = 0, δCDϑ–1u(1) + u(η) = 0,
(1)

where CDϑ and CDϑ–1 denote the Caputo fractional derivatives, δ > 0 and η ∈ [0, 1] are
real constants.

In recent years, a new field for researchers has become available, which is fractional dif-
ference equations (FDE). With the fractional difference operators, some real-world phe-
nomena are being studied, see, e.g., [36]. Nevertheless, quite recently some researchers
have developed much interest in the study of discrete fractional calculus (DFC). The study
of DFC was initiated by Miller and Ross [37]. The authors [38–48] have recently recorded
significant developments in that direction. Further, the existence and uniqueness of solu-
tions and various kinds of Ulam-stability analysis for Caputo fractional difference equa-
tions have been established by several authors [49–57]. Motivated by the previously men-
tioned works [31, 32, 34, 58, 59], in this paper, we aim to investigate the following discrete
fractional thermostat model (DFTM) with three-point BCs of the form

⎧
⎨

⎩

C�ϑu(κ) + F (κ + ϑ – 1, u(κ + ϑ – 1)) = 0, κ ∈N
�+1
0 ,

�u(ϑ – 2) = 0, δC�ϑ–1u(ϑ + �) + γ u(η) = 0,
(2)

for ϑ ∈ (1, 2], ϑ – 1 ∈ (0, 1], δ & γ > 0 are a positive real parameter and a sensor point
η ∈N

ϑ+�
ϑ–1 is a constant, where C�p is the CFDO of order p ∈ {ϑ ,ϑ – 1}, F : Nϑ+�+1

ϑ–2 ×R →R

is a continuous function and � ∈ N0. Also, we consider various types of Ulam stability for
DFTM with four-point BCs

⎧
⎨

⎩

C�ϑu(κ) = F (κ + ϑ – 1, u(κ + ϑ – 1)), κ ∈ N
�+1
0 ,

�u(ϑ – 2) = βu(ζ ), δC�ϑ–1u(ϑ + �) + γ u(η) = 0,
(3)

for ϑ ∈ (1, 2], ϑ – 1 ∈ (0, 1], δ, β & γ > 0 and sensor points ζ ,η ∈ N
ϑ+�
ϑ–1 are constants with

ζ ≤ η. Comparing (3) with (1), we have F (κ , u) = –ψ(κ , u).
This paper is organized as follows. Some definitions and properties of DFC used to es-

tablish the main results are provided in Sect. 2. Existence and uniqueness of solutions for
a DFTM with three-point BCs (2) are obtained by using a contraction mapping theorem
and the Brouwer fixed-point theorem in Sect. 3.1. In Sect. 3.2, we introduce some new
results for various forms of Ulam stability analysis of a DFTM with four-point BCs (3).
In Sect. 4, suitable examples are discussed as applications to show the applicability of our
obtained results, and the paper ends with a conclusion in Sect. 5.

2 Basic preliminaries
This section consists of definitions and preliminary lemmas, which are essential for the
discussion of our results.
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Definition 2.1 (see [39]) For ϑ > 0, the ϑth-order fractional sum of F : N→ R is defined
as

�–ϑF (κ) =
1

�(ϑ)

κ–ϑ∑

ξ=a

(
κ – σ (ξ )

)(ϑ–1)F (ξ ),

for κ ∈Na+ϑ , σ (κ) = ξ + 1 and κ (ϑ) := �(κ+1)
�(κ+1–ϑ) .

Moreover, Composition rules [39] are;
• Assume F is defined on Na and μ,ϑ are positive numbers. Then,

[
�

–μ
a+ϑ

(
�–ϑ

a F
)]

(κ) =
(
�–(μ+ϑ)

a F
)
(κ) =

[
�–ϑ

a+μ

(
�–μ

a F
)]

(κ),

for κ ∈Na+μ+ϑ .
• Assume F : Na → R with ϑ ,μ > 0 and 0 ≤N – 1 < ϑ ≤N . Then,

�ϑ
a+μ�–μ

a F (κ) = �ϑ–μ
a F (κ),

for κ ∈Na+μ+N–ϑ and N ∈ N.

Definition 2.2 (see [38]) For ϑ > 0 and F being defined on Na, the ϑth Caputo fractional
difference of F is

C�ϑF (κ) = �–(N–ϑ)�NF (κ) =
1

�(N – ϑ)

κ–N+ϑ∑

ξ=a

(
κ – σ (ξ )

)(N–ϑ–1)
�NF (ξ ),

for κ ∈ Na+N–ϑ and N ∈ N such that 0 ≤ N – 1 < ϑ ≤ N . If ϑ = N , then C�ϑF (κ) =
�NF (κ), for κ ∈Na.

Lemma 2.3 (see [41, 52]) Assume κ ,ϑ > 0 for which κ (ϑ), κ (ϑ–1) are defined. Then, �κ (ϑ) =
ϑκ (ϑ–1).

Lemma 2.4 (see [38]) Suppose that ϑ > 0 and F is defined on Na. Then,

�–ϑ C�ϑu(κ) = u(κ) + A0 + A1κ
(1) + A2κ

(2) + · · · + AN–1κ
(N–1),

for some Ai ∈R, with 0 ≤ i ≤N – 1.

Lemma 2.5 (see [49]) Assume κ , ϑ and � are positive numbers for which κ (ϑ) is defined.
Then,

(a)
∑κ–ϑ

ξ=0 (κ – σ (ξ ))(ϑ–1) = 1
ϑ
κ (ϑ),

(b)
∑�

ξ=0(ϑ + � – σ (ξ ))(ϑ–1) = 1
ϑ

(ϑ + �)(ϑ).

Lemma 2.6 (see [38]) Let ϑ , j > 0. Then,

�–ϑκ (j) =
�(j + 1)

�(j + ϑ + 1)
κ (j+ϑ) and C�ϑκ (j) =

�(j + 1)
�(j – ϑ + 1)

κ (j–ϑ).
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3 Main results
3.1 Thermostat model with one sensor
This section studies the existence and uniqueness results to the DFTM with three-point
BCs (2). First, we introduce some notations that are used in this paper. Let B be a Banach
space with norm ‖u‖ = max |u(κ)| for κ ∈ N

ϑ+�+1
ϑ–2 . Now, we state and prove an important

theorem that deals with a linear variant of the solution of DFTM with three-point BCs (2)
and we give a representation of the solution.

Theorem 3.1 Let real-valued function F be defined on N
ϑ+�+1
ϑ–2 . Then, for κ ∈ N

ϑ+�+1
ϑ–2 the

following DFTM

⎧
⎨

⎩

–C�ϑu(κ) = F (κ + ϑ – 1), κ ∈N
�+1
0 ,

�u(ϑ – 2) = 0, δC�ϑ–1u(ϑ + �) + γ u(η) = 0,
(4)

has a unique solution that is obtained by

u(κ) = –
1

�(ϑ)

κ–ϑ∑

ξ=0

(
κ – σ (ξ )

)(ϑ–1)F (ξ + ϑ – 1) +
δ

γ

�+1∑

ξ=0

F (ξ + ϑ – 1)

+
1

�(ϑ)

η–ϑ∑

ξ=0

(
η – σ (ξ )

)(ϑ–1)F (ξ + ϑ – 1).

