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Abstract
In this paper, we study the problem of finding the solution of the system of
monotone variational inclusion problems recently introduced by Chang et al.
(Optimization 70(12):2511–2525, 2020) with the constraint of a fixed-point set of
quasipseudocontractive mappings. We propose a new iterative method that employs
an inertial technique with self-adaptive step size for approximating the solution of the
problem in Hilbert spaces and prove a strong-convergence result for the proposed
method under more relaxed conditions. Moreover, we apply our results to study
related optimization problems. Finally, we present some numerical experiments to
demonstrate the performance of our proposed method, compare it with a related
method as well as experiment on the dependency of the key parameters on the
performance of our method.

MSC: 65K15; 47J25; 65J15; 90C33

Keywords: System of monotone variational inclusion problems; Fixed-point
problem; Inertial technique; Self-adaptive step size; Quasipseudocontractions

1 Introduction
In recent years, the split inverse problem (SIP) has received much research attention (see
[1, 11, 12, 20, 24, 50] and the references therein) because of its extensive applications,
for example, in phase retrieval, signal processing, image recovery, intensity-modulated
radiation therapy, data compression, among others (see [13, 14, 42] and the references
therein). The SIP model is presented as follows: Find a point

x̂ ∈ H1 that solves IP1 (1.1)

such that

ŷ := Ax̂ ∈ H2 solves IP2, (1.2)
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where H1 and H2 are real Hilbert spaces, IP1 denotes an inverse problem formulated in
H1 and IP2 denotes an inverse problem formulated in H2, and A : H1 → H2 is a bounded
linear operator.

Censor and Elfving [14] in 1994 introduced the split feasibility problem (SFP), which was
the first instance of the SIP for modeling inverse problems that arise from medical-image
reconstruction. Since then, several authors have studied and developed different iterative
methods for approximating the solution of the SFP. The SFP has wide areas of applications,
for instance, in signal processing, approximation theory, control theory, geophysics, com-
munications, biomedical engineering, etc. [13, 30]. The SFP is formulated as follows:

find a point x̂ ∈ C such that ŷ = Ax̂ ∈ Q, (1.3)

where C and Q are nonempty closed convex subsets of Hilbert spaces H1 and H2, respec-
tively, and A : H1 → H2 is a bounded linear operator.

Moudafi [33] introduced another instance of the SIP known as the split monotone vari-
ational inclusion problem (SMVIP). Let H1, H2 be real Hilbert spaces, f1 : H1 → H1,
f2 : H2 → H2, are inverse strongly monotone mappings, A : H1 → H2 is a bounded linear
operator, B1 : H1 → 2H1 , B2 : H2 → 2H2 are multivalued maximal monotone mappings.
The SMVIP is formulated as follows:

find a point x̂ ∈ H1 such that 0 ∈ f1(x̂) + B1(x̂) (1.4)

and

ŷ = Ax̂ ∈ H2 such that 0 ∈ f2(ŷ) + B2(ŷ). (1.5)

We point out that if (1.4) and (1.5) are considered separately, then each of (1.4) and (1.5)
is a monotone variational inclusion problem (MVIP) with solution set (B1 + f1)–1(0) and
(B2 + f2)–1(0), respectively. Moudafi in [33] showed that x∗ ∈ (B1 + f1)–1(0) if and only if
x∗ = JB1

λ (I – λf1)(x∗), for all λ > 0, where JB1
λ : H1 → H1 is the resolvent operator associated

with B1 and λ defined by

JB1
λ (x) = (I + λB1)–1x, x ∈ H ,λ > 0. (1.6)

It is known that the resolvent operator JB1
λ is single valued, nonexpansive and 1-inverse

strongly monotone (see, e.g., [8]).
Moreover, it was shown in [33] that, if f1 is an α-inverse strongly monotone mapping

and B1 is a maximal monotone mapping, then JB1
λ (I – λf1) is averaged with 0 < λ < 2α.

Consequently, JB1
λ (I – λf1) is nonexpansive. Furthermore, (B1 + f1)–1(0) was shown to be

closed and convex.
Moudafi [33], pointed out that the SMVIP (1.4) and (1.5) generalizes the split fixed-point

problem, split feasibility problem, split variational inequality problem, split equilibrium
problem, and split variational inclusion problem, which have been studied extensively by
several researchers (e.g., see [3, 5, 10, 21, 25, 27, 36, 46, 49]). Moreover, it is applied in
solving many real-life problems such as in sensor networks, in computerized tomography
and data compression, modeling of inverse problems arising from phase retrieval [9, 19],
and in modeling intensity-modulated radiation therapy treatment planning [13, 14].
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If f1 ≡ 0 ≡ f2, then the SMVIP (1.4) and (1.5) reduces to the following split variational
inclusion problem (SVIP):

find a point x̂ ∈ H1 such that 0 ∈ B1(x̂) (1.7)

and

ŷ = Ax̂ ∈ H2 such that 0 ∈ B2(ŷ). (1.8)

Moudafi [33], showed that the SVIP (1.7) and (1.8) includes the SFP (1.3) as a special case.
Several authors have studied and proposed different iterative methods for solving SVIP
(1.7) and (1.8), see for instance [22, 27], and the references therein. However, results on
SMVIP (1.4) and (1.5) are relatively scanty in the literature.

Very recently, Yao et al. [48] proposed and studied the convergence of the following iter-
ative method with an inertial extrapolation step for approximating the solution of SMVIP
(1.4) and (1.5) in Hilbert spaces (Algorithm 1), where F1 := JB1

λ (I –λf1) and F2 := JB2
λ (I –λf2),

f1 : H1 → H1 and f2 : H2 → H2 are an α1-inverse strongly monotone mapping and an α2-
inverse strongly monotone mapping, respectively, with α = min{α1,α2}, A : H1 → H2 is
a bounded linear operator with adjoint A∗, B1 : H1 → 2H1 , B2 : H2 → 2H2 are multival-
ued maximal monotone mappings. The authors were able to prove the weak-convergence
result for the sequence generated by the proposed algorithm under the following condi-
tions:

Algorithm 1
1: Select arbitrary points x0, x1 ∈ H1 and θ ∈ [0, 1). Set n = 1.
2: Given the iterates xn–1 and xn, n ≥ 1, choose θn such that 0 ≤ θn ≤ θ̄n, where

θ̄n =

⎧
⎨

⎩

min{θ , μn
‖xn–xn–1‖2 }, if xn 	= xn–1,

θ , if xn = xn–1.
(1.9)

3: Compute

wn = xn + θn(xn – xn–1)

and

xn+1 = F1
(
wn + γnA∗(F2 – I)Awn

)
,

where

γn :=

⎧
⎨

⎩

τn
‖(F2–I)Awn‖2

‖A∗(F2–I)Awn‖2 , if (F2 – I)Awn 	= 0,

γ , if (F2 – I)Awn = 0,
(1.10)

where 0 < τn < 1 and γ > 0.
3: Set n ← n + 1 and goto 2.
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(i) The solution set F is nonempty;
(ii) λ ∈ (0, 2α), 0 < lim infn→∞ τn ≤ lim supn→∞ τn < 1;

(iii) {μn}∞n=1 ⊂ �1, i.e.,
∑∞

n=1 |μn| < ∞.
Bauschke and Combettes [6] pointed out that in solving optimization problems, the strong
convergence of iterative schemes is more desirable and useful than the weak-convergence
counterparts. Therefore, when solving optimization problems the authors strive to con-
struct algorithms that generate sequences that converge strongly to the solution of the
problem under investigation.

Also, very recently, Chang et al. [16] introduced and studied the following system of
monotone variational inclusion problems in Hilbert spaces: find a point x∗ ∈ H1 such that

⎧
⎨

⎩

0 ∈ hi(x∗) + Bi(x∗), i = 1, 2, . . . , m; and

y∗ = Ax∗ solves 0 ∈ gj(y∗) + Dj(y∗), j = 1, 2, . . . , k,
(1.11)

where for each i = 1, 2, . . . , m and j = 1, 2, . . . , k, hi and gj are ϕi- and ϑj- inverse strongly
monotone mappings on H1 and H2, respectively, where ϕi > 0 and ϑj > 0, Bi and Dj are
multivalued maximal monotone operators on H1 and H2, respectively, and A : H1 → H2 is
a bounded linear operator. Set

φ = min{ϕ1,ϕ2, . . . ,ϕm;ϑ1,ϑ2, . . . ,ϑk}, (1.12)

then all hi and gj are φ-inverse strongly monotone mappings. Moreover, the authors pro-
posed the following inertial forward–backward splitting algorithm with the viscosity tech-
nique for approximating the solution of problem (1.11) in Hilbert spaces:

⎧
⎪⎪⎨

⎪⎪⎩

wn = xn + θn(xn – xn–1),

un = U(I – γ A∗(I – T)A)wn,

xn+1 = αnf (wn) + (1 – αn)un,

(1.13)

where
⎧
⎨

⎩

U := JB1
λ (I – λh1) ◦ JB2

λ (I – λh2) ◦ . . . JBm
λ (I – λhm),

T := JD1
λ (I – λg1) ◦ JD2

λ (I – λg2) ◦ . . . JDk
λ (I – λgk),

(1.14)

for each i = 1, 2, . . . , m and j = 1, 2, . . . , k, hi, gj, Bi, Dj are as defined in (1.11), and f : H1 →
H1 is a contraction with contraction constant ρ ∈ ( 1

2 , 1). The authors proved the strong-
convergence theorem for the proposed method under the following conditions:

(i) The solution set � is nonempty;
(ii) {αn} ⊂ (0, 1) with αn → 0 and

∑∞
n=1 αn = ∞;

(iii) 0 < γ < 1
2‖A‖2 , λ ∈ (0, 2φ) with φ as defined in (1.12);

(iv)
∑∞

n=1 θn‖xn – xn–1‖ < ∞, θn ∈ [0, 1).

