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Abstract
In this paper, we estimate the mean of the partially linear single-index
errors-in-variables model with missing response variables. The linear covariate is
measured with additive error, therefore missing is not random. Two special estimators
are defined that include a semiparametric regression imputation estimator and a
marginal average estimator. These estimators are shown to be asymptotically normal
and have the same asymptotic variance. A simulation experiment is used to illustrate
our proposed method.
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1 Introduction
Semiparametric errors-in-variables (EV) models have attracted broad attention and have
been deeply studied during the last two decades. Relevant studies include partially linear
EV models (Liang et al. [5], He and Liang [4]), varying coefficient EV models (You et al.
[16], Zhao and Xue [17]), partially linear varying coefficient EV models (You and Chen
[15], Wei and Mei [13]), partially linear additive EV models (Wei et al. [11, 12]). Here, we
consider the following partially linear single-index EV model:

⎧
⎨

⎩

Y = g(ZTα) + XTβ + ε,

V = X + e,
(1.1)

where Y is a response variable, the single covariate Z ∈ R
p is observed completely, the

linear covariate X ∈ R
q is observed with additive error, and only its substitute V can be

observed; g(·) is an unknown smooth link function, ε is the random error with E(ε|Z, X) =
0, Var(ε|Z, X) < ∞; (α,β) is an unknown vector in R

p × R
q with ‖α‖ = 1 which ensures

identifiability, and the first nonzero component of α is positive, where ‖ · ‖ denotes the
Euclidean norm. The measurement error e is independent of (Y , Z, X) with E(e) = 0 and
Cov(e) = Σe. Here, we assume that Σe is known. If it is unknown, the estimation method is
analogous to the partial replication method of Liang et al. [5] in a partially linear EV model.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-020-2299-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-020-2299-9&domain=pdf
mailto:xinerqi@sina.com


Qi and Yu Journal of Inequalities and Applications         (2020) 2020:18 Page 2 of 11

For the complete data set, the partially linear single-index EV model has been discussed
by Liang and Wang [6] and Chen and Cui [1].

It is well known that the studies on the mean E(Y ) = θ are very important in regression
models. If all the responses in the sample are available, the response variable mean can be
usually obtained. However, in fact, some responses may be missing. This missing response
problem may be caused by various reasons. For example, it may be too expensive to acquire
the response Y ’s and only part of Y ’s are available. In practice, missing-data problems
frequently occur in epidemiology studies, survey sampling, social science, and many other
fields. Therefore, it is necessary to study the mean E(Y ) = θ based on the missing data set.

However, there’s little research about the response variable mean in the partially linear
single-index model. In this paper, we focus on the mean E(Y ) = θ , when there are missing
responses in the partially linear single-index EV model (1.1). An indicator variable δ is
introduced in order to indicate whether an observation of Y is missing or observed, i.e.,
δ = 0 indicates that Y is missing and δ = 1 indicates that Y is observed. Throughout this
paper, if X is observable, we assume the data missing mechanism is as follows:

p(δ = 1|Y , Z, X) = p(δ = 1|Z, X) = π (Z, X)

for some unknown π (Z, X). In addition, we also assume that the measurement error e is
independent of δ, p(δ = 1|Y , Z, X, V ) = π (Z, X). Since X is observed with measurement
errors, Y is not missing at random if there are no further assumptions. The details can be
seen in the paper of Liang et al. [7].

The imputation method is a common method of dealing with missing data, which fills in
a plausible value for each missing data and then analyzes the result as if they were complete
data. When some responses are missing, Cheng [2] applied kernel regression imputation
to estimate θ in a Nonparametric Model. Similar to the method of Cheng [2], Wei [10]
estimated θ in a partially linear varying-coefficient EV model with missing responses. In
addition, the marginal average method also can be used in a missing data set in place of
the imputation method. When some responses are missing in a partially linear model,
Wang et al. [9] and Liang et al. [7] used the above two methods to estimate the mean
of the responses with the covariates X being observed and not observed, respectively. In
this paper, we extend the method in Liang et al. [7] to the partially linear single index EV
models, propose two estimators of θ in model (1.1) with missing response. The estimators
are shown to be asymptotically normal and have the same asymptotic variance.

The rest of this paper is organized as follows. In Sect. 2, two estimators of θ are pro-
posed and a relative asymptotic result is presented. In Sect. 3, some simulation results are
reported. All proofs are shown in Sect. 4.