(5)

Proof Let u(κ) be a solution to (4). Using Lemma 2.4, for some constants Ai ∈ R, for i =
0, 1, we have

u(κ) = –�–ϑF (κ + ϑ – 1) + A0 + A1κ .

Using the fractional sum of order ϑ ∈ (1, 2], we obtain

u(κ) = –
1

�(ϑ)

κ–ϑ∑

ξ=0

(
κ – σ (ξ )

)(ϑ–1)F (ξ + ϑ – 1) + A0 + A1κ , κ ∈N
ϑ+�+1
ϑ–2 . (6)

By applying � to the parts of (6), we have

�u(κ) = –�–(ϑ–1)F (κ + ϑ – 1) + A0�(1) + A1�κ

= –
1

�(ϑ – 1)

κ–ϑ+1∑

ξ=0

(
κ – σ (ξ )

)(ϑ–2)F (ξ + ϑ – 1) + A1. (7)

Due to the first boundary condition �u(ϑ – 2) = 0 in (7), we obtain A1 = 0. Using the
CFDO C�ϑ–1 of order ϑ – 1 ∈ (0, 1] on both the sides of (6) with A1 = 0, it provides

C�ϑ–1u(κ) = –C�ϑ–1[�–ϑF (κ + ϑ – 1)
]

+ C�ϑ–1A0.
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Here, using the Definition 2.2 that for constant A0, C�ϑ–1A0 = �–(2–ϑ)�A0 = �–(2–ϑ)(0) =
0, yields

C�ϑ–1u(κ) = –�–1F (κ + ϑ – 1) = –
κ–1∑

ξ=0

F (ξ + ϑ – 1). (8)

Using the second boundary condition δC�ϑ–1u(ϑ + �) +γ u(η) = 0 in (6) and (8), we obtain

δC�ϑ–1u(ϑ + �) = –δ

ϑ+�–1∑

ξ=0

F (ξ + ϑ – 1) = –δ

�(ϑ–1)+��∑

ξ=0

F (ξ + ϑ – 1).

Since ϑ – 1 ≤ 1, we obtain

δC�ϑ–1u(ϑ + �) = –δ

�+1∑

ξ=0

F (ξ + ϑ – 1) (9)

and

γ u(η) = –
γ

�(ϑ)

η–ϑ∑

ξ=0

(
η – σ (ξ )

)(ϑ–1)F (ξ + ϑ – 1) + γA0. (10)

From (9) and (10) in δC�ϑ–1u(ϑ + �) + u(η) = 0, we arrive at

–δ

�+1∑

ξ=0

F (ξ + ϑ – 1) –
γ

�(ϑ)

η–ϑ∑

ξ=0

(
η – σ (ξ )

)(ϑ–1)F (ξ + ϑ – 1) + γA0 = 0.

This leads to

A0 =
δ

γ

�+1∑

ξ=0

F (ξ + ϑ – 1) +
1

�(ϑ)

η–ϑ∑

ξ=0

(
η – σ (ξ )

)(ϑ–1)F (ξ + ϑ – 1). (11)

Using the values of Ai ∈R, for i = 0, 1 in u(κ), we obtain

u(κ) = –
1

�(ϑ)

κ–ϑ∑

ξ=0

(
κ – σ (ξ )

)(ϑ–1)F (ξ + ϑ – 1) +
δ

γ

�+1∑

ξ=0

F (ξ + ϑ – 1)

+
1

�(ϑ)

η–ϑ∑

ξ=0

(
η – σ (ξ )

)(ϑ–1)F (ξ + ϑ – 1),

(12)

for κ ∈N
ϑ+�+1
ϑ–2 . The proof is completed. �

We introduce the notation �ϑ
u (κ) = F (κ + ϑ – 1, u(κ + ϑ – 1)). To transform the above

DFTM with three-point BCs (2) to a fixed-point theorem, we define the operator T : B →
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B by

(T u)(κ) = –
1

�(ϑ)

κ–ϑ∑

ξ=0

(
κ – σ (ξ )

)(ϑ–1)
�ϑ

u (ξ ) +
δ

γ

�+1∑

ξ=0

�ϑ
u (ξ )

+
1

�(ϑ)

η–ϑ∑

ξ=0

(
η – σ (ξ )

)(ϑ–1)
�ϑ

u (ξ ),

(13)

for κ ∈N
ϑ+�+1
ϑ–2 . We know that the fixed point of T is a solution to (2).

We consider the following hypotheses:
(H1) The Lipschitz-type inequality: There exists K > 0 such that |F (κ , u) – F (κ , û)| ≤

K|u – û| for all u, û ∈ B and each κ ∈N
ϑ+�+1
ϑ–2 .

(H2) There exists a bounded function L : Nϑ+�+1
ϑ–2 → R with |F (κ , u)| ≤ L(κ)|u| for all

u ∈ B.

Theorem 3.2 If the hypothesis (H1) holds, then the DFTM with three-point BCs (2) has a
unique solution in B provided

1
�(ϑ + 1)

[
(ϑ + � + 1)(ϑ) + η(ϑ)] +

δ

γ
(� + 2) <

1
K . (14)

Proof Let u, û ∈ B. Then, for each κ ∈N
ϑ+�+1
ϑ–2 , we have

∣
∣(T u)(κ) – (T û)(κ)

∣
∣ ≤ 1

�(ϑ)

κ–ϑ∑

ξ=0

(
κ – σ (ξ )

)(ϑ–1)∣∣�ϑ
u (ξ ) – �ϑ

û (ξ )
∣
∣

+
δ

γ

�+1∑

ξ=0

(1)
∣
∣�ϑ

u (ξ ) – �ϑ
û (ξ )

∣
∣

+
1

�(ϑ)

η–ϑ∑

ξ=0

(
η – σ (ξ )

)(ϑ–1)∣∣�ϑ
u (ξ ) – �ϑ

û (ξ )
∣
∣,

(15)

where �ϑ
u ,�ϑ

û ∈ C(Nϑ+�+1
ϑ–2 ,R) satisfies the functional equations

�ϑ
u (κ) = F

(
κ + ϑ – 1, u(κ + ϑ – 1)

)
, �ϑ

û (κ) = F
(
κ + ϑ – 1, û(κ + ϑ – 1)

)
. (16)

From the assumption (H1), we obtain

∣
∣�ϑ

u (κ) – �ϑ
û (κ)

∣
∣ =

∣
∣F

(
κ + ϑ – 1, u(κ + ϑ – 1)

)
– F

(
κ + ϑ – 1, û(κ + ϑ – 1)

)∣
∣

≤K
∣
∣u(κ + ϑ – 1) – û(κ + ϑ – 1)

∣
∣,

∣
∣�ϑ

u (κ) – �ϑ
û (κ)

∣
∣ ≤K‖u – û‖. (17)
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Substituting the inequality (17) into (15), it follows that

‖T u – T û‖ ≤ K‖u – û‖
�(ϑ)

κ–ϑ∑

ξ=0

(
κ – σ (ξ )

)(ϑ–1) +
δ

γ
K‖u – û‖

�+1∑

ξ=0

(1)

+
K‖u – û‖

�(ϑ)

η–ϑ∑

ξ=0

(
η – σ (ξ )

)(ϑ–1).

