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Abstract
For a variational inequality problem, the inertial projection and contraction method
have been studied. It has a weak convergence result. In this paper, we propose a
strong convergence iterative method for finding a solution of a variational inequality
problem with a monotone mapping by projection and contraction method and
inertial hybrid algorithm. Our result can be used to solve other related problems in
Hilbert spaces.
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1 Introduction
The variational inequality (VI) problem plays an important role in nonlinear analysis and
optimization. It is a generalization of the nonlinear complementarity problem. Recently,
it has had considerable applications in many fields. The VI problem was introduced by
Fichera [1, 2] for solving Signorini problem. Later, it was studied by Stampacchia [3] for
solving mechanic problems.

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖. Let C be a
nonempty closed convex subset of H . The variational inequality problem is to find a point
x∗ ∈ C such that

〈
Fx∗, x – x∗〉 ≥ 0, ∀x ∈ C, (1.1)

where F is a mapping of H into H . The solution set of VI (1.1) is denoted by VI(C, F).
Using properties of the metric projection, we can easily see that x∗ ∈ VI(C, F) if and only

if

x∗ = PC(I – λF)x∗.

Many scholars are devoted to the research of variational inequality problems. Some
authors have proposed several iterative methods for solving VI (1.1). A simple iterative
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method [4] is

xn+1 = PC(I – λF)xn, (1.2)

or more generally,

xn+1 = PC(I – λnF)xn. (1.3)

The convergence of (1.2) and (1.3) depends on the properties of F . If F is strongly mono-
tone and Lipschitz continuous, (1.2) and (1.3) have strong convergence results under cer-
tain conditions of parameters. If F is inverse strongly monotone, (1.2) and (1.3) have weak
convergence results under some suitable conditions.

In 1976, Korpelevich [5] proposed the following so-called extragradient method for solv-
ing VI (1.1) when F is monotone and Lipschitz continuous in the finite-dimensional Eu-
clidean space R

n:

⎧
⎪⎪⎨

⎪⎪⎩

x1 = x ∈ C is chosen arbitrarily,

yn = PC(xn – λFxn),

xn+1 = PC(xn – λFyn),

(1.4)

for each n ∈ N. Under some suitable conditions, the sequences {xn} and {yn} converge to
the same point z ∈ VI(C, F). The recent variants of Korpelevich’s method can be found in
[6].

In 1997, He [7] proposed another method to solve VI with monotone mappings. His
method is called projection and contraction method:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 = x ∈ C is chosen arbitrarily,

yn = PC(xn – λFxn),

d(xn, yn) = (xn – yn) – λ(Fxn – Fyn),

xn+1 = xn – γβnd(xn, yn),

(1.5)

for each n ∈ N, where γ ∈ (0, 2),

βn =

⎧
⎨

⎩

ϕ(xn ,yn)
‖d(xn ,yn)‖ , if d(xn, yn) 	= 0,

0, if d(xn, yn) = 0,

and

ϕ(xn, yn) =
〈
xn – yn, d(xn, yn)

〉
.

This method has a convergence result under certain conditions.
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In 2017, Dong et al. [8] proposed the following so-called inertial projection and contrac-
tion method:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0, x1 ∈ H are chosen arbitrarily,

wn = xn + αn(xn – xn–1),

yn = PC(wn – λFwn),

d(wn, yn) = (wn – yn) – λ(Fwn – Fyn),

xn+1 = wn – γβnd(xn, yn),

(1.6)

for each n ∈ N, where γ ∈ (0, 2),

βn =

⎧
⎨

⎩

ϕ(wn ,yn)
‖d(wn ,yn)‖ , if d(wn, yn) 	= 0,

0, if d(wn, yn) = 0,

and

ϕ(wn, yn) =
〈
wn – yn, d(wn, yn)

〉
.

They proved that the sequence {xn} generated by (1.6) converges weakly to a point in
VI(C, F) under certain conditions.