Remark 1.1 Observe that the problem (1.11) solved by Algorithm (1.13) is more general
than the problem SMVIP (1.4) and (1.5) solved by Algorithm 1. The SMVIP (1.4) and (1.5)
is a special case of the problem (1.11) when i = j = 1. We also point out that the term
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θn(xn – xn–1) in Algorithm 1 and Algorithm (1.13) above is referred to as the inertial term.
It is employed in algorithm design to accelerate the rate of convergence. However, we note
that condition (iii) of Algorithm 1 and condition (iv) of Algorithm (1.13) imposed to incor-
porate the inertial term are too restrictive. These might affect the implementation of the
proposed methods. Some other drawbacks with Algorithm (1.13) are that the contraction
constant ρ of the contraction f is restricted to the interval ( 1

2 , 1). Moreover, the imple-
mentation of the proposed algorithm requires knowledge of the operator norm, which is
often very difficult to calculate or even estimate. On the other hand, while Algorithm 1
does not require knowledge of the operator norm for its implementation the authors were
only able to obtain the weak-convergence result for the proposed algorithm.

From the above discourse, it is natural to ask the following question

Can we develop a new inertial iterative method with the viscosity technique that does
not require knowledge of the operator norm for approximating the solution of system
of monotone variational inclusion problems (1.11), such that condition (iii) of Algo-
rithm 1 and condition (iv) of Algorithm (1.13) are dispensed with and obtain a strong-
convergence result? Can the contraction constant ρ of the contraction mapping f of
Algorithm (1.13) be selected from a larger interval than ( 1

2 , 1)?

Some of our aims in this paper are to provide affirmative answers to the above questions.
Another problem we consider in this paper is the fixed-point problem (FPP). Let C be a

nonempty closed convex subset of a real Hilbert space H and let S : C → C be a nonlinear
mapping. A point x̂ ∈ C is called a fixed point of S if Sx̂ = x̂. We denote by F(S), the set of
all fixed points of S, i.e.,

F(S) = {x̂ ∈ C : Sx̂ = x̂}. (1.15)

In recent years, the study of fixed-point theory for nonlinear mappings has flourished
owing to its extensive applications in various fields like economics, compressed sensing,
and other applied sciences (see [4, 17, 38] and the references therein).

Recently, optimization problems dealing with finding a common solution of the set of
fixed points of nonlinear mappings and the set of solutions of SMVIP (see, for instance,
[3, 22]) were considered. One of the motivations for studying such a common solution
problem is in its potential application to mathematical models whose constraints can be
expressed as FPPs and SMVIP. An instance of this is found in practical problems such
as signal processing, network-resource allocation, and image recovery. One scenario is in
the network bandwidth-allocation problem for two services in a heterogeneous wireless
access networks where the bandwidth of the services are mathematically related (see, for
instance, [26, 31] and the references therein).

Motivated by the above results and the current research interest in this direction, in this
paper, we study the problem of finding the solution of the system of monotone variational
inclusion problems (1.11) with the constraint of a fixed-point set of quasipseudocontrac-
tions. Precisely, we consider the following problem: find a point x∗ ∈ F(S) such that

⎧
⎨

⎩

0 ∈ hi(x∗) + Bi(x∗), i = 1, 2, . . . , m; and

y∗ = Ax∗ solves 0 ∈ gj(y∗) + Dj(y∗), j = 1, 2, . . . , k,
(1.16)
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where S : H1 → H1 is a quasipseudocontractive mapping, for each i = 1, 2, . . . , m and
j = 1, 2, . . . , k, hi and gj are ϕi- and ϑj- inverse strongly monotone mappings on H1 and
H2, respectively, where ϕi > 0 and ϑj > 0, Bi and Dj are multivalued maximal monotone
operators on H1 and H2, respectively, and A : H1 → H2 is a bounded linear operator.

Moreover, we introduce a new inertial iterative method that employs the viscosity tech-
nique to approximate the solution of the problem in the framework of Hilbert spaces.
Furthermore, under mild conditions we prove that the sequence generated by the pro-
posed method converges strongly to a solution of the problem. We point out that the im-
plementation of our algorithm does not require knowledge of the operator norm and the
contraction constant of the contraction mapping employed in the viscosity technique can
be selected in the interval (0, 1); a larger interval than the restriction to interval ( 1

2 , 1) in
Algorithm (1.13). In addition, we obtained a strong-convergence result dispensing with
condition (iii) of Algorithm 1 and condition (iv) of Algorithm (1.13). We further apply our
results to study other optimization problems and we provide some numerical experiments
with graphical illustrations to demonstrate the implementability and efficiency of the pro-
posed method in comparison with some methods in the current literature. Our results in
this study improve and extend the recent ones announced by Yao et al. [48], Chang et al.
[16], and many other results in the literature.

The paper is organized as follows: In Sect. 2, we recall basic definitions and lemmas
employed in the convergence analysis. Section 3 presents the proposed algorithm and
highlights some of its features, while in Sect. 4 we analyze the convergence of the proposed
method. Section 5 presents applications of our results to some optimization problems. In
Sect. 6, we provide some numerical examples with graphical illustrations and compare the
performance of our proposed method with some of the existing methods in the literature.
Finally, we give some concluding remarks in Sect. 7.

2 Preliminaries
In this section, we present some definitions and results, which will be needed in the fol-
lowing.

In what follows, we denote the weak and strong convergence of a sequence {xn} to a
point x ∈ H by xn ⇀ x and xn → x, respectively, and wω(xn) denotes the set of weak limits
of {xn}, that is,

ωw(xn) :=
{

x ∈ H : xnj ⇀ x for some subsequence {xnj} of {xn}
}

,

where H is a real Hilbert space. For a nonempty closed and convex subset C of H , the
metric projection [37] PC : H → C is defined, for each x ∈ H , as the unique element PCx ∈ C
such that

‖x – PCx‖ = inf
{‖x – z‖ : z ∈ C

}
.

The operator PC is nonexpansive and has the following properties [34, 44]:
1. it is firmly nonexpansive, that is,

‖PCx – PCy‖2 ≤ 〈PCx – PCy, x – y〉 for all x, y ∈ C;
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2. for any x ∈ H and z ∈ C, z = PCx if and only if

〈x – z, z – y〉 ≥ 0 for all y ∈ C; (2.1)

3. for any x ∈ H and y ∈ C,

‖PCx – y‖2 + ‖x – PCx‖2 ≤ ‖x – y‖2.

Definition 2.1 Let T : H → H be a nonlinear mapping and I be the identity mapping
on H . The mapping I – T is said to be demiclosed at zero, if for any sequence {xn} ⊂ H
that converges weakly to x and ‖xn – Txn‖ → 0, then x ∈ F(T).

Definition 2.2 Let C be a nonempty closed convex subset of a real Hilbert space H .
A mapping T : C → C is said to be:

(1) L-Lipschitz continuous, if there exists a constant L > 0 such that

‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈ C;

if L ∈ [0, 1), then T is called a contraction.
(2) nonexpansive if T is 1-Lipschitz continuous;
(3) averaged if it can be written as

T = (1 – α)I + αS,

where α ∈ (0, 1), S : C → C is nonexpansive and I is the identity mapping on C;
(4) firmly nonexpansive if

‖Tx – Ty‖2 ≤ ‖x – y‖2 –
∥
∥(I – T)x – (I – T)y

∥
∥2, ∀x, y ∈ C;

(5) quasinonexpansive if F(T) 	= ∅ and

‖Tx – p‖ ≤ ‖x – p‖, ∀x ∈ C, and p ∈ F(T);

(6) firmly quasinonexpansive if F(T) 	= ∅ and

‖Tx – p‖2 ≤ ‖x – p‖2 –
∥
∥(I – T)x

∥
∥2, ∀x ∈ C, and p ∈ F(T);

(7) κ-strictly pseudocontractive if there exists κ ∈ [0, 1) such that

‖Tx – Ty‖2 ≤ ‖x – y‖2 + κ
∥
∥(I – T)x – (I – T)y

∥
∥2, ∀x, y ∈ C;

(8) directed if F(T) 	= ∅ and 〈Tx – p, Tx – x〉 ≤ 0, ∀x ∈ C, and p ∈ F(T);
(9) demicontractive if F(T) 	= ∅ and there exists κ ∈ [0, 1) such that

‖Tx – p‖2 ≤ ‖x – p‖2 + κ‖Tx – x‖2, ∀x ∈ C and p ∈ F(T);
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(10) monotone if

〈Tx – Ty, x – y〉 ≥ 0, ∀x, y ∈ C;

(11) L-inverse strongly monotone (L-ism), if there exits L > 0, such that

〈Tx – Ty, x – y〉 ≥ L‖Tx – Ty‖2, ∀x, y ∈ C.