In view of Lemma 2.5 of (a), we obtain

‖T u – T û‖ ≤
[

1
�(ϑ + 1)

(
κ (ϑ) + η(ϑ)) +

δ

γ
(� + 2)

]

K‖u – û‖

≤
[

1
�(ϑ + 1)

[
(ϑ + � + 1)(ϑ) + η(ϑ)] +

δ

γ
(� + 2)

]

K‖u – û‖,

therefore, it follows that T is a contraction and has a unique fixed point that is the solution
of (2). �

Theorem 3.3 The DFTM with three-point BCs (2) has at least one solution under the
assumption (H2) and the inequality

L∗ ≤ γ�(ϑ + 1)
γ [(ϑ + � + 1)(ϑ) + η(ϑ)] + δ(� + 2)�(ϑ + 1)

, (18)

where L∗ = max{L(κ) : Nϑ+�+1
ϑ–2 }.

Proof Suppose that M > 0 and Su = {u(κ)|Nϑ+�+1
ϑ–2 →R,‖u‖ ≤ M}. We must first show that

T maps Su in Su.
For u(κ) ∈ Su, we have

∣
∣(T u)(κ)

∣
∣ ≤ 1

�(ϑ)

κ–ϑ∑

ξ=0

(
κ – σ (ξ )

)(ϑ–1)∣∣�ϑ
u (ξ )

∣
∣ +

δ

γ

�+1∑

ξ=0

(1)
∣
∣�ϑ

u (ξ )
∣
∣

+
1

�(ϑ)

η–ϑ∑

ξ=0

(
η – σ (ξ )

)(ϑ–1)∣∣�ϑ
u (ξ )

∣
∣,

(19)

where �ϑ
u (κ) is given in (16). Using (H2), we arrive at

∣
∣�ϑ

u (κ)
∣
∣ =

∣
∣F

(
κ + ϑ – 1, u(κ + ϑ – 1)

)∣
∣ ≤L(κ)

∣
∣u(κ + ϑ – 1)

∣
∣ ≤L∗‖u‖. (20)

Hence, putting the inequality (19) and (20) together, we conclude that

‖T u‖ ≤
[

1
�(ϑ)

(
κ–ϑ∑

ξ=0

(
κ – σ (ξ )

)(ϑ–1) +
η–ϑ∑

ξ=0

(
η – σ (ξ )

)(ϑ–1)
)

+
δ

γ

�+1∑

ξ=0

(1)

]

L∗‖u‖.
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From Lemma 2.5 of (a), we have

‖T u‖ ≤
[

1
�(ϑ + 1)

(
κ (ϑ) + η(ϑ)) +

δ

γ
(� + 2)

]

L∗‖u‖

≤ γ [(ϑ + � + 1)(ϑ) + η(ϑ)] + δ(� + 2)�(ϑ + 1)
γ�(ϑ + 1)

L∗
M.

In view of (18), we obtained ‖T u‖ ≤ M. Thus, T maps Su in Su and has at least one fixed
point that is a solution to (2), according to the Brouwer fixed-point theorem. �

3.2 Thermostat model with two sensors
This section discusses the stability results for the DFTM with four-point BCs (3).

Theorem 3.4 Assume F : Nϑ+�+1
ϑ–2 → R is given. A unique solution to the DFTM with four-

point BCs

⎧
⎨

⎩

C�ϑu(κ) = F (κ + ϑ – 1), κ ∈N
�+1
0 ,

�u(ϑ – 2) = βu(ζ ), δC�ϑ–1u(ϑ + �) + γ u(η) = 0,
(21)

has the form

u(κ) =

[
1

�(ϑ)

κ–ϑ∑

ξ=0

(
κ – σ (ξ )

)(ϑ–1) +
βD1(κ)
�(ϑ)

ζ–ϑ∑

ξ=0

(
ζ – σ (ξ )

)(ϑ–1)
]

F (ξ + ϑ – 1)

– D2(κ)

[
γ

�(ϑ)

η–ϑ∑

ξ=0

(
η – σ (ξ )

)(ϑ–1) + δ

�+1∑

ξ=0

(1)

]

F (ξ + ϑ – 1),

(22)

where κ ∈ N
ϑ+�+1
ϑ–2 , D1(κ) = [δμ+γ (η–κ)]

Q , D2(κ) = [β(ζ–κ)–1]
Q such that Q = γ (βζ – 1) – β(δμ +

γ η) and μ = 1
�(3–ϑ) (ϑ + �)(2–ϑ).

Proof For the fractional sum of order ϑ ∈ (1, 2] for (21) and using Lemma 2.4, we obtain

u(κ) =
1

�(ϑ)

κ–ϑ∑

ξ=0

(
κ – σ (ξ )

)(ϑ–1)F (ξ + ϑ – 1) + A2 + A3κ , (23)

where Ai ∈ R, for i = 2, 3. Applying the operators � and C�ϑ–1 on both sides of (23) to-
gether with Definitions 2.1 and 2.2, we obtain

�u(κ) =
1

�(ϑ – 1)

κ–ϑ+1∑

ξ=0

(
κ – σ (ξ )

)(ϑ–2)F (ξ + ϑ – 1) + A3 (24)

and

C�ϑ–1u(κ) =
κ–1∑

ξ=0

F (ξ + ϑ – 1) + A3μ. (25)
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In view of �u(ϑ – 2) = βu(ζ ), we obtain

βu(ζ ) =
β

�(ϑ)

ζ–ϑ∑

ξ=0

(
ζ – σ (ξ )

)(ϑ–1)F (ξ + ϑ – 1) + βA2 + βA3ζ (26)

and

�u(ϑ – 2) = A3. (27)

From (26) and (27) and employing the first boundary condition (21), we obtain

β

�(ϑ)

ζ–ϑ∑

ξ=0

(
ζ – σ (ξ )

)(ϑ–1)F (ξ + ϑ – 1) + βA2 + A3(βζ – 1) = 0. (28)

In view of δC�ϑ–1u(ϑ + �) + γ u(η) = 0, we obtain

γ u(η) =
γ

�(ϑ)

η–ϑ∑

ξ=0

(
η – σ (ξ )

)(ϑ–1)F (ξ + ϑ – 1) + γA2 + γA3η (29)

and

δC�ϑ–1u(ϑ + �) = δ

�(ϑ–1)+��∑

ξ=0

F (ξ + ϑ – 1) + δA3μ.