Sometimes, a weak convergence result is not very good. We want to get a strong con-
vergence result. Very recently, Dong et al. [9] used hybrid method to modify an inertial
forward-backward algorithm for solving zero point problems in Hilbert spaces:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0, x1 ∈ H are chosen arbitrarily,

yn = xn + αn(xn – xn–1),

zn = (I + rnB)–1(yn – rnAyn),

Cn = {u ∈ H : ‖zn – u‖2 ≤ ‖xn – u‖2 – 2αn〈xn – u, xn–1 – xn〉
+ α2

n‖xn–1 – xn‖2},
Qn = {u ∈ H : 〈u – xn, x0 – xn〉 ≤ 0},
xn+1 = PCn∩Qn x0.

(1.7)

They proved that {xn} converges strongly to P(A+B)–1(0)x0 under some suitable conditions.
Based on the work above, we propose an inertial hybrid method for finding a solution

of a variational inequality problem with a monotone mapping. As applications, we use
algorithm we proposed to solve other related problems in Hilbert spaces.

2 Preliminaries
In this section, we introduce some mathematical symbols, definitions, and lemmas which
can be used in the proofs of our main results.

Throughout this paper, let N and R be the sets of positive integers and real numbers,
respectively. Let H be a real Hilbert space with the inner product 〈·, ·〉 and norm ‖ · ‖. Let
{xn} be a sequence in H , we write “xn ⇀ x” to indicate that the sequence {xn} converges
weakly to x and “xn → x” to indicate that the sequence {xn} converges strongly to x. z is
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called a weak cluster point of {xn} if there exists a subsequence {xni} of {xn} converging
weakly to z. We write ωw(xn) to indicate the set of all weak cluster points of {xn}. A fixed
point of a mapping T : H → H is a point x ∈ H such that Tx = x, and we denote the set of
all fixed points of mapping T by Fix(T).

We introduce definitions of some operators we will use in the following sections.

Definition 2.1 ([10–12]) Let T : H → H be the nonlinear operators.
(i) T is nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ H .

(ii) T is firmly nonexpansive if

〈Tx – Ty, x – y〉 ≥ ‖Tx – Ty‖2, ∀x, y ∈ H .

We can easily show that a firmly nonexpansive mapping is always nonexpansive by
using the Cauchy–Schwarz inequality.

(iii) T is α-averaged, with 0 < α < 1, if

T = (1 – α)I + αS,

where S : H → H is nonexpansive. The term “averaged mapping” was introduced in
the early paper by Baillon, Bruck, and Reich [13]. It is obvious that Fix(S) = Fix(T).
We can easily show that a firmly nonexpansive mapping is 1

2 -averaged.
(iv) T is L-Lipschitz continuous, with L ≥ 0, if

‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈ H .

We call T a contractive mapping when 0 ≤ L < 1.

Definition 2.2 ([10, 11]) Let F : H → H be a nonlinear mapping.
(i) F is monotone if

〈Fx – Fy, x – y〉 ≥ 0, ∀x, y ∈ H .

(ii) F is η-strongly monotone, with η > 0, if

〈Fx – Fy, x – y〉 ≥ η‖x – y‖2, ∀x, y ∈ H .

(iii) F is v-inverse strongly monotone (v-ism), with v > 0, if

〈Fx – Fy, x – y〉 ≥ v‖Fx – Fy‖2, ∀x, y ∈ H .

We can easily show that a v-ism mapping is 1
v -Lipschitz continuous by using the

Cauchy–Schwarz inequality.

We introduce some definitions and propositions about projections.
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Proposition 2.3 ([4]) Let C be a nonempty closed convex subset of H . Then, for each x ∈ H ,
there exists a unique point z ∈ C such that

‖x – z‖ ≤ ‖x – y‖, ∀y ∈ C.

Definition 2.4 ([4]) Let C be a nonempty closed convex subset of H . Define

PCx = arg min
y∈C

‖y – x‖, ∀x ∈ H .

PC is called the metric projection on C. We can show that PC is firmly nonexpansive.

Lemma 2.5 ([14, 15]) Let C be a nonempty closed convex subset of a real Hilbert space H .
Given x ∈ H and z ∈ C. Then z = PCx if and only if there holds the inequality

〈x – z, z – y〉 ≥ 0, ∀y ∈ C.

Lemma 2.6 ([14–16]) Let C be a nonempty closed convex subset of a real Hilbert space H .
Given x ∈ H and z ∈ C. Then z = PCx if and only if there holds the inequality

‖x – y‖2 ≥ ‖x – z‖2 + ‖y – z‖2, ∀y ∈ C.