Remark 2.3 As pointed out by Bauschke and Combettes [6], T : C → C is directed if and
only if

‖Tx – p‖2 ≤ ‖x – p‖2 – ‖Tx – x‖2, ∀x ∈ C, and p ∈ F(T).

In other words, the class of directed mappings coincides with the class of firmly quasinon-
expansive mappings.

Remark 2.4 From the definitions above, we observe that the class of demicontractive map-
pings includes several other classes of nonlinear mappings such as the directed mappings,
the quasinonexpansive mappings, and the strictly pseudocontractive mappings with fixed
points as special cases. Also, it is well known that every L-ism mapping is 1

L -Lipschitz con-
tinuous and monotone, and every Lipschitz continuous operator is uniformly continuous
but the converse of these statements are not always true (see, for example [41]).

Definition 2.5 A nonlinear operator T : C → C is called pseudocontractive if

〈Tx – Ty, x – y〉 ≤ ‖x – y‖2, ∀x, y ∈ C.

The interest of pseudocontractive mappings lies in their connection with monotone
mappings, that is, T is a pseudocontraction if and only if I – T is a monotone mapping. It
is well known that T is pseudocontractive if and only if

‖Tx – Ty‖2 ≤ ‖x – y‖2 +
∥
∥(I – T)x – (I – T)y

∥
∥2, ∀x, y ∈ C.

Definition 2.6 An operator T : C → C is said to be quasipseudocontractive if F(T) 	= ∅
and

‖Tx – p‖2 ≤ ‖x – p‖2 + ‖Tx – x‖2, ∀x ∈ C, p ∈ F(T).

It is obvious that the class of quasipseudocontractive mappings includes the class of demi-
contractive mappings and the class of pseudocontractive mappings with a nonempty
fixed-point set.

We have the following result on L-Lipschitz quasipseudocontractive mappings.

Lemma 2.7 ([15]) Let H be a real Hilbert space and T : H → H be an L-Lipschitzian
mapping with L ≥ 1. Denote

G := (1 – ψ)I + ψT
(
(1 – η)I + ηT

)
.
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If 0 < ψ < η < 1
1+

√
1+L2 , then the following conclusions hold:

(1) F(T) = F(T((I – η)I + ηT)) = F(G).
(2) If I – T is demiclosed at 0, then I – G is also demiclosed at 0.
(3) In addition, if T : H → H is quasipseudocontractive, then the mapping G is

quasinonexpansive.

Lemma 2.8 ([49]) (Demiclosedness Principle). Let T be a nonexpansive mapping on a
closed convex subset C of a real Hilbert space H . Then, I – T is demiclosed at any point
y ∈ H , that is, if xn ⇀ x and xn – Txn → y ∈ H , then x – Tx = y.

Lemma 2.9 ([18]) Let H be a real Hilbert space. Then, the following results hold for all
x, y ∈ H and δ ∈R:

(i) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉;
(ii) ‖x + y‖2 = ‖x‖2 + 2〈x, y〉 + ‖y‖2;

(iii) ‖δx + (1 – δ)y‖2 = δ‖x‖2 + (1 – δ)‖y‖2 – δ(1 – δ)‖x – y‖2.

Lemma 2.10 ([40]) Let {an} be a sequence of nonnegative real numbers, {αn} be a sequence
in (0, 1) with

∑∞
n=1 αn = ∞, and {bn} be a sequence of real numbers. Assume that

an+1 ≤ (1 – αn)an + αnbn, for all n ≥ 1,

if lim supk→∞ bnk ≤ 0 for every subsequence {ank } of {an} satisfying lim infk→∞(ank+1 –ank ) ≥
0, then limn→∞ an = 0.

Lemma 2.11 ([32]) Let {an}, {cn} ⊂R+, {σn} ⊂ (0, 1), and {bn} ⊂R be sequences such that

an+1 ≤ (1 – σn)an + bn + cn for all n ≥ 0.

Assume
∑∞

n=0 |cn| < ∞. Then, the following results hold:
(i) If bn ≤ βσn for some β ≥ 0, then {an} is a bounded sequence.

(ii) If we have

∞∑

n=0

σn = ∞ and lim sup
n→∞

bn

σn
≤ 0,

then limn→∞ an = 0.

Lemma 2.12 ([7, 47]) Let H be a real Hilbert space and let A, S, T , V : H → H be given
operators.

(i) If T = (1 – α)S + αV for some α ∈ (0, 1), where S : H → H is β-averaged and
V : H → H is nonexpansive, then T is α + (1 – α)β-averaged.

(ii) The composite of finitely many averaged mappings is averaged. In particular, if Ti is
αi-averaged, where αi ∈ (0, 1) for i = 1, 2, then the composite T1 ◦ T2 is α-averaged,
where α = α1 + α2 – α1α2.

(iii) If the mappings {Ti}N
i=1 are averaged and have a common fixed point, then

N⋂

i=1

F(Ti) = F(T1 ◦ T2 ◦ · · · ◦ TN ).
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(iv) If A is β-ism and γ ∈ (0,β], then T := I – γ A is firmly nonexpansive.
(v) T is nonexpansive if and only if its complement I – T is 1

2 -ism.
(vi) If T is β-ism, then for γ > 0, γ T is β

γ
-ism.

(vii) T is averaged if and only if its complement I – T is β-ism for some β > 1
2 . Indeed,

for α ∈ (0, 1), T is α-averaged if and only if I – T is 1
2α

-ism.
(viii) T is firmly nonexpansive if and only if its complement I – T is firmly nonexpansive.

Lemma 2.13 ([45]) Let H1 and H2 be real Hilbert spaces. Let A : H1 → H2 be a nonzero
bounded linear operator with adjoint A∗ and let T : H2 → H2 be a nonexpansive mapping.
Then, A∗(I – T)A is 1

2‖A‖2 -ism.

Lemma 2.14 ([44]) Let H be a real Hilbert space, r > 0, f : H → H be a μ-ism mapping
and B : H → 2H be a maximal monotone mapping. Then,

(I) the following conclusions are equivalent:
(i) x∗ ∈ H such that 0 ∈ f (x∗) + B(x∗);

(ii) x∗ ∈ F(JB
r (I – rf )).

(II) If r ∈ (0, 2μ), then JB
r (I – rf ) is averaged.

3 Proposed method
In this section, we present our proposed algorithm and highlight some of its important
features. We assume that:

(1) H1 and H2 are real Hilbert spaces;
(2) For each i = 1, 2, . . . , m and j = 1, 2, . . . , k, hi and gj are ϕi- and ϑj- inverse strongly

monotone mappings on H1 and H2, respectively, where ϕi > 0 and ϑj > 0, Bi and Dj

are multivalued maximal monotone operators on H1 and H2, respectively. Let
φ = min{ϕ1,ϕ2, . . . ,ϕm;ϑ1,ϑ2, . . . ,ϑk}, then all hi and gj are φ-inverse strongly
monotone mappings;

(3) A : H1 → H2 is a bounded linear operator with adjoint A∗ and f : H1 → H1 is a
contraction with contraction constant ρ ∈ (0, 1);

(4) S : H1 → H1 is a K-Lipschitz continuous quasipseudocontractive mapping such that
I – S is demiclosed at zero and with K ≥ 1;

(5) The solution set � = � ∩ F(S) is nonempty, where

� :=

{

x ∈ H1 : x ∈
m⋂

i=1

(
(hi + Bi)–1(0)

) ∩
(

A–1

( k⋂

j=1

(gj + Dj)–1(0)

))}

. (3.1)

(6) We denote

⎧
⎨

⎩

U := JB1
λ (I – λh1) ◦ JB2

λ (I – λh2) ◦ . . . JBm
λ (I – λhm),

T := JD1
λ (I – λg1) ◦ JD2

λ (I – λg2) ◦ . . . JDk
λ (I – λgk).

(3.2)

It was shown in [16] that the operators U and T defined above are averaged mappings.
We establish the strong-convergence result for the proposed algorithm under the fol-

lowing conditions on the control parameters:
(C1) {αn} ⊂ (0, 1) such that limn→∞ αn = 0 and

∑∞
n=0 αn = ∞;

(C2) {βn}, {δn}, {ξn} ⊂ (0, 1) such that 0 < a ≤ βn, δn, ξn ≤ b < 1;
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Algorithm 2
Step 0. Let x0, x1 ∈ H1 be two arbitrary initial points and set n = 1.
Step 1. Given the (n – 1)th and nth iterates, choose θn such that 0 ≤ θn ≤ θ̂n with θ̂n being

defined by

θ̂n =

⎧
⎨

⎩

min{θ , εn
‖xn–xn–1‖ }, if xn 	= xn–1,

θ , otherwise.
(3.3)

Step 2. Compute

wn = xn + θn(xn – xn–1).