Since ϑ – 1 ≤ 1, we arrive at

δ�ϑ–1u(ϑ + �) = δ

�+1∑

ξ=0

F (ξ + ϑ – 1) + δA3μ. (30)

From (29) and (30) with the help of the second boundary condition (21), we have

γA2 + A3(δμ + γ η)

+
γ

�(ϑ)

η–ϑ∑

ξ=0

(
η – σ (ξ )

)(ϑ–1)F (ξ + ϑ – 1) + δ

�+1∑

ξ=0

F (ξ + ϑ – 1) = 0. (31)

The constant A3 can be obtained by solving equations (28) and (31),

A3Q +
γβ

�(ϑ)

ζ–ϑ∑

ξ=0

(
ζ – σ (ξ )

)(ϑ–1)F (ξ + ϑ – 1)

–
γβ

�(ϑ)

η–ϑ∑

ξ=0

(
η – σ (ξ )

)(ϑ–1)F (ξ + ϑ – 1) – δβ

�+1∑

ξ=0

F (ξ + ϑ – 1) = 0,

which implies

A3 =
1
Q

[
γβ

�(ϑ)

η–ϑ∑

ξ=0

(
η – σ (ξ )

)(ϑ–1)F (ξ + ϑ – 1)



Alzabut et al. Journal of Inequalities and Applications         (2022) 2022:56 Page 11 of 24

× δβ

�+1∑

ξ=0

F (ξ + ϑ – 1) –
γβ

�(ϑ)

ζ–ϑ∑

ξ=0

(
ζ – σ (ξ )

)(ϑ–1)F (ξ + ϑ – 1)

]

. (32)

Substituting A3 into (28), we have

βA2 =
β[γ (βζ – 1) – Q]

Q�(ϑ)

ζ–ϑ∑

ξ=0

(
ζ – σ (ξ )

)(ϑ–1)F (ξ + ϑ – 1)

–
β[βζ – 1]

Q

[
γ

�(ϑ)

η–ϑ∑

ξ=0

(
η – σ (ξ )

)(ϑ–1)F (ξ + ϑ – 1) + δ

�+1∑

ξ=0

F (ξ + ϑ – 1)

]

.

This implies,

A2 =
1
Q

[
β(δμ + γ η)]

�(ϑ)

ζ–ϑ∑

ξ=0

(
ζ – σ (ξ )

)(ϑ–1)F (ξ + ϑ – 1) – [βζ – 1]

×
(

γ

�(ϑ)

η–ϑ∑

ξ=0

(
η – σ (ξ )

)(ϑ–1)F (ξ + ϑ – 1) + δ

�+1∑

ξ=0

F (ξ + ϑ – 1)

)]

.

Using the constants Ai ∈R, for i = 2, 3 in (23), we obtain u in the form

u(κ) =

[
1

�(ϑ)

κ–ϑ∑

ξ=0

(
κ – σ (ξ )

)(ϑ–1) +
βD1(κ)
�(ϑ)

ζ–ϑ∑

ξ=0

(
ζ – σ (ξ )

)(ϑ–1)
]

F (ξ + ϑ – 1)

– D2(κ)

[
γ

�(ϑ)

η–ϑ∑

ξ=0

(
η – σ (ξ )

)(ϑ–1) + δ

�+1∑

ξ=0

(1)

]

F (ξ + ϑ – 1),

for κ ∈N
ϑ+�+1
ϑ–2 . �

We assume that F is a real-valued continuous function on N
ϑ+�+1
ϑ–2 such that �ϑ

û (κ) =
F (κ + ϑ – 1, û(κ + ϑ – 1)). Now, we introduce the definitions of Ulam stability for DFC
given on the basis of [60, 61].

Definition 3.5 If for every function û(κ) ∈ B of

∣
∣C�ϑ û(κ) – �ϑ

û (ξ )
∣
∣ ≤ ε, (33)

where κ ∈N
�+1
0 , ε > 0, there exists a solution u(κ) ∈ B of (3) and a positive constant P1 > 0

such that

∣
∣û(κ) – u(κ)

∣
∣ ≤P1ε, κ ∈N

ϑ+�+1
ϑ–2 . (34)

Then, the DFTM with four-point BCs (3) is Hyers–Ulam (HU) stable. Equation (3) is also
said to be generalized HU stable if we substitute �(ε) = P1ε in inequality (34), where
�(ε) ∈C(R+,R+) and �(0) = 0.
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Definition 3.6 Let ∀ û(κ) ∈ B, then the following inequality holds

∣
∣C�ϑ û(κ) – �ϑ

û (ξ )
∣
∣ ≤ εφ(κ + ϑ – 1), (35)

where κ ∈N
�+1
0 , ε > 0, there is a solution u(κ) ∈ B of (3) and a positive constant P2 > 0 such

that

∣
∣û(κ) – u(κ)

∣
∣ ≤ δ2ε�(κ + ϑ – 1), κ ∈N

ϑ+�+1
ϑ–2 . (36)

Then, the DFTM with four-point BCs (3) is Hyers–Ulam–Rassias (HUR) stable. Equation
(3) is generalized HUR stable if we substitute φ(κ + ϑ – 1) = εφ(κ + ϑ – 1) in inequalities
(35) and (36).

Remark 3.7 A function û(κ) ∈ B is a solution to the inequalities (33) and (35) if there exists
a function f : Nβ+�+1

β–2 → R satisfying, for κ ∈N
�+1
0

(i) |f (κ + ϑ – 1)| ≤ ε,
(ii) C�ϑ û(κ) = �ϑ

û (κ) + f (κ + ϑ – 1),
(iii) |f (κ + β – 1)| ≤ εφ(κ + β – 1),
(iv) C�β û(κ) = �ϑ

û (κ) + f (κ + β – 1).

Lemma 3.8 If û(κ) solves the inequality (33) for κ ∈N
�+1
0 , then

∣
∣
∣
∣
∣
û(κ) –

1
�(ϑ)

κ–ϑ∑

ξ=0

(
κ – σ (ξ )

)(ϑ–1)
�ϑ

û (ξ ) –
βD1(κ)
�(ϑ)

ζ–ϑ∑

ξ=0

(
ζ – σ (ξ )

)(ϑ–1)
�ϑ

û (ξ )

+ D2(κ)

[
γ

�(ϑ)

η–ϑ∑

ξ=0

(
η – σ (ξ )

)(ϑ–1)
�ϑ

û (ξ ) + δ

�+1∑

ξ=0

�ϑ
û (ξ )

]∣
∣
∣
∣
∣
≤ ε

�(ϑ + 1)
(ϑ + � + 1)(ϑ),

where D1(κ) and D2(κ) are defined in Theorem 3.4.