More properties of metric projections can be found in [12].
Next, we introduce some definitions and propositions about set-valued mappings.

Definition 2.7 ([17]) Let H be a real Hilbert space. Let A be a set-valued mapping of H
into 2H . We denote the effective domain of A by D(A), D(A) is defined by

D(A) = {x ∈ H : Ax 	= ∅}.

The graph of A is defined by

G(A) =
{

(x, u) ∈ H × H : u ∈ Ax
}

.

A set-valued mapping A is called monotone if

〈x – y, u – v〉 ≥ 0, ∀(x, u), (y, v) ∈ G(A).

A monotone mapping A is called maximal if its graph is not properly contained in the
graph of any other monotone mappings on D(A).

In fact, we cannot use the definition of the maximal monotone mapping conveniently,
a property of the maximal monotone mapping is usually used: A monotone mapping B is
maximal if and only if for (x, u) ∈ H × H , 〈x – y, u – v〉 ≥ 0 for each (y, v) ∈ G(A) implies
(x, u) ∈ G(A). This property is just a reformulation of the definition of maximal monotone
mappings.
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Definition 2.8 ([17, 18]) Let A : H → 2H be a mapping and r > 0. The resolvent of A is

JA
r := (I + rA)–1.

Lemma 2.9 ([17, 18]) Let A : H → 2H be a maximal monotone mapping and r > 0. Then
JA
r : H → D(A) is firmly nonexpansive.

In particular, let C be a nonempty closed convex subset of a real Hilbert space H , recall
the normal cone [19] to C at x ∈ C:

NCx =
{

z ∈ H : 〈z, y – x〉 ≤ 0,∀y ∈ C
}

.

We can easily show that NC is a maximal monotone mapping and its resolvent is PC . So we
can consider the resolvent of a maximal monotone mapping as a generalization of metric
projection operator.

Lemma 2.10 ([19]) Let C be a nonempty closed convex subset of a real Hilbert space H .
Let F be a monotone and Lipschitz continuous mapping of C into H . Define

Tv =

⎧
⎨

⎩
Fv + NCv, ∀v ∈ C,

∅, ∀v /∈ C.

Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ VI(C, F).

3 Main result
In this section, we propose a strong convergence algorithm for finding a solution of a
variational inequality problem. The algorithm we propose is based on the work in Sect. 1.

Let H be a real Hilbert space. Let C be a nonempty closed convex subset of H . Let F be
a mapping of H into H .

Algorithm 1 Choose x0, x1 ∈ H arbitrarily. Calculate the (n + 1)th iterate xn+1 via the
formula

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wn = xn + αn(xn – xn–1),

yn = PC(wn – λnFwn),

d(wn, yn) = (wn – yn) – λn(Fwn – Fyn),

zn = wn – γβnd(wn, yn),

Cn = {u ∈ H : ‖zn – u‖2 ≤ ‖xn – u‖2 – 2αn〈xn – u, xn–1 – xn〉
+ α2

n‖xn–1 – xn‖2},
Qn = {u ∈ H : 〈u – xn, x1 – xn〉 ≤ 0},
xn+1 = PCn∩Qn x1,

(3.1)

for each n ≥ 1, where γ ∈ (0, 2), λn > 0, and

βn =

⎧
⎨

⎩

ϕ(wn ,yn)
‖d(wn ,yn)‖ , if d(wn, yn) 	= 0,

0, if d(wn, yn) = 0,



Tian and Jiang Journal of Inequalities and Applications         (2020) 2020:12 Page 7 of 19

where

ϕ(wn, yn) =
〈
wn – yn, d(wn, yn)

〉
.

If yn = wn or d(wn, yn) = 0, then calculate xn+1 and the iterative process stops; otherwise,
we set n := n + 1 and go on to (3.1) to calculate the next iterate xn+2.

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H . Let
F : H → H be a monotone and L-Lipschitz continuous mapping with L > 0. Assume that
VI(C, F) 	= ∅ and 0 < a ≤ λn ≤ b < 1

L . Let {xn} be a sequence generated by Algorithm 1. If
yn = wn or d(wn, yn) = 0, then xn+1 ∈ VI(C, F).