Step 3. Compute

un = U
(
wn + γnA∗(T – I)Awn

)
,

where

γn :=

⎧
⎨

⎩

τn
‖(T–I)Awn‖2

‖A∗(T–I)Awn‖2 , if Awn 	= TAwn,

γ , otherwise (γ being any nonnegative real number).
(3.4)

Step 4. Compute

vn = βnwn + (1 – βn)Vun,

where

V = (1 – η)I + ηS
(
(1 – μ)I + μS

)
.

Step 5. Compute

xn+1 = αnf (wn) + δnun + ξnvn.

Set n := n + 1 and return to Step 1.

(C3) {εn} is a positive sequence such that limn→∞ εn
αn

= 0;
(C4) θ > 0, λ ∈ (0, 2φ), 0 < η < μ < 1

1+
√

1+K2 and 0 < τ1 ≤ τn ≤ τ2 < 1.
Now, our main algorithm is presented in Algorithm 2.

Remark 3.1
• We point out that the step size of the proposed method defined in (3.4) does not

depend on the norm of the bounded linear operator. This makes our algorithm easy to
implement, unlike the methods proposed in [16, 22, 33, 50], which require knowledge
of the operator norm for their implementation.
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• Step 1 of the algorithm can be implemented since the value of ‖xn – xn–1‖ is known
prior to choosing θn. Also, observe that in incorporating the inertial term our method
does not require stringent conditions, like we have in condition (iii) of Algorithm 1
and condition (iv) of Algorithm (1.13).

• We note that unlike in Algorithm (1.13), the viscosity technique employed in Step 5 of
our algorithm accommodates a larger class of contraction mappings since the
contraction constant ρ ∈ (0, 1).

Remark 3.2 By conditions (C1) and (C3), it follows from (3.3) that

lim
n→∞ θn‖xn – xn–1‖ = 0 and lim

n→∞
θn

αn
‖xn – xn–1‖ = 0. (3.5)

Remark 3.3 We note that in (3.4), the choice of the step size γn is independent of the
operator norm ‖A‖. Also, the value of γ has no effect on the proposed algorithm but was
introduced for clarity. Now, we show that the step size of the algorithm in (3.4) is well
defined.

Lemma 3.4 The step sizes {γn} of the Algorithm 2 defined by (3.4) are well defined.

Proof Let p ∈ �. Then, by Lemma 2.14(I) we have that p ∈ ⋂m
i=1((hi + Bi)–1(0)) and Ap ∈

⋂k
j=1((gj + Dj)–1(0)). From Lemma 2.12(iii) we have p ∈ F(U) and Ap ∈ F(T). Applying the

fact that T is averaged together with Lemma 2.12(vii), we have

∥
∥A∗(I – T)Awn

∥
∥‖wn – p‖ ≥ 〈

A∗(I – T)Awn, wn – p
〉

=
〈
(I – T)Awn – (I – T)Ap, Awn – Ap

〉

≥ β
∥
∥(I – T)Awn

∥
∥2,

for some β > 1
2 . This shows that ‖A∗(I – T)Awn‖ > 0 when ‖(I – T)Awn‖ 	= 0. Thus, {γn} is

well defined. �

4 Convergence analysis
First, we establish some lemmas before proving the strong-convergence theorem for the
proposed algorithm.

Lemma 4.1 Let {xn} be a sequence generated by Algorithm 2. Then, {xn} is bounded.

Proof Observe that the mapping P� ◦ f is a contraction. Then, by the Banach Contraction
Principle there exists an element p ∈ H such that p = P� ◦ f (p). It follows that p ∈ �, Sp = p,
Up = p, and TAp = Ap. By applying Lemma 2.9(ii) and the nonexpansiveness of U , we
obtain

‖un – p‖2 =
∥
∥U

(
wn + γnA∗(T – I)Awn

)
– p

∥
∥2

≤ ∥
∥wn + γnA∗(T – I)Awn – p

∥
∥2 (4.1)

= ‖wn – p‖2 + γ 2
n
∥
∥A∗(T – I)Awn

∥
∥2 + 2γn

〈
wn – p, A∗(T – I)Awn

〉
. (4.2)



Alakoya et al. Journal of Inequalities and Applications         (2022) 2022:47 Page 13 of 30

Again, applying Lemma 2.9(ii) and the nonexpansiveness of T , we have

〈
wn – p, A∗(T – I)Awn

〉

=
〈
Awn – Ap, (T – I)Awn

〉

=
〈
TAwn – Ap – (T – I)Awn, (T – I)Awn

〉

=
〈
TAwn – Ap, (T – I)Awn

〉
–

〈
(T – I)Awn, (T – I)Awn

〉

=
〈
TAwn – Ap, (T – I)Awn

〉
–

∥
∥(T – I)Awn

∥
∥2

=
1
2
[‖TAwn – Ap‖2 +

∥
∥(T – I)Awn

∥
∥2 –

∥
∥TAwn – Ap – (T – I)Awn

∥
∥2]

–
∥
∥(T – I)Awn

∥
∥2

=
1
2
[‖TAwn – Ap‖2 +

∥
∥(T – I)Awn

∥
∥2 – ‖Awn – Ap‖2] –

∥
∥(T – I)Awn

∥
∥2

=
1
2
[‖TAwn – Ap‖2 – ‖Awn – Ap‖2 –

∥
∥(T – I)Awn

∥
∥2]

≤ 1
2
[‖Awn – Ap‖2 – ‖Awn – Ap‖2 –

∥
∥(T – I)Awn

∥
∥2]

= –
1
2
∥
∥(T – I)Awn

∥
∥2. (4.3)

Applying (4.3) into (4.2) and using the definition of γn together with the condition on τn,
we have

‖un – p‖2 ≤ ‖wn – p‖2 + γ 2
n
∥
∥A∗(T – I)Awn

∥
∥2 – γn

∥
∥(T – I)Awn

∥
∥2

= ‖wn – p‖2 – γn
[∥
∥(T – I)Awn

∥
∥2 – γn

∥
∥A∗(T – I)Awn

∥
∥2]

= ‖wn – p‖2 – γn(1 – τn)
∥
∥(T – I)Awn

∥
∥2 (4.4)

≤ ‖wn – p‖2. (4.5)

Next, using the triangle inequality, we obtain from Step 2

‖wn – p‖ =
∥
∥xn + θn(xn – xn–1) – p

∥
∥

≤ ‖xn – p‖ + θn‖xn – xn–1‖

= ‖xn – p‖ + αn
θn

αn
‖xn – xn–1‖. (4.6)

Since, by Remark 3.2, limn→∞ θn
αn

‖xn – xn–1‖ = 0, then there exists a constant M1 > 0 such
that θn

αn
‖xn – xn–1‖ ≤ M1 for all n ≥ 1. Consequently, from (4.6) we obtain

‖wn – p‖ ≤ ‖xn – p‖ + αnM1. (4.7)

By the conditions on η and μ, and by Lemma 2.7, we know that V is quasinonexpansive.
Consequently, by applying the triangle inequality, and using (4.5) and (4.7), from Step 4
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we have

‖vn – p‖ =
∥
∥βnwn + (1 – βnVun) – p

∥
∥

≤ βn‖wn – p‖ + (1 – βn)‖Vun – p‖
≤ βn‖wn – p‖ + (1 – βn)‖un – p‖
≤ βn‖wn – p‖ + (1 – βn)‖wn – p‖
= ‖wn – p‖
≤ ‖xn – p‖ + αnM1. (4.8)

Now, by applying (4.5) and (4.8), from Step 5 it follows that

‖xn+1 – p‖ =
∥
∥αnf (wn) + δnun + ξnvn – p

∥
∥

=
∥
∥αn

(
f (wn) – f (p)

)
+ αn

(
f (p) – p

)
+ δn(un – p) + ξn(vn – p)

∥
∥

≤ αnρ||wn – p|| + αn||f (p) – p|| + δn||un – p|| + ξn||vn – p||
≤ αnρ

(‖xn – p‖ + αnM1
)

+ αn
∥
∥f (p) – p

∥
∥ + δn

(‖xn – p‖ + αnM1
)

+ ξn
(‖xn – p‖ + αnM1

)

=
(
αnρ + (1 – αn)

)||xn – p|| + αn||f (p) – p|| +
(
αnρ + (1 – αn)

)
αnM1

=
(
1 – αn(1 – ρ)

)‖xn – p‖ + αn(1 – ρ)
{‖f (p) – p‖

1 – ρ
+

(1 – αn(1 – ρ))M1

1 – ρ

}

≤ (
1 – αn(1 – ρ)

)‖xn – p‖ + αn(1 – ρ)M∗,

where M∗ := supn∈N{ ‖f (p)–p‖
1–ρ

+ (1–αn(1–ρ))M1
1–ρ

}. Set an := ‖xn – p‖; bn := αn(1 – ρ)M∗; cn := 0,
and σn := αn(1 – ρ). By invoking Lemma 2.11(i) together with the assumptions on the con-
trol parameters, we have that {‖xn – p‖} is bounded and this implies that {xn} is bounded.
Consequently, {wn}, {un}, and {vn} are all bounded. �

Lemma 4.2 Let {xn} be a sequence generated by Algorithm 2 and p ∈ �. Then, under con-
ditions (C1)–(C4) the following inequality holds for all n ∈N:

‖xn+1 – p‖2 ≤
(

1 –
2αn(1 – ρ)
(1 – αnρ)

)

‖xn – p‖2

+
2αn(1 – ρ)
(1 – αnρ)

{
αn

2(1 – ρ)
M +

3M2((1 – αn)2 + αnρ)
2(1 – ρ)

θn

αn
‖xn – xn–1‖

+
1

(1 – ρ)
〈
f (p) – p, xn+1 – p

〉
}

–
ξn(1 – αn)(1 – βn)

(1 – αnρ)
{
γn(1 – τn)

∥
∥(T – I)Awn

∥
∥2 + βn‖wn – Vun‖

}
.