2 Methodology and result
2.1 Estimation of the mean E(Y) = θ

In order to derive the estimators of θ , first we use the complete method of Qi and Wang [8]
to estimate the regression coefficients, the single-index coefficients and the nonparametric
function. By the least-squares method and the correction for attenuation technique, an
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estimator of can be defined as

β̂n =

{
1
n

n∑

i=1

δi
[
Vi – m̂V

(
ZT

i α
)]⊗2 – Σe

}–1

·
{

1
n

n∑

i=1

δi
[
Vi – m̂V

(
ZT

i α
)][

Yi – m̂Y
(
ZT

i α
)]

}

, (2.1)

where m̂Y (t) =
∑n

i=1
δiKh1 (ZT

i α–t)
∑n

i=1 δiKh1 (ZT
i α–t)

Yi and m̂V (t) =
∑n

i=1
δiKh1 (ZT

i α–t)
∑n

i=1 δiKh1 (ZT
i α–t)

Vi are the estima-

tors of mY (t) = E(δiYi|ZT
i α=t)

E(δi|ZT
i α=t)

and mV (t) = E(δiVi|ZT
i α=t)

E(δi|ZT
i α=t)

, Kh1 (t) =
K1( t

h1
)

h1
, with K1(·) being a ker-

nel function and h1 being a suitable bandwidth.
After obtaining the estimator of β , we can obtain the estimators ĝn(·) and ĝ ′

n(·) of g(·) and
g ′(·) for any fixed α. By the locally linear method of Fan and Gijbels [3], we approximate
g(t) within the neighborhood of t0, g(t) ≈ g(t0) + g ′(t0)(t – t0) and minimize

min
g(t0),g′(t0)

n∑

i=1

[
Yi – V T

i β̂n – g(t0) – g ′(t0)(ti – t0)
]2Kh2 (ti – t0)δi, (2.2)

where Kh2 (t) =
K2( t

h2
)

h2
, with K2(·) being a kernel function and h2 being a suitable bandwidth.

However, (2.1) and (2.2) cannot be applied directly in practice, since α is unknown. So
we need to estimate by minimizing

min
α

n∑

i=1

δi
[
Yi – V T

i β̂n – ĝn
(
ZT

i α
)]2, (2.3)

which yields, say α̂n. Note that β̂n and ĝn(·) can also be used to obtain α̂n in (2.3). The
complete estimation procedure is decomposed in an iterative process with the following
steps:

Step 1. Acquire an initial value α̂0, for example, by the method of Xia and Härdle [14],
and let α̂n = α̂0

‖α̂0‖ .
Step 2. When α = α̂n, we can obtain β̂nk , ĝnk(·) based on (2.1) and (2.2).
Step 3. The solution of (2.3) is denoted as α̂n(k+1). Let α̂n = α̂n(k+1)

‖α̂n(k+1)‖ .
Step 4. Iterate Steps 2 and 3 until convergence is achieved.
Next, we turn to estimate the mean E(Y ) = θ . Similar to Wang et al. [9] and Liang et al.

[7], we construct two estimators of θ . First, each missing Yi is imputed by the estimated
regression function V T

i β̂n + ĝn(ZT
i α̂n). Consequently, we obtain the semiparametric regres-

sion imputation estimator of θ , which is designed as

θ̂1 = n–1
n∑

i=1

δiYi + n–1
n∑

i=1

(1 – δi)
[
V T

i β̂n + ĝn
(
ZT

i α̂n
)]

.

Second, we only consider the sample average of the estimated regression function, that
is, every Yi is ignored. Accordingly, we get the marginal average estimator of θ , which is
defined as

θ̂2 = n–1
n∑

i=1

[
V T

i β̂n + ĝn
(
ZT

i α̂n
)]

.
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2.2 Asymptotic result
In this section, the asymptotic normality of θs will be summarized. And it will be shown
that they are asymptotically equivalent.

For a concise representation, let P(t0, δ) = δ/E(δ|ZTα = t0) and S̃ = S – E(δS|ZTα)
E(δ|ZTα) , for ex-

ample, X̃i = Xi – E(δX|ZT
i α)

E(δ|ZT
i α)

. Moreover, in order to state the asymptotic results, the following
assumptions will be used:

(C1) Let ΓX̃ = E{δX̃⊗2}, ΓZ̃ = E{δ[Z̃g ′(ZTα)]⊗2} and ΓZ̃X̃ = E{δZ̃X̃Tg ′(ZTα)}.
(C2) The bandwidth satisfies h1 = h0n– 1

p+4 for some positive constant h0, nhp
2

log n → ∞,
where p is the dimension of Z.