Proof From the expression of d(wn, yn) and the condition imposed on F , we have

∥∥d(wn, yn)
∥∥

=
∥∥(wn – yn) – λn(Fwn – Fyn)

∥∥

≥ ‖wn – yn‖ – λn‖Fwn – Fyn‖
≥ ‖wn – yn‖ – λnL‖wn – yn‖
≥ (1 – bL)‖wn – yn‖.

On the other hand,

∥∥d(wn, yn)
∥∥

=
∥∥(wn – yn) – λn(Fwn – Fyn)

∥∥

≤ ‖wn – yn‖ + λn‖Fwn – Fyn‖
≤ ‖wn – yn‖ + λnL‖wn – yn‖
≤ (1 + bL)‖wn – yn‖.

So we have

(1 – bL)‖wn – yn‖ ≤ ∥∥d(wn, yn)
∥∥ ≤ (1 + bL)‖wn – yn‖. (3.2)

Hence yn = wn and d(wn, yn) = 0 are equivalent. Using Lemma 2.5, we can get the desired
result. �

Theorem 3.2 Let C be a nonempty closed convex subset of a real Hilbert space H . Let
F : H → H be a monotone and L-Lipschitz continuous mapping with L > 0. Assume that
VI(C, F) 	= ∅ and 0 < a ≤ λn ≤ b < 1

L . Let {xn} be a sequence generated by Algorithm 1. If
yn 	= wn for each n ∈ N , then {xn} converges strongly to x∗ = PVI(C,F)x1.

Proof We divide the proof into four steps.
Step 1. We show that VI(C, F) ⊂ Cn ∩ Qn for each n ∈N.
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It is obvious that Cn and Qn are half-spaces for each n ∈ N.

ϕ(wn, yn)

=
〈
wn – yn, d(wn, yn)

〉

=
〈
wn – yn, (wn – yn) – λn(Fwn – Fyn)

〉

= ‖wn – yn‖2 – λn〈wn – yn, Fwn – Fyn〉
≥ ‖wn – yn‖2 – λn‖wn – yn‖‖Fwn – Fyn‖
≥ ‖wn – yn‖2 – bL‖wn – yn‖2

= (1 – bL)‖wn – yn‖2. (3.3)

On the other hand,

∥∥d(wn, yn)
∥∥2

=
∥∥(wn – yn) – λn(Fwn – Fyn)

∥∥2

= ‖wn – yn‖2 + λ2
n‖Fwn – Fyn‖2 – 2λn〈wn – yn, Fwn – Fyn〉

≤ ‖wn – yn‖2 + λ2
n‖Fwn – Fyn‖2

≤ ‖wn – yn‖2 + b2L2‖wn – yn‖2

=
(
1 + b2L2)‖wn – yn‖2. (3.4)

Combining (3.3) and (3.4), we have

βn =
ϕ(wn, yn)

‖d(wn, yn)‖2 ≥ 1 – bL
1 + b2L2 . (3.5)

Let u ∈ VI(C, F), we have

‖zn – u‖2

=
∥∥wn – γβnd(wn, yn) – u

∥∥2

= ‖wn – u‖2 – 2γβn
〈
wn – u, d(wn, yn)

〉
+ γ 2β2

n
∥∥d(wn, yn)

∥∥2

= ‖wn – u‖2 – 2γβn
〈
wn – yn, d(wn, yn)

〉
– 2γβn

〈
yn – u, d(wn, yn)

〉

+ γ 2β2
n
∥∥d(wn, yn)

∥∥2. (3.6)

By the definition of yn and Lemma 2.5,

〈yn – u, wn – yn – λnFwn〉 ≥ 0.