Proof Let p ∈ �. Then, by applying the Cauchy–Schwartz inequality together with
Lemma 2.9(ii), we obtain

‖wn – p‖2 =
∥
∥xn + θn(xn – xn–1) – p

∥
∥2
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= ‖xn – p‖2 + θ2
n‖xn – xn–1‖2 + 2θn〈xn – p, xn – xn–1〉

≤ ‖xn – p‖2 + θ2
n‖xn – xn–1‖2 + 2θn‖xn – xn–1‖‖xn – p‖

= ‖xn – p‖2 + θn‖xn – xn–1‖
(
θn‖xn – xn–1‖ + 2‖xn – p‖)

≤ ‖xn – p‖2 + 3M2θn‖xn – xn–1‖

= ‖xn – p‖2 + 3M2αn
θn

αn
‖xn – xn–1‖, (4.9)

where M2 := supn∈N{‖xn – p‖, θn‖xn – xn–1‖} > 0.
Also, by applying Lemma 2.9(iii), (4.4) and (4.9), we have

‖vn – p‖2 =
∥
∥βnwn + (1 – βn)Vun – p

∥
∥2

= βn‖wn – p‖2 + (1 – βn)‖Vun – p‖2 – βn(1 – βn)‖wn – Vun‖
≤ βn‖wn – p‖2 + (1 – βn)‖un – p‖2 – βn(1 – βn)‖wn – Vun‖
≤ βn‖wn – p‖2 + (1 – βn)

{‖wn – p‖2 – γn(1 – τn)
∥
∥(T – I)Awn

∥
∥2}

– βn(1 – βn)‖wn – Vun‖
= ‖wn – p‖2 – (1 – βn)γn(1 – τn)

∥
∥(T – I)Awn

∥
∥2

– βn(1 – βn)‖wn – Vun‖ (4.10)

≤ ‖wn – p‖2. (4.11)

Next, invoking Lemma 2.9(i), and applying (4.5), (4.9) and (4.10) we obtain

‖xn+1 – p‖2 =
∥
∥αnf (wn) + δnun + ξnvn – p

∥
∥2

≤ ∥
∥δn(un – p) + ξn(vn – p)

∥
∥2 + 2αn

〈
f (wn) – p, xn+1 – p

〉

≤ δ2
n‖un – p‖2 + ξ 2

n ‖vn – p‖2 + 2δξn‖un – p‖‖vn – p‖
+ 2αn

〈
f (wn) – f (p), xn+1 – p

〉

+ 2αn
〈
f (p) – p, xn+1 – p

〉

≤ δ2
n‖un – p‖2 + ξ 2

n ‖vn – p‖2 + δξn
{‖un – p‖2 + ‖vn – p‖2}

+ 2αnρ‖wn – p‖‖xn+1 – p‖
+ 2αn

〈
f (p) – p, xn+1 – p

〉

≤ δn(δn + ξn)‖un – p‖2 + ξn(ξn + δn)‖vn – p‖2

+ αnρ
{‖wn – p‖2 + ‖xn+1 – p‖2}

+ 2αn
〈
f (p) – p, xn+1 – p

〉

≤ δn(1 – αn)‖wn – p‖2 + ξn(1 – αn)
{‖wn – p‖2

– (1 – βn)γn(1 – τn)
∥
∥(T – I)Awn

∥
∥2

– βn(1 – βn)‖wn – Vun‖
}

+ αnρ
{‖wn – p‖2 + ‖xn+1 – p‖2}

+ 2αn
〈
f (p) – p, xn+1 – p

〉
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=
(
(1 – αn)2 + αnρ

)‖wn – p‖2

– ξn(1 – αn)(1 – βn)
{
γn(1 – τn)

∥
∥(T – I)Awn

∥
∥2 + βn‖wn – Vun‖

}

+ αnρ‖xn+1 – p‖2 + 2αn
〈
f (p) – p, xn+1 – p

〉

≤ (
(1 – αn)2 + αnρ

)
{

‖xn – p‖2 + 3M2αn
θn

αn
‖xn – xn–1‖

}

+ αnρ‖xn+1 – p‖2

+ 2αn
〈
f (p) – p, xn+1 – p

〉
– ξn(1 – αn)(1 – βn)

{
γn(1 – τn)

∥
∥(T – I)Awn

∥
∥2

+ βn‖wn – Vun‖
}

.

Consequently, we obtain

‖xn+1 – p‖2 ≤ (1 – 2αn + α2
n + αnρ)

(1 – αnρ)
‖xn – p‖2

+ 3M2
((1 – αn)2 + αnρ)

(1 – αnρ)
αn

θn

αn
‖xn – xn–1‖

+
2αn

(1 – αnρ)
〈
f (p) – p, xn+1 – p

〉

–
ξn(1 – αn)(1 – βn)

(1 – αnρ)
{
γn(1 – τn)

∥
∥(T – I)Awn

∥
∥2

+ βn‖wn – Vun‖
}

=
(1 – 2αn + αnρ)

(1 – αnρ)
‖xn – p‖2 +

α2
n

(1 – αnρ)
‖xn – p‖2

+ 3M2
((1 – αn)2 + αnρ)

(1 – αnρ)
αn

θn

αn
‖xn – xn–1‖

+
2αn

(1 – αnρ)
〈
f (p) – p, xn+1 – p

〉

–
ξn(1 – αn)(1 – βn)

(1 – αnρ)
{
γn(1 – τn)

∥
∥(T – I)Awn

∥
∥2

+ βn‖wn – Vun‖
}

≤
(

1 –
2αn(1 – ρ)
(1 – αnρ)

)

‖xn – p‖2

+
2αn(1 – ρ)
(1 – αnρ)

{
αn

2(1 – ρ)
M +

3M2((1 – αn)2 + αnρ)
2(1 – ρ)

θn

αn
‖xn – xn–1‖

+
1

(1 – ρ)
〈
f (p) – p, xn+1 – p

〉
}

–
ξn(1 – αn)(1 – βn)

(1 – αnρ)
{
γn(1 – τn)

∥
∥(T – I)Awn

∥
∥2 + βn‖wn – Vun‖

}
,

where M := sup{‖xn – p‖2 : n ∈N}. Hence, we have the required inequality. �
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Lemma 4.3 Suppose {xn} is a sequence generated by Algorithm 2 such that conditions
(C1)–(C4) are satisfied. Then, the following inequality holds for all p ∈ � and n ∈N:

‖xn+1 – p‖2 ≤ (1 – αn)‖xn – p‖2 + αn

{
∥
∥f (wn) – p

∥
∥2 + 3M2(1 – αn)

θn

αn
‖xn – xn–1‖

}

– δξn‖un – vn‖2.

Proof Let p ∈ �. By applying Lemma 2.9(iii) together with (4.5), (4.9) and (4.11) we have

‖xn+1 – p‖2 =
∥
∥αnf (wn) + δnun + ξnvn – p

∥
∥2

≤ αn
∥
∥f (wn) – p

∥
∥2 + δ‖un – p‖2 + ξn‖vn – p‖2 – δξn‖un – vn‖2

≤ αn
∥
∥f (wn) – p

∥
∥2 + δ‖wn – p‖2 + ξn‖wn – p‖2 – δξn‖un – vn‖2

= αn
∥
∥f (wn) – p

∥
∥2 + (1 – αn)‖wn – p‖2 – δξn‖un – vn‖2

≤ αn
∥
∥f (wn) – p

∥
∥2 + (1 – αn)

{

‖xn – p‖2 + 3M2αn
θn

αn
‖xn – xn–1‖

}

– δξn‖un – vn‖2

= (1 – αn)‖xn – p‖2 + αn

{
∥
∥f (wn) – p

∥
∥2 + 3M2(1 – αn)

θn

αn
‖xn – xn–1‖

}

– δξn‖un – vn‖2,

which is the required inequality. �

Now, we are in a position to state and prove the strong-convergence theorem for the
proposed algorithm.

Theorem 4.4 Let H1 and H2 be two real Hilbert spaces and let f : H1 → H1 be a con-
traction with coefficient ρ ∈ (0, 1). Suppose {xn} is a sequence generated by Algorithm 2
such that conditions (C1)–(C4) hold. Then, the sequence {xn} converges strongly to a point
x̂ ∈ �, where x̂ = P� ◦ f (x̂).