(C3) The kernels Ki(·) (i = 1, 2) are bounded symmetric density functions with compact
support (–1, 1), and they satisfy

∫
uKi(u) du = 0,

∫
u2Ki(u) du 	= 0.

(C4) The density function f (t) of ZTα is bounded away from 0 and has two bounded
derivatives on its support.

(C5) g(·), mY (·), mV (·) have two bounded, continuous derivatives on their supports.
(C6) The probability function π (Z, X) has bounded continuous second partial deriva-

tives, and is bounded away from zero on the support of (Z, X).
(C7) E(|ε|4 < ∞), E(|e|3 < ∞).
Now we give the following asymptotical result.

Theorem 2.1 Assume that conditions (C1)–(C7) are satisfied. Then we obtain

√
n(θ̂ i – θ ) → N(0,Θ1 + Θ2), i = 1, 2,

where Θ1 = E[P(ZTα, δ)ε + [1 – P(ZTα, δ)]eTβ + E[g ′(ZTα)Z̃T] · Γ –1
Z̃ δg ′(ZTα)Z̃(ε – eTβ) +

E[Ṽ T – g ′(ZTα)Z̃TΓ –1
Z̃ ΓZ̃X̃] · Γ –1

X̃ {δ[Ṽ (ε – eTβ) + Σuuβ]}]2 and Θ2 = E[XTβ + g(ZTα) – θ ]2.

3 Simulation
In this section, we present a simulation study to analyze the finite sample performance of
the regression imputation estimator θ1 and the marginal average estimator θ2.

The simulation uses the partial linear single-index EV model (1.1) with a specific link
function:

⎧
⎨

⎩

Y = sin(2π · ZTα) + XTβ + ε,

V = X + e,
(3.1)

where X is generated from the standard normal distribution, trivariate Z is simulated from
the uniform distribution U[0, 1], e is generated from the normal distribution N(0, 0.252),
ε is simulated from the normal distribution with mean 0 and variance 0.01, and α =
(
√

3
3 ,

√
3

3 ,
√

3
3 )T, β = 1. The kernel functions were taken to be Ki(t) = 3

4 (1 – t2)2 if ‖t‖ ≤ 1,
and 0 otherwise, i = 1, 2.

The choices of bandwidths are quite crucial. In this paper, we use the least-squares
delete-one cross-validation (CV) method to select bandwidths: ĥ1 and ĥ2 are chosen as

(ĥ1, ĥ2) = arg min
h1,h2

1
n

n∑

i=1

δi
{

Yi – V T
i β̂

(–i)
n – ĝ(–i)

n (ZT
i α̂

(–i))
n

}2, (3.2)
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Table 1 Biases and SE of θ̂1, θ̂2 under different missing functions and different sample sizes

Missing rate n θ̂1 θ̂2

0.40 100 –0.0305 (0.1290) 0.0088 (0.1299)
150 0.0101 (0.1088) 0.0072 (0.1079)
200 0.0162 (0.0904) 0.0055 (0.0904)

0.30 100 –0.0234 (0.1270) 0.0109 (0.1282)
150 0.0228 (0.1078) 0.0063(0.1065)
200 0.0166 (0.0892) 0.0064(0.0893)

0.20 100 –0.0394 (0.1247) 0.0122(0.1272)
150 0.0141 (0.1055) 0.0068(0.1056)
200 0.0120 (0.0875) 0.0069(0.0886)

0.10 100 0.0123 (0.1241) 0.0136(0.1261)
150 0.0107 (0.1038) 0.0073(0.1047)
200 0.0089 (0.0871) 0.0074(0.0879)

where β̂
(–i)
n , ĝ(–i)

n and α̂
(–i)
n are the “leave-one-out” versions of β̂n, ĝn and α̂n, respectively.

However, the hi, i = 1, 2 from (3.2) may not the optimal bandwidths because they may not
satisfy the conditions imposed in the theorems. According to their conditions, the optimal
bandwidth according to (3.2) is to choose a constant h0.