So we have

〈
yn – u, d(wn, yn)

〉

=
〈
yn – u, wn – yn – λn(Fwn – Fyn)

〉
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= 〈yn – u, wn – yn – λnFwn〉 + λn〈yn – u, Fyn – Fu〉 + λn〈yn – u, Fu〉
≥ 0. (3.7)

Combining (3.6) and (3.7), we get

‖zn – u‖2

≤ ‖wn – u‖2 – 2γβn
〈
wn – yn, d(wn, yn)

〉
+ γ 2β2

n
∥∥d(wn, yn)

∥∥2

= ‖wn – u‖2 – 2γβnϕ(wn, yn) + γ 2β2
n
∥∥d(wn, yn)

∥∥2

= ‖wn – u‖2 – 2γβ2
n
∥∥d(wn, yn)

∥∥2 + γ 2β2
n
∥∥d(wn, yn)

∥∥2

= ‖wn – u‖2 – γ (2 – γ )β2
n
∥∥d(wn, yn)

∥∥2

= ‖wn – u‖2 –
2 – γ

γ
‖zn – wn‖2

≤ ‖wn – u‖2. (3.8)

By the expression of wn, we have

‖wn – u‖2

=
∥∥(xn – u) – αn(xn–1 – xn)

∥∥2

= ‖xn – u‖2 – 2αn〈xn – u, xn–1 – xn〉 + α2
n‖xn–1 – xn‖2. (3.9)

It follows from (3.8) and (3.9) that

‖zn – u‖2

≤ ‖wn – u‖2

= ‖xn – u‖2 – 2αn〈xn – u, xn–1 – xn〉 + α2
n‖xn–1 – xn‖2. (3.10)

Therefore, u ∈ Cn for each n ∈N. Hence, VI(C, F) ⊂ Cn for each n ∈N.
For n = 1, we have Q1 = H and hence VI(C, F) ⊂ C1 ∩ Q1.
Suppose that xk is given and VI(C, F) ⊂ Ck ∩ Qk for some k ∈N. It follows from xk+1 and

Lemma 2.5 that

〈y – xk+1, x1 – xk+1〉 ≤ 0, ∀y ∈ VI(C, F).

It means that VI(C, F) ⊂ Qk+1. Hence, VI(C, F) ⊂ Ck+1 ∩ Qk+1.
By induction, we obtain VI(C, F) ⊂ Cn ∩ Qn for each n ∈N.
Step 2. We show that {xn} is bounded.
From

〈y – xn, x1 – xn〉 ≤ 0, ∀y ∈ Qn

and Lemma 2.5, we have

xn = PQn x1
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and hence

‖xn – x1‖ ≤ ‖x1 – y‖, ∀y ∈ Qn.

Since VI(C, F) ⊂ Qn, we have

‖xn – x1‖ ≤ ‖x1 – y‖, ∀y ∈ VI(C, F). (3.11)

In particular, since xn+1 ∈ Qn, we obtain

‖xn – x1‖ ≤ ‖xn+1 – x1‖. (3.12)

Therefore, there exists

c = lim
n→∞‖xn – x1‖. (3.13)

It means that {xn} is bounded.
Step 3. We show that ωw(xn) ⊂ VI(C, F).
Since xn = PQn x1, xn+1 ∈ Qn and Lemma 2.6, we obtain

‖xn+1 – xn‖2 ≤ ‖xn+1 – x1‖2 – ‖xn – x1‖2,

and hence

xn+1 – xn → 0, n → ∞. (3.14)

From

‖wn – xn‖ =
∥∥xn – αn(xn – xn–1) – xn

∥∥

= αn‖xn – xn–1‖

and that {xn} is bounded, we have

wn – xn → 0, n → ∞. (3.15)

Since xn+1 ∈ Cn, we have

‖zn – xn+1‖2 ≤ ‖xn – xn+1‖2 – 2αn〈xn – xn+1, xn–1 – xn〉 + α2
n‖xn–1 – xn‖2

≤ ‖xn – xn+1‖2 + 2αn‖xn – xn+1‖‖xn–1 – xn‖ + α2
n‖xn–1 – xn‖2

and hence

zn – xn+1 → 0, n → ∞. (3.16)

Combining (3.14), (3.15), and (3.16), we obtain

zn – wn → 0, n → ∞. (3.17)
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From (3.1), (3.2), (3.5), and (3.17), we have

wn – yn → 0, n → ∞. (3.18)

Since {xn} is bounded, we can take a suitable subsequence {xni} such that xni ⇀ z. So we
have wni ⇀ z and yni ⇀ z. Let

Tv =

⎧
⎨

⎩
Fv + NCv, v ∈ C,

∅, v /∈ C.