Proof Let x̂ = P� ◦ f (x̂). From Lemma 4.2, we obtain

‖xn+1 – x̂‖2 ≤
(

1 –
2αn(1 – ρ)
(1 – αnρ)

)

‖xn – x̂‖2

+
2αn(1 – ρ)
(1 – αnρ)

{
αn

2(1 – ρ)
M +

3M2((1 – αn)2 + αnρ)
2(1 – ρ)

θn

αn
‖xn – xn–1‖

+
1

(1 – ρ)
〈
f (x̂) – x̂, xn+1 – x̂

〉
}

. (4.12)

Next, we claim that the sequence {‖xn – x̂‖} converges to zero. In order to establish this,
by Lemma 2.10, it suffices to show that lim supk→∞〈f (x̂) – x̂, xnk +1 – x̂〉 ≤ 0 for every sub-
sequence {‖xnk – x̂‖} of {‖xn – x̂‖} satisfying

lim inf
k→∞

(‖xnk +1 – x̂‖ – ‖xnk – x̂‖) ≥ 0.
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Suppose that {‖xnk – x̂‖} is a subsequence of {‖xn – x̂‖} such that

lim inf
k→∞

(‖xnk +1 – x̂‖ – ‖xnk – x̂‖) ≥ 0. (4.13)

Again, from Lemma 4.2 we obtain

ξnk (1 – αnk )(1 – βnk )
(1 – αnk ρ)

γnk (1 – τnk )
∥
∥(T – I)Awnk

∥
∥2

≤
(

1 –
2αnk (1 – ρ)
(1 – αnk ρ)

)

‖xnk – p‖2 – ‖xnk +1 – p‖2 +
2αnk (1 – ρ)
(1 – αnk ρ)

{
αnk

2(1 – ρ)
M

+
3M2((1 – αnk )2 + αnk ρ)

2(1 – ρ)
θnk

αnk

‖xnk – xnk –1‖

+
1

(1 – ρ)
〈
f (p) – p, xnk +1 – p

〉
}

.

By applying (4.13) together with condition (C2) and the fact that limk→∞ αnk = 0, we have

γnk (1 – τnk )
∥
∥(T – I)Awnk

∥
∥2 → 0, k → ∞.

By the definition of γn, we obtain

τnk (1 – τnk )
‖(T – I)Awnk ‖4

‖A∗(T – I)Awnk ‖2 → 0, k → ∞.

Consequently, we have

‖(T – I)Awnk ‖2

‖A∗(T – I)Awnk ‖
→ 0, k → ∞.

Since ‖A∗(T – I)Awnk ‖ is bounded, it follows that

∥
∥(T – I)Awnk

∥
∥ → 0, k → ∞. (4.14)

Consequently, we obtain

∥
∥A∗(T – I)Awnk

∥
∥ ≤ ∥

∥A∗∥∥∥
∥(T – I)Awnk

∥
∥

= ‖A‖∥∥(T – I)Awnk

∥
∥ → 0, k → ∞. (4.15)

Following a similar argument, from Lemma 4.2 we obtain

βnk ‖wnk – Vunk ‖ → 0, k → ∞.

By condition (C2), it follows that

‖wnk – Vunk ‖ → 0, k → ∞. (4.16)
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Next, from Lemma 4.3 we obtain

δξnk ‖unk – vnk ‖2 ≤ (1 – αnk )‖xnk – x̂‖2 – ‖xnk k +1 – x̂‖2 + αnk

{
∥
∥f (wnk ) – x̂

∥
∥2

+ 3M2(1 – αnk )
θnk

αnk

‖xnk – xnk –1‖
}

.

By (4.13), Remark 3.2, and the fact that limk→∞ αnk = 0, we obtain

δξnk ‖unk – vnk ‖2 → 0, k → ∞. (4.17)

Consequently, we have

‖unk – vnk ‖ → 0, k → ∞. (4.18)

By Remark 3.2, we have

‖wnk – xnk ‖ = θnk ‖xnk – xnk –1‖ → 0, k → ∞. (4.19)

By applying (4.16), from Step 4 we have

‖vnk – wnk ‖ ≤ βnk ‖wnk – wnk ‖ + (1 – βnk )‖Vunk – wnk ‖ → 0, k → ∞. (4.20)

Next, by applying (4.16), (4.18), (4.19) and (4.20) we obtain

‖wnk – unk ‖ → 0, k → ∞;

‖xnk – Vunk ‖ → 0, k → ∞;

‖xnk – vnk ‖ → 0, k → ∞,

(4.21)

and

‖xnk – unk ‖ → 0, k → ∞;

‖unk – Vunk ‖ → 0, k → ∞.
(4.22)

Now, applying (4.21) and (4.22) together with the fact that limk→∞ αnk = 0, we obtain

‖xnk +1 – xnk ‖ =
∥
∥αnk f (wnk ) + δnk unk + ξnk vnk – xnk

∥
∥

≤ αnk

∥
∥f (wnk ) – xnk

∥
∥ + δnk ‖unk – xnk ‖

+ ξnk ‖vnk – xnk ‖ → 0, k → ∞. (4.23)

To complete the proof, we need to show that wω(xn) ⊂ �. Since {xn} is bounded, then
wω(xn) is nonempty. Let x∗ ∈ wω(xn) be an arbitrary element. Then, there exists a subse-
quence {xnk } of {xn} such that xnk ⇀ x∗ as k → ∞. From (4.22), we have that unk ⇀ x∗ as
k → ∞. Since I – V is demiclosed at zero, then it follows from (4.22) and Lemma 2.7 that
x∗ ∈ F(V) = F(S). That is, wω(xn) ⊂ F(S).
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Next, we show that wω(xn) ⊂ �. From Step 3 and by applying (4.21), we have

lim
k→∞

∥
∥U

(
I + γnA∗(T – I)A

)
wnk – wnk

∥
∥ = lim

k→∞
‖unk – wnk ‖ = 0. (4.24)

Since the operators U and I + γnA∗(T – I)A are averaged, it follows from Lemma 2.12(ii)
that the composition U(I + γnA∗(T – I)A) is also average and consequently nonexpansive.
By the Demiclosedness Principle for nonexpansive mappings, and by applying (4.19) and
(4.24) we obtain U(I + γnA∗(T – I)A)x∗ = x∗. Since � 	= ∅, then by Lemma 2.12(iii) we
have Ux∗ = x∗ and (I + γnA∗(T – I)A)x∗ = x∗. It then follows from Lemma 2.12(iii) and
Lemma 2.14(I) that

0 ∈
m⋂

i=1

(hi + Bi)x∗. (4.25)

Sine T is nonexpansive, then by the Demiclosedness Principle for nonexpansive mappings,
and by applying (4.14) and (4.19) we have TAx∗ = Ax∗. It then follows from Lemma 2.12(iii)
and Lemma 2.14(I) that

0 ∈
k⋂

j=1

(gi + Di)Ax∗. (4.26)

From (4.25) and (4.26), we obtain wω(xn) ⊂ �. Consequently, we have that wω(xn) ⊂ �.
Next, from (4.21) we have that wω{vnk } = wω{xnk }. By the boundedness of {xnk }, there

exists a subsequence {xnkj
} of {xnk } such that xnkj

⇀ x† and

lim
j→∞

〈
f (x̂) – x̂, xnkj

– x̂
〉

= lim sup
k→∞

〈
f (x̂) – x̂, xnk – x̂

〉

= lim sup
k→∞

〈
f (x̂) – x̂, vnk – x̂

〉
.

Since x̂ = P� ◦ f (x̂), it follows that

lim sup
k→∞

〈
f (x̂) – x̂, xnk – x̂

〉
= lim

j→∞
〈
f (x̂) – x̂, xnkj

– x̂
〉

=
〈
f (x̂) – x̂, x† – x̂

〉 ≤ 0. (4.27)

Now, from (4.23) and (4.27), we obtain

lim sup
k→∞

〈
f (x̂) – x̂, xnk +1 – x̂

〉
= lim sup

k→∞

〈
f (x̂) – x̂, xnk +1 – xnk

〉

+ lim sup
k→∞

〈
f (x̂) – x̂, xnk – x̂

〉

=
〈
f (x̂) – x̂, x† – x̂

〉 ≤ 0. (4.28)

Applying Lemma 2.10 to (4.12), and using (4.28) together with the fact that limn→∞ θn
αn

‖xn –
xn–1‖ = 0 and limn→∞ αn = 0, we deduce that limn→∞ ‖xn – x̂‖ = 0 as required. �
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Remark 4.5 The results of this paper improve the results of Yao et al. [48] and Chang et
al. [16] in the following ways:

(i) Our result extends the result of Yao et al. [48] and the result of Chang et al. [16]
from SMVIP (1.4) and (1.5) and a system of monotone variational inclusion
problems (1.11), respectively, to the problem of finding a common solution of the
system of monotone variational inclusion problems (1.11) and the fixed-point
problem of quasipseudocontractions.

(ii) While Yao et al. [48] were only able to prove a weak-convergence result, in this
paper we established a strong-convergence result for our proposed algorithm.

(iii) The proposed method of Chang et al. [16] requires knowledge of the operator
norm for its implementation, while our proposed method is independent of the
operator norm.

(iv) Our method employs a very efficient inertial technique that does not require
stringent conditions, like one has in condition (iii) of Algorithm 1 of Yao et al. [48]
and condition (iv) of Algorithm (1.13) of Chang et al. [16].

(v) The viscosity technique we employed accommodates a larger class of contractions
than the one employed by Chang et al. [16].