Based on model (3.1), we considered the following four response probabilities of miss-
ing, namely:

Case 1: P(δ = 1|Z = z, X = x) = exp(0.6+zTφ+ϕx)
1+exp(0.6+zTφ+ϕx) ,where φ = (–0.12, –0.012, –0.12)T, ϕ =

0.35;
Case 2: P(δ = 1|Z = z, X = x) = exp(0.6+zTφ+ϕx)

1+exp(0.6+zTφ+ϕx) ,where φ = (0.2, 0.2, 0.2)T, ϕ = 0.45;

Case 3: P(δ = 1|Z = z, X = x) = exp(0.6+zTφ+ϕx)
1+exp(0.6+zTφ+ϕx) ,where φ = (0.65, 0.65, 0.65)T, ϕ = 0.8;

Case 4: P(δ = 1|Z = z, X = x) = 0.9 for all z and x.The average missing rates were 0.4,
0.3, 0.2, and 0.1, respectively. From the 1000 simulated values of θ̂1, θ̂2, we calculated the
biases and standard errors (SE) of the two estimators. The simulated results are reported
in Table 1.

From Table 1, we observe that
(a) Biases and SE decrease as n increases for every fixed missing rate. Also, SE increase

as the missing rate increases for every fixed sample size n.
(b) The SE of θ̂1, θ̂2 are nearly the same for every fixed missing rate and sample size.

4 Proof of the main result
In order to prove the main result, we first give some lemmas.

Lemma 4.1 Under conditions (C1)–(C7), we have

ĝn(t0, α̂n, β̂n) – g(t0)

=
1
n

· 1
f (t0)E(δ|ZTα = t0)

n∑

i=1

δiKh2

(
ZT

i α – t0
)(

εi – eT
i β

)

– (β̂n – β)T E(δV |ZTα = t0)
E(δ|ZTα = t0)

– (α̂n – α)T E(δZg ′(ZTα)|ZTα = t0)
E(δ|ZTα = t0)

+ op

(
1√
n

)

+ Op
(
h2

2
)
. (4.1)
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Proof of Lemma 4.1 When α = α̂n, the estimators of g(·) and g ′(·) can be obtained from
(2.2). By a straightforward calculation,

0 =
1
n

n∑

i=1

δiKh2

(
ZT

i α̂n – t0
)
(

1
ZT

i α̂n – t0

)

· [Yi – V T
i β̂n – ĝn(t0) – ĝ ′

n(t0)
(
ZT

i α̂n – t0
)]

.

Then focusing on the top equation only and using Taylor expansion, we have

0 =
1
n

n∑

i=1

δiKh2

(
ZT

i α – t0
)[

Yi – V T
i β – g

(
ZT

i α
)]

–
1
n

n∑

i=1

δiKh2

(
ZT

i α – t0
)[

ĝn(t0) – g(t0)
]

– (β̂n – β)T 1
n

n∑

i=1

δiKh2

(
ZT

i α – t0
)
Vi

– (α̂n – α)T 1
n

n∑

i=1

δiKh2

(
ZT

i α – t0
)
Zig ′(t0) + op

(
1√
n

)

+ Op
(
h2

2
)
,

that is,

1
n

n∑

i=1

δiKh2

(
ZT

i α – t0
)[

ĝn(t0) – g(t0)
]

=
1
n

n∑

i=1

δiKh2

(
ZT

i α – t0
)(

εi – eT
i β

)
– (β̂n – β)T 1

n

n∑

i=1

δiKh2

(
ZT

i α – t0
)
Vi

– (α̂n – α)T 1
n

n∑

i=1

δiKh2

(
ZT

i α – t0
)
Zig ′(t0) + op

(
1√
n

)

+ Op
(
h2

2
)
. (4.2)

Note that 1
n
∑n

i=1 Kh2 (ZT
i α – t0) = f (t0) + op(1). Dividing all terms in (4.2) by 1

n ×
∑n

i=1 Kh2 (ZT
i α – t0), we obtain

[
ĝn(t0) – g(t0)

] 1
n
∑n

i=1 δiKh2 (ZT
i α – t0)

1
n
∑n

i=1 Kh2 (ZT
i α – t0)

=
1
n

∑n
i=1 δiKh2 (ZT

i α – t0)(εi – eT
i β)

1
n
∑n

i=1 Kh2 (ZT
i α – t0)

– (β̂n – β)T
1
n
∑n

i=1 δiKh2 (ZT
i α – t0)Vi

1
n
∑n

i=1 Kh2 (ZT
i α – t0)

– (α̂n – α)T
1
n
∑n

i=1 δiKh2 (ZT
i α – t0)Zig ′(t0)