Then from Lemma 2.10, we know that T is maximal monotone and 0 ∈ Tv if and only if
v ∈ VI(C, F). For each (v, w) ∈ G(T), we have

w ∈ Tv = Fv + NCv

and hence

w – Fv ∈ NCv.

By the definition of NC , we obtain

〈v – p, w – Fv〉 ≥ 0, ∀p ∈ C. (3.19)

On the other hand, from v ∈ C and the expression of yn, we have

〈wn – λnFwn – yn, yn – v〉 ≥ 0

and hence

〈
v – yn,

yn – wn

λn
+ Fwn

〉
≥ 0. (3.20)

Therefore, from (3.19) and (3.20), we obtain

〈v – yni , w〉
≥ 〈v – yni , Fv〉

≥ 〈v – yni , Fv〉 –
〈
v – yni ,

yni – wni

λni

+ Fwni

〉

= 〈v – yni , Fv – Fwni〉 –
〈
v – yni ,

yni – wni

λni

〉

= 〈v – yni , Fv – Fyni〉 + 〈v – yni , Fyni – Fwni〉 –
〈
v – yni ,

yni – wni

λni

〉

≥ +〈v – yni , Fyni – Fwni〉 –
〈
v – yni ,

yni – wni

λni

〉
. (3.21)
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As i → ∞, we have

〈v – z, w〉 ≥ 0. (3.22)

Since T is maximal monotone, we have 0 ∈ Tz and hence z ∈ VI(C, F). So we obtain
ωw(xn) ⊂ VI(C, F).

Step 4. We show that xn → x∗ as n → ∞.
Since the norm is convex and lower continuous and z ∈ VI(C, F), it follows from (3.11)

that

∥∥x1 – x∗∥∥ ≤ ‖x1 – z‖ ≤ lim inf
i→∞ ‖xni – x1‖ ≤ lim sup

i→∞
‖xni – x1‖ ≤ ∥∥x1 – x∗∥∥. (3.23)

So we have

lim
i→∞‖xni – x1‖ = ‖x1 – z‖ =

∥∥x1 – x∗∥∥. (3.24)

From x∗ = PVI(C,F)x1, we obtain z = x∗, i.e., ωw(xn) = {x∗}. So we have

lim
n→∞‖xn – x1‖ =

∥∥x1 – x∗∥∥ (3.25)

and

xn ⇀ x∗, n → ∞. (3.26)

Hence xn –x1 ⇀ x∗ –x1. Since H satisfies the K-K property, we can obtain xn –x1 → x∗ –x1,
i.e., xn → x∗. �

Remark 3.3 If we set αn = 0 for each n ∈N, we can get the following algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn = PC(xn – λnFxn),

d(xn, yn) = (xn – yn) – λn(Fxn – Fyn),

zn = xn – γβnd(xn, yn),

Cn = {u ∈ H : ‖zn – u‖2 ≤ ‖xn – u‖2},
Qn = {u ∈ H : 〈u – xn, x1 – xn〉 ≤ 0},
xn+1 = PCn∩Qn x1.

4 Applications
In this section, we introduce some applications which are useful in nonlinear analysis and
optimization problems in Hilbert spaces.

4.1 Constrained convex minimization problem
Let C be a nonempty closed convex subset of a real Hilbert space H . The constrained
convex minimization problem [14] is to find a point x∗ ∈ C such that

f
(
x∗) = min

x∈C
f (x), (4.1)

where f is a real-valued convex function. We denote the solution set of problem (4.1) by Ω .
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We need the following lemma.

Lemma 4.1 ([11, 20]) Let H be real Hilbert space, and let C be a nonempty closed convex
subset of H . Let f be a convex function of H into R. If f is differentiable, then z ∈ Ω if and
only if z ∈ VI(C,∇f ).

Let H be a real Hilbert space. Let C be a nonempty closed convex subset of H . Let f be
a real-valued convex function of H . Assume that f is differentiable.