Remark 4.6 Since the class of quasipseudocontractions contains several other classes of
nonlinear mappings such as the pseudocontractions, the demicontractive operators, the
quasinonexpansive operators, the directed operators, and the strictly pseudocontractive
mappings with fixed points as special cases, our results present a unified framework for
studying these classes of operators.

5 Applications
In this section we consider some applications of our results to approximating solutions of
related optimization problems in the framework of Hilbert spaces.

5.1 System of equilibrium problems with fixed-point constraint
Let C be a nonempty closed convex subset of a real Hilbert space H , and let F : C ×C →R

be a bifunction. The equilibrium problem (EP) for the bifunction F on C is to find a point
x∗ ∈ C such that

F
(
x∗, y

) ≥ 0, ∀y ∈ C. (5.1)

We denote the solution of the EP (5.1) by EP(F). The EP serves as a unifying framework
for several mathematical problems, such as variational inequality problems, minimization
problems, complementarity problems, saddle-point problems, mathematical program-
ming problems, Nash-equilibrium problems in noncooperative games, and others; see
[2, 23, 28, 29, 35] and the references therein. Several problems in economics, physics, and
optimization can be formulated as finding a solution of EP (5.1).

In solving the EP (5.1), we assume that the bifunction F : C × C → R satisfies the fol-
lowing conditions:

(A1) F(x, x) = 0 for all x ∈ C;
(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C;
(A3) F is upper hemicontinuous, that is, for all x, y, z ∈ C,

limt↓0 F(tz + (1 – t)x, y) ≤ F(x, y);
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(A4) for each x ∈ C, y �→ F(x, y) is convex and lower semicontinuous.
The following theorem is required in establishing our next result.

Theorem 5.1 ([43]) Let C be a nonempty closed convex subset of a real Hilbert space H
and F : C × C → R be a bifunction satisfying (A1)–(A4). Define a multivalued mapping
AF : H → 2H by

AF (x) =

⎧
⎨

⎩

{y ∈ H : F(x, z) ≥ 〈z – x, y〉,∀z ∈ C}, if x ∈ C,

∅, if x /∈ C.

Then, the following hold:
(i) AF is maximal monotone;

(ii) EP(F) = A–1
F (0);

(iii) TF
r = (I + rAF )–1 for r > 0, where TF

r is the resolvent of AF and is given by

TF
r (x) =

{

y ∈ C : F(y, z) +
1
r
〈z – y, y – x〉 ≥ 0,∀z ∈ C

}

.

Here, we consider the following system of equilibrium problems (SEPs) with fixed-point
constraint:

⎧
⎨

⎩

Find x∗ ∈ F(S) such that Fi(x∗, x) ≥ 0, ∀x ∈ C, i = 1, 2, . . . , m; and

y∗ = Ax∗ solves Gj(y∗, y) ≥ 0, ∀y ∈ Q, j = 1, 2, . . . , k,
(5.2)

where C and Q are nonempty closed convex subsets of real Hilbert spaces H1 and H2,
respectively, S : H1 → H1 is a quasipseudocontractive mapping, for each i = 1, 2, . . . , m
and j = 1, 2, . . . , k, Fi and Gj are bifunctions satisfying conditions (A1)–(A4) above, and
A : H1 → H2 is a bounded linear operator. We denote the solution set of problem (5.2) by
�SEP =

⋂m
i=1 EP(Fi) ∩ A–1(

⋂k
j=1(EP(Gj))).

Now, taking Bi = AFi , i = 1, 2, . . . , m and Dj = HGj , j = 1, 2, . . . , k and setting hi = gj = 0 in
Theorem 4.4, we obtain the following result for approximating solutions of problem (5.2)
in Hilbert spaces.

Theorem 5.2 Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1

and H2, respectively, A : H1 → H2 be a bounded linear operator with adjoint A∗, and for
each i = 1, 2, . . . , m and j = 1, 2, . . . , k let Fi : C × C →R and Gj : Q × Q →R be bifunctions
satisfying conditions (A1)–(A4). Let S : H1 → H1 be a K-Lipschitz continuous quasipseu-
docontractive mapping, which is demiclosed at zero and with K ≥ 1, and f : H1 → H1 be
a contraction with coefficient ρ ∈ (0, 1). Suppose that the solution set � = �SEP ∩ F(S) 	= ∅,
and conditions (C1)–(C4) are satisfied. Then, the sequence {xn} generated by the following
algorithm converges strongly to a point x̂ ∈ �, where x̂ = P� ◦ f (x̂).

5.2 System of convex minimization problems with fixed-point constraint
Suppose that F : H →R is a convex and differentiable function, and M : H → (–∞, +∞] is
a proper convex and lower semicontinuous function. It is known that if �F is 1

μ
-Lipschitz
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Algorithm 3
Step 0. Let x0, x1 ∈ H1 be two arbitrary initial points and set n = 1.
Step 1. Given the (n – 1)th and nth iterates, choose θn such that 0 ≤ θn ≤ θ̂n with θ̂n

defined by

θ̂n =

⎧
⎨

⎩

min{θ , εn
‖xn–xn–1‖ }, if xn 	= xn–1,

θ , otherwise.
(5.3)

Step 2. Compute

wn = xn + θn(xn – xn–1).

Step 3. Compute

un = Û
(
wn + γnA∗(T̂ – I)Awn

)
,

where
⎧
⎨

⎩

Û := TF1
λ ◦ TF2

λ ◦ . . . TFm
λ ,

T̂ := TG1
λ ◦ TG2

λ ◦ . . . TGk
λ ,

(5.4)

and

γn :=

⎧
⎨

⎩

τn
‖(T̂–I)Awn‖2

‖A∗(T̂–I)Awn‖2 , if Awn 	= T̂Awn,

γ , otherwise (γ being any nonnegative real number).
(5.5)

Step 4. Compute

vn = βnwn + (1 – βn)Vun,

where

V = (1 – η)I + ηS
(
(1 – μ)I + μS

)
.

Step 5. Compute

xn+1 = αnf (wn) + δnun + ξnvn.

Set n := n + 1 and return to Step 1.

continuous, then it is μ-inverse strongly monotone, where �F is the gradient of F . Also,
it is known that the subdifferential ∂M of M is maximal monotone (see [39]). Moreover,

F
(
x∗) + M

(
x∗) = min

x∈H

{
F(x) + M(x)

} ⇐⇒ 0 ∈ �F
(
x∗) + ∂M

(
x∗).
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We consider the following system of convex minimization problems (SCMP) with fixed-
point constraint: Find

x∗ ∈ F(S) such that Fi
(
x∗) + Mi

(
x∗) = min

x∈F(S)

{
Fi(x) + Mi(x)

}
, i = 1, 2, . . . , m, (5.6)

and such that y∗ = Ax∗ ∈ H2, solves

Gj
(
x∗) + Nj

(
x∗) = min

x∈H2

{
Gj(x) + Nj(x)

}
, j = 1, 2, . . . , k, (5.7)

where S : H1 → H1 is a quasipseudocontractive mapping, for each i = 1, 2, . . . , m and j =
1, 2, . . . , k, Fi : H1 → R and Gj : H2 → R are convex and differentiable functions, and Mi :
H1 → (–∞, +∞] and Nj : H2 → (–∞, +∞] are proper convex and lower semicontinuous
functions. We denote the solution set of problem (5.6) and (5.7) by �SCMP.

Now, for each i = 1, 2, . . . , m and j = 1, 2, . . . , k, set Bi = ∂Mi, Dj = ∂Nj, hi = �Fi and gj =
�Gj in Theorem 4.4, we obtain the following result for approximating solutions of problem
(5.6) and (5.7) in Hilbert spaces.

Theorem 5.3 Let H1 and H2 be real Hilbert spaces, A : H1 → H2 be a bounded linear oper-
ator with adjoint A∗. For each i = 1, 2, . . . , m and j = 1, 2, . . . , k, let Mi : H1 → (–∞, +∞] and
Nj : H2 → (–∞, +∞] be proper convex and lower semicontinuous functions, Fi : H1 → R,
Gj : H2 → R be convex and differentiable functions such that �Fi, �Gj are 1

μ
-Lipschitz

continuous. Let S : H1 → H1 be a K-Lipschitz continuous quasipseudocontractive map-
ping, which is demiclosed at zero and with K ≥ 1, and f : H1 → H1 be a contraction with
coefficient ρ ∈ (0, 1). Suppose that the solution set � = �SCMP ∩ F(S) 	= ∅, and conditions
(C1)–(C4) are satisfied. Then, the sequence {xn} generated by the following algorithm con-
verges strongly to a point x̂ ∈ �, where x̂ = P� ◦ f (x̂).

6 Numerical examples
Here, we present some numerical experiments both in finite-dimensional and infinite-
dimensional Hilbert spaces to illustrate the performance of our proposed method Algo-
rithm 2 in comparison with Algorithm (1.13). Moreover, we experiment on the depen-
dency of the key parameters on the performance of our method. All numerical computa-
tions were carried out using Matlab version R2019(b).