Proof If û(κ) solves the inequality (33), then from (ii) of Remark 3.7 and Lemma 2.4, the
solution to (ii) of Remark 3.7 satisfies

û(κ) =
1

�(ϑ)

κ–ϑ∑

ξ=0

(
κ – σ (ξ )

)(ϑ–1)
�ϑ

û (ξ ) +
βD1(κ)
�(ϑ)

ζ–ϑ∑

ξ=0

(
ζ – σ (ξ )

)(ϑ–1)
�ϑ

û (ξ )

– D2(κ)

[
γ

�(ϑ)

η–ϑ∑

ξ=0

(
η – σ (ξ )

)(ϑ–1)
�ϑ

û (ξ ) + δ

�+1∑

ξ=0

�ϑ
û (ξ )

]

+
1

�(ϑ)

κ–ϑ∑

ξ=0

(
κ – σ (ξ )

)(ϑ–1)f (ξ + ϑ – 1).

(37)

Using (a) of Lemma 2.5 together with (i) of Remark 3.7, we arrive at

∣
∣
∣
∣
∣
û(κ) –

1
�(ϑ)

κ–ϑ∑

ξ=0

(
κ – σ (ξ )

)(ϑ–1)
�ϑ

û (ξ ) –
βD1(κ)
�(ϑ)

ζ–ϑ∑

ξ=0

(
ζ – σ (ξ )

)(ϑ–1)
�ϑ

û (ξ )
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+ D2(κ)

[
γ

�(ϑ)

η–ϑ∑

ξ=0

(
η – σ (ξ )

)(ϑ–1)
�ϑ

û (ξ ) + δ

�+1∑

ξ=0

�ϑ
û (ξ )

]∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

1
�(ϑ)

κ–ϑ∑

ξ=0

(
κ – σ (ξ )

)(ϑ–1)f (ξ + ϑ – 1)

∣
∣
∣
∣
∣

≤ 1
�(ϑ)

κ–ϑ∑

ξ=0

(
κ – σ (ξ )

)(ϑ–1)∣∣f (ξ + ϑ – 1)
∣
∣

≤ ε

�(ϑ + 1)
κ (ϑ)

≤ ε

�(ϑ + 1)
(ϑ + � + 1)(ϑ).

This completes the proof. �

Theorem 3.9 Assume that the following inequalities and (H1) hold at the same time

� = K
(

(ϑ + � + 1)(ϑ) + βG1ζ
(ϑ) + G2[γ η(ϑ) + δ(� + 2)�(ϑ + 1)]

�(ϑ + 1)

)

< 1, (38)

then the DFTM with four-point BCs (3) is HU stable and generalized HUR stable.

Proof From solution (22), for κ ∈ N
ϑ+�+1
ϑ–2 , it follows that

∣
∣û(κ) – u(κ)

∣
∣ ≤

∣
∣
∣
∣
∣
û(κ) –

[
1

�(ϑ)

κ–ϑ∑

ξ=0

(
κ – σ (ξ )

)(ϑ–1) +
βD1(κ)
�(ϑ)

ζ–ϑ∑

ξ=0

(
ζ – σ (ξ )

)(ϑ–1)
]

�ϑ
û (ξ )

+ D2(κ)

[
γ

�(ϑ)

η–ϑ∑

ξ=0

(
η – σ (ξ )

)(ϑ–1)
�ϑ

û (ξ ) + δ

�+1∑

ξ=0

�ϑ
û (ξ )

]∣
∣
∣
∣
∣

+
1

�(ϑ)

κ–ϑ∑

ξ=0

(
κ – σ (ξ )

)(ϑ–1)∣∣�ϑ
û (ξ ) – �ϑ

u (ξ )
∣
∣

+
β|D1(κ)|

�(ϑ)

ζ–ϑ∑

ξ=0

(
ζ – σ (ξ )

)(ϑ–1)∣∣�ϑ
û (ξ ) – �ϑ

u (ξ )
∣
∣

+
∣
∣D2(κ)

∣
∣

[
γ

�(ϑ)

η–ϑ∑

ξ=0

(
η – σ (ξ )

)(ϑ–1) + δ

�+1∑

ξ=0

(1)

]
∣
∣�ϑ

û (ξ ) – �ϑ
u (ξ )

∣
∣,

where D1(κ), D2(κ) are defined in Theorem 3.4 and �ϑ
u (κ), �ϑ

û (κ) are given in (16). Using
the inequality (17) and Lemma 3.8 along with an application of Lemma 2.5 of (a), implies
that

‖û – u‖ ≤ ε

�(ϑ + 1)
(ϑ + � + 1)(ϑ) +

K‖û – u‖
�(ϑ + 1)

[
(ϑ + � + 1)(ϑ) + βG1ζ

(ϑ)]

+ KG2‖û – u‖
[

γ η(ϑ)

�(ϑ + 1)
+ δ(� + 2)

]

, (39)

where G1 = | δμ+γ [η–(ϑ+�+1)]
Q | and G2 = | [β(ζ–[ϑ+�+1])–1]

Q |.



Alzabut et al. Journal of Inequalities and Applications         (2022) 2022:56 Page 14 of 24

Inequality (39) yields ‖û – u‖ ≤P1ε, where

P1 =
(ϑ + � + 1)(ϑ)

�(ϑ + 1) – K[(ϑ + � + 1)(ϑ) + βG1ζ (ϑ) + G2(γ η(ϑ) + δ(� + 2)�(ϑ + 1))]
.

Thus, the solution to (3) is HU stable.
Further, by taking �(ε) = P1ε with �(0) = 0, we have

‖û – u‖ ≤ �(ε).

Hence, the solution to (3) becomes generalized HU stable. �

Finally, we consider the following hypotheses to discuss the HUR stability and general-
ized HUR stability in the next results.

(H3) For an increasing function φ ∈ C(Nϑ+�
ϑ–2,R+), there exists λφ > 0 such that, for κ ∈

N
�+1
0

(i) ε
�(ϑ)

∑κ–ϑ
ξ=0 (κ – σ (ξ ))(ϑ–1)φ(ξ + ϑ – 1) ≤ λφεφ(κ + ϑ – 1), consequently

(ii) 1
�(ϑ)

∑κ–ϑ
ξ=0 (κ – σ (ξ ))(ϑ–1)φ(ξ + ϑ – 1) ≤ λφφ(κ + ϑ – 1).