1
n
∑n

i=1 Kh2 (ZT
i α – t0)

+ op

(
1√
n

)

+ Op
(
h2

2
)
.
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Noting that
1
n

∑n
i=1 δiKh2 (ZT

i α–t0)
1
n

∑n
i=1 Kh2 (ZT

i α–t0)
= E(δ|ZT

i α = t0) + op(1), we get

1
n
∑n

i=1 δiKh2 (ZT
i α – t0)Vi

1
n
∑n

i=1 Kh2 (ZT
i α – t0)

=
1
n
∑n

i=1 δiKh2 (ZT
i α – t0)Vi

1
n
∑n

i=1 δiKh2 (ZT
i α – t0)

×
1
n
∑n

i=1 δiKh2 (ZT
i α – t0)

1
n
∑n

i=1 Kh2 (ZT
i α – t0)

= E
(
δV |ZTα = t0

)(
1 + op(1)

)

= E
(
δX|ZTα = t0

)(
1 + op(1)

)
.

Similarly, we also have

1
n
∑n

i=1 δiKh2 (ZT
i α – t0)Zig ′(t0)

1
n
∑n

i=1 Kh2 (ZT
i α – t0)

= E
(
δZg ′(t0)|ZTα = t0

)(
1 + op(1)

)
.

Thus we get equation (4.1). �

Lemma 4.2 Under conditions (C1)–(C7), we have

α̂n – α =
1
n

Γ –1
Z̃

n∑

i=1

δig ′(ZT
i α

)
Z̃i

(
εi – eT

i β
)

– Γ –1
Z̃ ΓZ̃X̃(β̂n – β) + op

(
1√
n

)

.

Proof of Lemma 4.2 This proof is given in Qi and Wang [8], we omit the details here. �

Lemma 4.3 Under conditions (C1)–(C7), we have

β̂n – β =
1
n

Γ –1
X̃

n∑

i=1

{
δi

[
Ṽi

(
εi – eT

i β
)

+ Σuuβ
]}

+ op

(
1√
n

)

.

Proof of Lemma 4.3 The proof of Lemma 4.3 is similar to the proof of Theorem 1 by Liang
et al. [7], we omit the details here. �

Proof of Theorem 2.1 Here we only consider the asymptotic normality of θ1. The asymp-
totic result for θ2 is obtained similarly. �

For θ1, we have

θ̂1 = n–1
n∑

i=1

δiεi + n–1
n∑

i=1

[1 – δi]eT
i β

+ n–1
n∑

i=1

[
XT

i β + g
(
ZT

i α
)]

+ n–1
n∑

i=1

[1 – δi]V T
i (β̂n – β)

+ n–1
n∑

i=1

[1 – δi]
[
ĝn

(
ZT

i α̂n
)

– g
(
ZT

i α
)]

=:
5∑

i=1

Ii + op

(
1√
n

)

, (4.3)
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where

I1 = n–1
n∑

i=1

δiεi,

I2 = n–1
n∑

i=1

[1 – δi]eT
i β ,

I3 = n–1
n∑

i=1

[
XT

i β + g
(
ZT

i α
)]

,

I4 = n–1
n∑

i=1

[1 – δi]V T
i (β̂n – β),

I5 = n–1
n∑

i=1

[1 – δi]
[
ĝn

(
ZT

i α̂n
)

– g
(
ZT

i α
)]

.

From Taylor expansion and the continuity of g ′(·), we obtain that

ĝn
(
ZT

i α̂n
)

– g
(
ZT

i α
)

=
[
ĝn

(
ZT

i α
)

– g
(
ZT

i α
)]

+ g ′(ZT
i α

)
ZT

i (α̂n – α) + op

(
1√
n

)

. (4.4)

By Lemma 4.1 and (4.4), it is easy to get

I5 =
1
n

n∑

i=1

[1 – δi] ·
∑n

j=1 δjKh2 (ZT
j α – ZT

i α)(εj – eT
j β)

nf (ZT
i α)E(δ|ZTα = ZT

i α)

– (β̂n – β)T 1
n

n∑

i=1

[1 – δi]
E(δV |ZTα = ZT

i α)
E(δ|ZTα = ZT

i α)

+ (α̂n – α)T 1
n

n∑

i=1

[1 – δi]
[

g ′(ZT
i α

)
Zi –

E(δZg ′(ZTα)|ZTα = ZT
i α)

E(δ|ZTα = ZT
i α)