In our computations, we choose for each n ∈ N αn = 1
2n+1 , εn = 1

(2n+1)3 , δn = ξn = n
2n+1 ,

βn = 2n
3n+2 , λ = 0.5. Let f (x) = 1

6 x, then ρ = 1
6 is the Lipschitz constant for f . It can easily be

verified that the conditions of Theorem 4.4 are satisfied. We take θn = 1
3n2 and γ = 0.05 in

Algorithm (1.13).

Example 6.1 Let H1 = H2 = R with the inner product defined by 〈x, y〉 = xy, for all x, y ∈R,
and the induced usual norm | · |. For i = j = 1, 2, . . . , 5, we define the mappings hi, gj : R →R

by hi(x) = ix+6 ∀x ∈ H1 and gj(y) = 2jx–1 ∀y ∈ H2, then we take λ = 0.18. Let Bi, Dj : R →R

be defined by Bi(x) = 3ix – 2 ∀x ∈ H1, Dj(y) = 3jy ∀y ∈ H2, and we define A : H1 → H2 by
A(x) = – 5

3 x for all x ∈ H1, then A∗(y) = – 5
3 y for all y ∈ H2. Define S : R → R by S(x) = –2x.

Then, S is 2-Lipschitzian quasipseudocontractive. We choose η = 0.23 and μ = 0.28.
Using MATLAB 2019(b), we compare the performance of Algorithm 2 with Algorithm

(1.13). The stopping criterion used for our computation is |xn+1 – xn| < 10–3. We plot the
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Algorithm 4
Step 0. Let x0, x1 ∈ H1 be two arbitrary initial points and set n = 1.
Step 1. Given the (n – 1)th and nth iterates, choose θn such that 0 ≤ θn ≤ θ̂n with θ̂n

defined by

θ̂n =

⎧
⎨

⎩

min{θ , εn
‖xn–xn–1‖ }, if xn 	= xn–1,

θ , otherwise.
(5.8)

Step 2. Compute

wn = xn + θn(xn – xn–1).

Step 3. Compute

un = Û
(
wn + γnA∗(T̂ – I)Awn

)
,

where
⎧
⎨

⎩

Û := J∂M1
λ (I – λ�F1) ◦ J∂M2

λ (I – λ�F2) ◦ . . . J∂Mm
λ (I – λ�Fm),

T̂ := J∂N1
λ (I – λ�G1) ◦ J∂N2

λ (I – λ�G2) ◦ . . . J∂Nk
λ (I – λ�Gk)

(5.9)

and

γn :=

⎧
⎨

⎩

τn
‖(T̂–I)Awn‖2

‖A∗(T̂–I)Awn‖2 , if Awn 	= T̂Awn,

γ , otherwise (γ being any nonnegative real number).
(5.10)

Step 4. Compute

vn = βnwn + (1 – βn)Vun,

where

V = (1 – η)I + ηS
(
(1 – μ)I + μS

)
.

Step 5. Compute

xn+1 = αnf (wn) + δnun + ξnvn.

Set n := n + 1 and return to Step 1.

graphs of errors against the number of iterations in each case. The numerical results are
reported in Fig. 1 and Table 1.

Example 6.2 Let H1 = (�2(R),‖ · ‖2) = H2, where �2(R) := {x = (x1, x2, . . . , xn, . . .), xj ∈ R :
∑∞

j=1 |xj|2 < ∞}, ‖x‖2 = (
∑∞

j=1 |xj|2) 1
2 for all x ∈ �2(R). For i = j = 1, 2, . . . , 5, we define the
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Figure 1 Top left: Case I; Top right: Case II; Bottom left: Case III; Bottom right: Case IV

Table 1 Numerical results for Example 6.1 (Experiment 1)

Cases Alg. (1.13) Alg. 2
θ = 1.5

Alg. 2
θ = 3.0

Alg. 2
θ = 4.5

Alg. 2
θ = 6.0

Alg. 2
θ = 7.5

Alg. 2
θ = 9.0

I CPU time (s) 0.0101 0.0075 0.0134 0.0096 0.0108 0.0119 0.0111
No. of Iter. 20 5 5 5 5 5 5

II CPU time (s) 0.0114 0.0059 0.0040 0.0039 0.0077 0.0065 0.0056
No. of Iter. 20 4 4 4 4 4 4

III CPU time (s) 0.0104 0.0046 0.0133 0.0081 0.0039 0.0038 0.0065
No. of Iter. 20 4 4 4 4 4 4

IV CPU time (s) 0.0097 0.0050 0.0075 0.0077 0.0046 0.0050 0.0044
No. of Iter. 20 4 4 4 4 4 4

mappings hi, gj : �2(R) → �2(R) by hi(x) = 2ix–1 ∀x ∈ H1 and gj(y) = jx+2 ∀y ∈ H2, then we
take λ = 0.15. Let Bi, Dj : �2(R) → �2(R) be defined by Bi(x) = 7

3i x ∀x ∈ H1, Dj(y) = 5
3j y∀y ∈

H2, and we define A : H1 → H2 by A(x) = x
3 x for all x ∈ H1, then A∗(y) = x

3 y for all y ∈ H2.
Define S : �2(R) → �2(R) by S(x) = – 5

4 x. Then, S is 5
4 -Lipschitzian quasipseudocontractive.

We choose η = 0.29 and μ = 0.34 and λ = 0.01 in Algorithm (1.13).
Using MATLAB 2019(b), we compare the performance of Algorithm 2 with Algorithm

(1.13). The stopping criterion used for our computation is ‖xn+1 – xn‖ < 10–3. We plot the
graphs of errors against the number of iterations in each case. The numerical results are
reported in Fig. 2 and Table 2.

We test Examples 6.1 and 6.2 under the following experiments:
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Figure 2 Top left: Case I; Top right: Case II; Bottom left: Case III; Bottom right: Case IV

Table 2 Numerical results for Example 6.2 (Experiment 2)

Cases Alg. (1.13) Alg. 2
τn = n

2n+1

Alg. 2
τn = n

5n+1

Alg. 2
τn = 2n

3n+2

Alg. 2
τn = 3n

4n+1

Alg. 2
τn = 4n

5n+3

Alg. 2
τn = 2n

5n+2

I CPU time (s) 0.0200 0.0165 0.0176 0.0187 0.0167 0.0181 0.0184
No. of Iter. 31 17 17 17 17 17 17

II CPU time (s) 0.0844 0.0593 0.0343 0.0346 0.0312 0.0324 0.0465
No. of Iter. 36 17 17 17 17 17 17

III CPU time (s) 0.0209 0.0162 0.0196 0.0185 0.0177 0.0203 0.0240
No. of Iter. 36 17 17 17 17 17 17

IV CPU time (s) 0.0162 0.0180 0.0194 0.0201 0.0184 0.0199 0.0177
No. of Iter. 34 17 17 17 17 17 17

Experiment 1 In this experiment, we check the behavior of our method by fixing the
other parameters and varying θ . We do this to check the effect of the parameter θ on our
method.

For Example 6.1, we choose different initial values as follows:
Case I: x0 = –10, x1 = 23;

Case II: x0 = 17
25 , x1 = –32;

Case III: x0 = 29, x1 = –100.23;
Case IV: x0 = 29, x1 = –100.23;

Also, we consider θ ∈ {1.5, 3.0, 4.5, 6.0, 7.5, 9.0}, which satisfies Assumption (C4). We use
Algorithm (1.13) and Algorithm 2 for the experiment and report the numerical results in
Table 1 and Fig. 1.
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Experiment 2 In this experiment, we check the behavior of our method by fixing the
other parameters and varying τn. We do this to check the effect of the parameter τn on our
method.

For Example 6.2, we choose different initial values as follows:
Case I: x0 = (–3, 1, – 1

3 , . . .), x1 = (1, 1
2 , 1

4 , . . .);
Case II: x0 = (1, 1

7 , 1
49 , . . .), x1 = (0.1, 0.01, 0.001, . . .);

Case III: x0 = (2, 4
5 , 8

25 , . . .), x1 = (1, – 1
6 , 1

36 , . . .);
Case IV: x0 = (–2, 4

3 , – 8
9 , . . .), x1 = (5, –0.5, 0.05, . . .).

Also, we consider τn ∈ { n
2n+1 , n

5n+1 , 2n
3n+2 , 3n

4n+1 , 4n
5n+1 , 2n

5n+2 , }, which satisfies Assumption (C4).
We use Algorithm (1.13) and Algorithm 2 for the experiment and report the numerical
results in Table 2 and Fig. 2.

7 Conclusion
We studied the problem of finding the solution of a system of monotone variational in-
clusion problems with the constraint of a fixed-point set of quasipseudocontractive map-
pings. We proposed a new iterative method that employs an inertial technique with a self-
adaptive step size for approximating the solution of the problem in Hilbert spaces and
proved a strong-convergence result for the proposed method under some mild conditions.
We further applied our results to study related optimization problems and presented some
numerical experiments with graphical illustration to demonstrate the efficiency and ap-
plicability of our proposed method. In Examples 6.1 and 6.2, we checked the dependency
of key parameters for each starting point in order to determine if their choices affect the
performance of our method. We can see from the tables and graphs that the number of
iterations and CPU times for our proposed method remain consistent and well behaved
for different choices of these key parameters and that our method is more efficient and
outperforms a related method.
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