Lemma 3.10 If û(κ) solves the inequality (35) for κ ∈N
�+1
0 , then

∣
∣
∣
∣
∣
û(κ) –

1
�(ϑ)

κ–ϑ∑

ξ=0

(
κ – σ (ξ )

)(ϑ–1)
�ϑ

û (ξ ) –
βD1(κ)
�(ϑ)

ζ–ϑ∑

ξ=0

(
ζ – σ (ξ )

)(ϑ–1)
�ϑ

û (ξ )

+ D2(κ)

[
γ

�(ϑ)

η–ϑ∑

ξ=0

(
η – σ (ξ )

)(ϑ–1)
�ϑ

û (ξ ) + δ

�+1∑

ξ=0

�ϑ
û (ξ )

]∣
∣
∣
∣
∣
≤ λφεφ(κ + ϑ – 1),

where D1(κ) and D2(κ) are defined in Theorem 3.4.

Proof From inequality (35), we obtain a solution to (iv) of Remark 3.7 that satisfies (37).
Using (H3) of (i), for κ ∈N

�+1
0 and Remark 3.7 of (iii), it follows that

∣
∣
∣
∣
∣
û(κ) –

1
�(ϑ)

κ–ϑ∑

ξ=0

(
κ – σ (ξ )

)(ϑ–1)
�ϑ

û (ξ ) –
βD1(κ)
�(ϑ)

ζ–ϑ∑

ξ=0

(
ζ – σ (ξ )

)(ϑ–1)
�ϑ

û (ξ )

+ D2(κ)

[
γ

�(ϑ)

η–ϑ∑

ξ=0

(
η – σ (ξ )

)(ϑ–1)
�ϑ

û (ξ ) + δ

�+1∑

ξ=0

�ϑ
û (ξ )

]∣
∣
∣
∣
∣

≤ 1
�(ϑ)

κ–ϑ∑

ξ=0

(
κ – σ (ξ )

)(ϑ–1)∣∣f (ξ + ϑ – 1)
∣
∣

≤ ε

�(ϑ)

κ–ϑ∑

ξ=0

(
κ – σ (ξ )

)(ϑ–1)
φ(ξ + ϑ – 1)

≤ λφεφ(κ + ϑ – 1).

This completes the proof. �
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Theorem 3.11 If the hypothesis (H1) holds with the inequality (38), then the DFTM with
four-point BCs (3) is HUR stable and generalized HUR stable.

Proof From the solution (22), for κ ∈N
ϑ+�+1
ϑ–2 , we obtain

∣
∣û(κ) – u(κ)

∣
∣ ≤

∣
∣
∣
∣
∣
û(κ) –

1
�(ϑ)

κ–ϑ∑

ξ=0

(
κ – σ (ξ )

)(ϑ–1)
�ϑ

u (ξ )

–
βD1(κ)
�(ϑ)

ζ–ϑ∑

ξ=0

(
ζ – σ (ξ )

)(ϑ–1)
�ϑ

u (ξ )

+ D2(κ)

[
γ

�(ϑ)

η–ϑ∑

ξ=0

(
η – σ (ξ )

)(ϑ–1)
�ϑ

u (ξ ) + δ

�+1∑

ξ=0

�ϑ
u (ξ )

]∣
∣
∣
∣
∣
,

where D1(κ) and D2(κ) are defined in Theorem 3.4. Using Lemma 3.10 and the procedure
used in Theorem 3.9, we obtain

‖û – u‖ ≤ λφεφ(κ + ϑ – 1) +
K

�(ϑ)

κ–ϑ∑

ξ=0

(
κ – σ (ξ )

)(ϑ–1)‖û – u‖

+
Kβ|D1(κ)|

�(ϑ)

ζ–ϑ∑

ξ=0

(
ζ – σ (ξ )

)(ϑ–1)‖û – u‖

+ K
∣
∣D2(κ)

∣
∣

[
γ

�(ϑ)

η–ϑ∑

ξ=0

(
η – σ (ξ )

)(ϑ–1) + δ

�+1∑

ξ=0

(1)

]

‖û – u‖.

By an application of Lemma 2.5 of (a), the above inequality becomes

‖û – u‖ ≤ λφεφ(κ + ϑ – 1) +
K‖û – u‖
�(ϑ + 1)

[
(ϑ + � + 1)(ϑ) + βG1ζ

(ϑ)]

+ KG2‖û – u‖
[

γ
η(ϑ)

�(ϑ + 1)
+ δ(� + 2)

]

,
(40)

where G1 and G2 are defined in Theorem 3.9. From which, the inequality (40) yields

‖û – u‖ ≤P2εφ(κ + ϑ – 1),

where P2 = λφ�(ϑ+1)
�(ϑ+1)–K[(ϑ+�+1)(ϑ)+βG1ζ (ϑ)+G2(γ η(ϑ)+δ(�+2)�(ϑ+1))] .

Hence, the solution of (3) is HUR stable.
Also, by setting φ(κ + ϑ – 1) = εφ(κ + ϑ – 1), we have

‖û – u‖ ≤P2φ(κ + ϑ – 1).

Therefore, the solution of (3) is generalized HUR stable. �

4 Examples
In this section, we validate the theoretical results by providing examples for discrete frac-
tional thermostat models with three-point BCs (2) and four-point BCs (3) by using CFDO.
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Example 4.1 Consider the linear DFTM with three-point BCs (4)

⎧
⎨

⎩

–C�1.67u(κ) = (κ + 0.67)(8), κ ∈N
5
0,

�u(–0.33) = 0, 0.8C�0.67u(5.67) + 0.9u(η) = 0.
(41)

Here, ϑ = 1.67, � = 4, δ = 0.8, γ = 0.9 and F (κ) = κ (8). Applying Theorem 3.1, we obtain
that u(κ) is a solution of (41) that is given by

u(κ) = –
1

�(1.67)

κ–1.67∑

ξ=0

(
κ – σ (ξ )

)(0.67)(ξ + 0.67)(8) +
(

0.8
0.9

) 5∑

ξ=0

(ξ + 0.67)(8)

+
1

�(1.67)

η–1.67∑

ξ=0

(
η – σ (ξ )

)(0.67)(ξ + 0.67)(8),

(42)

for κ ∈ N
6.67
–0.33. Now, solving the solution (42) by using Definition 2.1 and Lemma 2.6, we

obtain

1
�(1.67)

κ–1.67∑

ξ=0

(
κ – σ (ξ )

)(0.67)(ξ + 0.67)(8) = �–1.67(κ + 0.67)(8)

=
�(9)

�(10.67)
· �(κ + 1.67)

�(κ – 8)
. (43)

Similarly, we obtain

1
�(1.67)

η–1.67∑

ξ=0

(
η – σ (ξ )

)(0.67)(ξ + 0.67)(8) =
�(9)

�(10.67)
· �(η + 1.67)

�(η – 8)
. (44)

Also, we find

5∑

ξ=0

(ξ + 0.67)(8) = �–1(κ + 0.67)(8)
∣
∣
∣
∣
κ=5.67

=
�(9)
�(10)

· �(7.67)
�(–1.33)

. (45)

Combining (42), (43), (44), and (45), we obtain a solution to (41) as follows:

u(κ) = –
[

�(9)
�(10.67)

· �(κ + 1.67)
�(κ – 8)

]

+
[

�(9)
�(10.67)

· �(η + 1.67)
�(η – 8)

]

+
(

0.8
0.9

)[
�(9)
�(10)

· �(7.67)
�(–1.33)

]

, for κ ∈N
6.67
–0.33.