]

+ op

(
1√
n

)

+ Op
(
h2

2
)

=: I51 – I52 + I53 + op

(
1√
n

)

+ Op
(
h2

2
)
, (4.5)

where

I51 =
1
n

n∑

i=1

[1 – δi] ·
∑n

j=1 δjKh2 (ZT
j α – ZT

i α)(εj – eT
j β)

nf (ZT
i α)E(δ|ZTα = ZT

i α)
,

I52 = (β̂n – β)T 1
n

n∑

i=1

[1 – δi]
E(δV |ZTα = ZT

i α)
E(δ|ZTα = ZT

i α)
,

I53 = (α̂n – α)T 1
n

n∑

i=1

[1 – δi]
[

g ′(ZT
i α

)
Zi –

E(δZg ′(ZTα)|ZTα = ZT
i α)

E(δ|ZTα = ZT
i α)

]

.
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We have

I51 =
1
n

n∑

j=1

δj
(
εj – eT

j β
) · 1

n

n∑

i=1

[1 – δi]
Kh2 (ZT

j α – ZT
i α)

f (ZT
i α)E(δ|ZTα = ZT

i α)

=
1
n

n∑

i=1

δi
(
εi – eT

i β
) ·

[
1

E(δ|ZTα = ZT
i α)

– 1
]

. (4.6)

Combining Lemma 4.2 and calculating directly, we can get

I53 =
1
n

n∑

i=1

[1 – δi]g ′(ZT
i α

)
Z̃i

T · Γ –1
Z̃

1
n

n∑

i=1

δig ′(ZT
i α

)
Z̃i

(
εi – eT

i β
)

–
1
n

n∑

i=1

[1 – δi]g ′(ZT
i α

)
Z̃i

T · Γ –1
Z̃ ΓZ̃X̃(β̂n – β) + op

(
1√
n

)

=: I531 – I532 + op

(
1√
n

)

, (4.7)

where

I531 =
1
n

n∑

i=1

[1 – δi]g ′(ZT
i α

)
Z̃i

T · Γ –1
Z̃

1
n

n∑

i=1

δig ′(ZT
i α

)
Z̃i

(
εi – eT

i β
)
,

I532 =
1
n

n∑

i=1

[1 – δi]g ′(ZT
i α

)
Z̃i

T · Γ –1
Z̃ ΓZ̃X̃(β̂n – β) + op

(
1√
n

)

.

By a straightforward calculation, it follows that

I4 – I52 – I532

=

[
1
n

n∑

i=1

[1 – δi]Ṽ T
i –

1
n

n∑

i=1

[1 – δi]g ′(ZT
i α

)
Z̃i

T
Γ –1

Z̃ ΓZ̃X̃

]

· (β̂n – β) + op

(
1√
n

)

,

=
(
E[1 – δ]Ṽ T – E

[
(1 – δ)g ′(ZTα

)
Z̃T]Γ –1

Z̃ ΓZ̃X̃
)

· (β̂n – β) + op

(
1√
n

)

, (4.8)

Furthermore, it is easy to get

I1 + I2 + I51

=
1
n

n∑

i=1

δiεi

E(δ|ZTα = ZT
i α)

+
1
n

n∑

i=1

[

1 –
δi

E(δ|ZTα = ZT
i α)

]

eT
i β . (4.9)

Combining (4.3), (4.5), (4.6), (4.7), (4.8), (4.9), and Lemma 4.3, one can get

θ̂1 – θ = n–1
n∑

i=1

δi

E(δ|ZTα = ZT
i α)

εi + n–1
n∑

i=1

[

1 –
δi

E(δ|ZTα = ZT
i α)

]

eT
i β
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+ n–1
n∑

i=1

[
XT

i β + g
(
ZT

i α
)

– θ
]

+ E
[
g ′(ZTα

)
Z̃T] · Γ –1

Z̃
1
n

n∑

i=1

δig ′(ZT
i α

)
Z̃i

(
εi – eT

i β
)

+ E
[
Ṽ T – g ′(ZTα

)
Z̃TΓ –1

Z̃ ΓZ̃X̃
] · 1

n
Γ –1

X̃

n∑

i=1

{
δi

[
Ṽi

(
εi – eT

i β
)

+ Σuuβ
]}

+ op

(
1√
n

)

+ Op
(
h2

2
)
. (4.10)

This, together with the central limit theorem, proves Theorem 2.1 for θ̂1.
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