(46)

Furthermore, we also consider the linear DFTM with four-point BCs (21)

⎧
⎨

⎩

C�1.67u(κ) = (κ + 0.67)(8), κ ∈N
5
0,

�u(–0.33) = 0.2u(ζ ), 0.8C�0.67u(5.67) + 0.9u(η) = 0.
(47)
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Figure 1 Solutions curves of the DFTMs (41) and (47): (a) κ – u plane with sensor point η; (b) κ – u plane with
sensor points ζ and η

Here, ϑ = 1.67, � = 4, δ = 0.8, β = 0.2, γ = 0.9, and F (κ) = κ (8). From Theorem 3.4, we
obtain u(κ) as a solution to (47) that is given by

u(κ) =

[
1

�(1.67)

κ–1.67∑

ξ=0

(
κ – σ (ξ )

)(0.67)

+
(0.2)D1(κ)
�(1.67)

ζ–1.67∑

ξ=0

(
ζ – σ (ξ )

)(0.67)
]

(ξ + 0.67)(8)

– D2(κ)

[
0.9

�(1.67)

η–1.67∑

ξ=0

(
η – σ (ξ )

)(0.67)(ξ + 0.67)(8) + 0.8
5∑

ξ=0

(ξ + 0.67)(8)

]

,

(48)

where κ ∈ N
6.67
–0.33, D1(κ) and D2(κ) are defined in Theorem 3.4. From (43), (44), (45), and

(48), we obtain a solution to (47) as follows:

u(κ) =
[

�(9)
�(10.67)

· �(κ + 1.67)
�(κ – 8)

]

+ (0.2)D1(κ)
[

�(9)
�(10.67)

· �(ζ + 1.67)
�(ζ – 8)

]

– D2(κ)
[

0.9
(

�(9)
�(10.67)

· �(η + 1.67)
�(η – 8)

)

+ 0.8
(

�(9)
�(10)

· �(7.67)
�(–1.33)

)]

.
(49)

Using the solutions (46) and (49) along with ζ = 0.67 and various values of η = 1.67, 2.67,
we obtain different solutions to the corresponding DFTMs with three-point BCs (41) and
four-point BCs (47), as seen in Fig. 1 and Table 1. Figure 2 illustrates the solution surface
plots over different values of η and κ .

Example 4.2 Let us consider the parameters ϑ = 1.6, � = 0, δ = 0.5, γ = 0.4, and η = 0.6
with F (κ , u(κ)) = 1

20 [ κ
3 cos2( π

2 (κ)) + sin(u(κ))]. Then, we obtain a DFTM with three-point
BCs (2) in the form

⎧
⎨

⎩

–C�1.6u(κ) = 1
20 [ (κ+0.6)

3 cos2( π
2 (κ + 0.6)) + sin(u(κ + 0.6))], κ ∈N

1
0,

�u(–0.4) = 0, 0.5C�0.6u(1.6) + 0.4u(0.6) = 0.
(50)
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Table 1 Numerical values of u(κ ) with step size 1

u(κ )

κ η 1.67 2.67

–0.33 Soln. of (46) 541.9564 579.8331
Soln. of (49) –601.7601 –608.3013

0.67 Soln. of (46) –18.5221 19.3546
Soln. of (49) –25.5369 –41.8899

1.67 Soln. of (46) 83.9392 121.8159
Soln. of (49) –112.2534 –138.4182

2.67 Soln. of (46) 46.0625 83.9392
Soln. of (49) –58.6320 –94.6086

3.67 Soln. of (46) 69.7976 107.6743
Soln. of (49) –66.6223 –112.4107

4.67 Soln. of (46) 46.0077 83.8844
Soln. of (49) –27.0877 –82.6879

5.67 Soln. of (46) 84.1573 122.0340
Soln. of (49) –49.4925 –114.9045

6.67 Soln. of (46) –19.6489 18.2278
Soln. of (49) 70.0584 –5.1654

Figure 2 Surface corresponding to the graphs in Fig. 1

We now show that (50) has a unique solution. Since (H1), holds for each κ ∈ N
2.6
–0.4, we

obtain

∣
∣F

(
κ , u(κ)

)
– F

(
κ , û(κ)

)∣
∣ =

∣
∣
∣
∣

1
20

[
κ

3
cos2

(
π

2
(κ)

)

+ sin
(
u(κ)

)
]

–
1

20

[
κ

3
cos2

(
π

2
(κ)

)

+ sin
(
û(κ)

)
]∣
∣
∣
∣

=
1

20
∣
∣sin

(
u(κ)

)
– sin

(
û(κ)

)∣
∣,

∣
∣F

(
κ , u(κ)

)
– F

(
κ , û(κ)

)∣
∣ ≤ 1

20
∣
∣u(κ) – û(κ)

∣
∣,

so for K = 1
20 . Thus, for inequality (14), we have

K
[

1
�(ϑ + 1)

[
(ϑ + � + 1)(ϑ) + η(ϑ)] +

δ

γ
(� + 2)

]

≈ 0.2550 < 1.
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Therefore, from Theorem 3.2 we come to the conclusion that (50) has a unique solu-
tion.

Example 4.3 Suppose that ϑ = 1.4, � = 1, δ = 0.4, γ = 0.3, M = 150, and η = 0.4 with
F (κ , u(κ)) = κ2e–u2(κ). Then, we obtain the following Caputo DFTM with three-point BCs
(2)

⎧
⎨

⎩

–C�1.4u(κ) = (κ + 0.4)2e–u2(κ+0.4), κ ∈N
2
0,

�u(–0.6) = 0, 0.4C�0.4u(2.4) + 0.3u(0.4) = 0.
(51)

Consider the Banach space B := {u(κ)|N3.4
–0.6 →R,‖u‖ ≤ 150}. We note that

Mγ�(ϑ + 1)
γ [(ϑ + � + 1)(ϑ) + η(ϑ)] + δ(� + 2)�(ϑ + 1)

≈ 18.5644.

It is clear that |F (κ , u(κ))| = 11.5600 < 18.5644, whenever u ∈ [–150, 150]. Therefore, hav-
ing at least one solution for (51) concluded from Theorem 3.3.

Example 4.4 Assume that ϑ = 1.5, � = 1, δ = 0.5, β = 0.2, γ = 0.4, ζ = 0.5, η = 1.5, and
F (κ , u(κ)) = 2√

π
(κ – 0.5)(0.5) + u(κ)

20 . Then, for the following Caputo DFTM with four-point
BCs (3)

⎧
⎨

⎩

C�1.5u(κ) = 2√
π
κ (0.5) + u(κ+0.5)

20 , κ ∈N
2
0,

�u(–0.5) = 0.2u(0.5), 0.5C�0.5u(2.5) + 0.4u(1.5) = 0,
(52)

we prove that (52) is HU stable. To begin with, we need to verify that F satisfies (H1) for
κ ∈N

3.5
–0.5, we obtain

∣
∣F

(
κ , û(κ)

)
– F

(
κ , u(κ)

)∣
∣ =

∣
∣
∣
∣

2√
π

(κ – 0.5)(0.5) +
û(κ)
20

–
(

2√
π

(κ – 0.5)(0.5) +
u(κ)
20

)∣
∣
∣
∣

≤ 1
20

∣
∣û(κ) – u(κ)

∣
∣.

Hence, K = 1
20 and F is Lipschitz continuous for κ ∈ N

3.5
–0.5. Since

�(ϑ + 1)
(ϑ + � + 1)(ϑ) + G1βζ (ϑ) + G2[γ η(ϑ) + δ(� + 2)�(ϑ + 1)]

≈ 0.1120,

for K = 1
20 < 0.1120, we obtain � = 0.4465 < 1. This shows (52) is HU stable with P1 =

7.9038. Further, it is also generalized HU stable. To check this, put ε = 0.1563 and û(κ) =
κ2

2 , κ ∈N
2
0 and also prove that (33) holds. Indeed,

∣
∣C�1.5û(κ) – F

(
κ + 0.5, û(κ + 0.5)

)∣
∣

=
∣
∣
∣
∣
C�1.5û(κ) –

2√
π

κ (0.5) – 0.05û(κ + 0.5)
∣
∣
∣
∣

=
∣
∣
∣
∣�

–0.5�2
(

κ2

2

)

–
2√
π

κ (0.5) – 0.05
(

(κ + 0.5)2

2

)∣
∣
∣
∣
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=
∣
∣
∣
∣�

–0.51 –
2√
π

κ (0.5) – 0.025(κ + 0.5)2
∣
∣
∣
∣. (53)

Using (iii) of Lemma 2.6 in (53), we have

∣
∣C�1.5û(κ) – F

(
κ + 0.5, û(κ + 0.5)

)∣
∣

=
∣
∣
∣
∣

2√
π

κ (0.5) –
2√
π

κ (0.5) – 0.025(κ + 0.5)2
∣
∣
∣
∣

≤ 0.025(κ + 0.5)2

≤ 0.1563,
∣
∣C�1.5û(κ) – F

(
κ + 0.5, û(κ + 0.5)

)∣
∣ ≤ ε, for κ ∈N

2
0.

Example 4.5 Consider the following Caputo DFTM with four-point BCs (3)

⎧
⎨

⎩

C�1.6u(κ) = 0.1(κ + 0.6) + 0.03 sin(u(κ + 0.6)), κ ∈N
2
0,

�u(–0.4) = 0.3u(0.6), 0.6C�0.6u(2.6) + 0.2u(1.6) = 0.
(54)

Here, ϑ = 1.6, � = 1, δ = 0.6, β = 0.3, γ = 0.2, ζ = 0.6, η = 1.6, and F (κ , u(κ)) = 0.1κ +
0.03 sin(u(κ)). Now, we prove that (54) is HUR stable. Since (H1) holds for each κ ∈ N

3.6
–0.4,

we obtain
∣
∣F

(
κ , û(κ)

)
– F

(
κ , u(κ)

)∣
∣ =

∣
∣0.1κ + 0.03 sin

(
û(κ)

)
– 0.1κ – 0.03 sin

(
u(κ)

)∣
∣

= 0.03
∣
∣sin

(
û(κ)

)
– sin

(
u(κ)

)∣
∣,

∣
∣F

(
κ , û(κ)

)
– F

(
κ , u(κ)

)∣
∣ ≤ 0.03

∣
∣û(κ) – u(κ)

∣
∣,

so for K = 0.03. Further, assuming ε = 0.29 and φ(κ + 0.6) = 1, we have

0.29
�(1.6)

κ–1.6∑

ξ=0

(
κ – σ (ξ )

)(0.6)(1) =
(0.29)�(κ + 1)

�(2.6)�(κ – 0.6)

≤ (0.29)�(3)
�(2.6)�(1.4)

,

0.29
�(1.6)

κ–1.6∑

ξ=0

(
κ – σ (ξ )

)(0.6)(1) ≤0.4572.

Thus, inequality (H3), of (i), holds with λφ = 1.5767, ε = 0.29, and φ(κ +0.6) = 1, for κ ∈N
2
0.

Since

�(ϑ + 1)
(ϑ + � + 1)(ϑ) + G1βζ (ϑ) + G2[γ η(ϑ) + δ(� + 2)�(ϑ + 1)]

≈ 0.0882,

if K = 0.03 < 0.0882, from Theorem 3.11, we see that � = 0.3400 < 1. Hence, HUR stablity
of the solution (54) is obtained from P2 = 2.3890. To verify this, put ε = 0.29, û(κ) = κ for
κ ∈N

2
0. We prove that (35) holds. Indeed,

∣
∣C�1.6û(κ) – F

(
κ + 0.6, û(κ + 0.6)

)∣
∣
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=
∣
∣C�1.6û(κ) – 0.1(κ + 0.6) – 0.03 sin

(
û(κ + 0.6)

)∣
∣

=
∣
∣�–0.4�2κ – 0.1(κ + 0.6) – 0.03 sin(κ + 0.6)

∣
∣

=
∣
∣–0.1(κ + 0.6) – 0.03 sin(κ + 0.6)

∣
∣

≤ 0.1(κ + 0.6) + 0.03

≤ 0.29,
∣
∣C�1.6û(κ) – F

(
κ + 0.6, û(κ + 0.6)

)∣
∣ ≤ εφ(κ + 0.6), for κ ∈N

2
0.

Consequently, it is obviously generalized HUR stable by using Theorem 3.11.

5 Conclusion
It is essential that we enhance our ability to understand complicated discrete fractional
thermostat models. One of the strategies is to apply well-known models to various com-
plicated sensor problems. In this paper, we have studied a new form of DFTMs with the
three-point and four-point BCs by the Caputo difference operator. Existence and unique-
ness results and various forms of HU stability are discussed with the aid of properties of
the fractional operator and different fixed-point techniques for the concerned problems.
Also, we presented sufficient conditions for stable solutions by using the Caputo difference
operator in the discrete case. On the basis of our theoretical findings, we have presented
suitable examples with numerical solutions to different values of κ and η supported with
graphical illustrations. The findings of this study can be seen as a contribution to the de-
veloping area of discrete fractional thermostat models that describe mathematical models
of engineering and applied-science applications.
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