Algorithm 2 Choose x0, x1 ∈ H arbitrarily. Calculate the (n + 1)th iterate xn+1 via the
formula

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wn = xn + αn(xn – xn–1),

yn = PC(wn – λn∇f (wn)),

d(wn, yn) = (wn – yn) – λn(∇f (wn) – ∇f (yn)),

zn = wn – γβnd(wn, yn),

Cn = {u ∈ H : ‖zn – u‖2 ≤ ‖xn – u‖2 – 2αn〈xn – u, xn–1 – xn〉
+ α2

n‖xn–1 – xn‖2},
Qn = {u ∈ H : 〈u – xn, x1 – xn〉 ≤ 0},
xn+1 = PCn∩Qn x1,

(4.2)

for each n ≥ 1, where γ ∈ (0, 2), λn > 0 and

βn =

⎧
⎨

⎩

ϕ(wn ,yn)
‖d(wn ,yn)‖ , if d(wn, yn) 	= 0,

0, if d(wn, yn) = 0,

where

ϕ(wn, yn) =
〈
wn – yn, d(wn, yn)

〉
.

If yn = wn or d(wn, yn) = 0, then calculate xn+1 and the iterative process stops; otherwise,
we set n := n + 1 and go on to (4.2) to calculate the next iterate xn+2.

Theorem 4.2 Let C be a nonempty closed convex subset of a real Hilbert space H . Let f
be real-valued convex function of H . Assume that f is differentiable and ∇f is L-Lipschitz
continuous with L > 0. Assume that Ω 	= ∅ and 0 < a ≤ λn ≤ b < 1

L . Let {xn} be a sequence
generated by Algorithm 2. If yn = wn or d(wn, yn) = 0, then xn+1 ∈ Ω .

Proof Since f is convex, we conclude that ∇f is monotone. Putting F = ∇f in Theorem 3.1,
we get the desired result by Lemma 4.1. �

Theorem 4.3 Let C be a nonempty closed convex subset of a real Hilbert space H . Let
F : H → H be a monotone and L-Lipschitz continuous mapping with L > 0. Assume that
VI(C, F) 	= ∅ and 0 < a ≤ λn ≤ b < 1

L . Let {xn} be a sequence generated by Algorithm 2. If
yn 	= wn for each n ∈ N , then {xn} converges strongly to x∗ = PΩx1.
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Proof Since f is convex, we conclude that ∇f is monotone. Putting F = ∇f in Theorem 3.2,
we get the desired result by Lemma 4.1. �

4.2 Split feasibility problem
Next, we consider the split feasibility problem.

The split feasibility problem (SFP) was proposed by Censor and Elfving [21] in 1994.
The SFP is to find a point x∗ such that

x∗ ∈ C and Ax∗ ∈ Q, (4.3)

where C and Q are nonempty closed convex subsets of real Hilbert spaces H1 and H2,
respectively, A is a bounded linear operator of H1 and H2 with A 	= 0.

In 2004, Byrne [22] proposed the following algorithm for solving (4.3):

xn+1 = PC
(
xn – γnA∗(I – PQ)Axn

)
. (4.4)

In this section, we introduce a new algorithm to solve (4.3). We need the following lem-
mas.

Lemma 4.4 ([20]) Let H1 and H2 be real Hilbert spaces. Let C and Q be nonempty closed
convex subsets of H1 and H2, respectively. Let A be a bounded linear operator of H1 into H2

with A 	= 0. Assume that C ∩ A–1Q is nonempty. Let λ ≥ 0. Then z ∈ C ∩ A–1Q if and only
if z ∈ VI(C, A∗(I – PQ)A), where A∗ is the adjoint operator of A.

Lemma 4.5 ([20]) Let H1 and H2 be real Hilbert spaces. Let A be a bounded linear operator
of H1 into H2 such that A 	= 0. Let Q be a nonempty closed convex subset of H2. Then A∗(I –
PQ)A is monotone and ‖A‖2-Lipschitz continuous.

We propose the following algorithm for solving SFP (4.3).

Algorithm 3 Choose x0, x1 ∈ H1 arbitrarily. Calculate the (n + 1)th iterate xn+1 via the
formula

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wn = xn + αn(xn – xn–1),

yn = PC(wn – λnA∗(I – PQ)Awn),

d(wn, yn) = (wn – yn) – λn(A∗(I – PQ)Awn – A∗(I – PQ)Ayn),

zn = wn – γβnd(wn, yn),

Cn = {u ∈ H : ‖zn – u‖2 ≤ ‖xn – u‖2 – 2αn〈xn – u, xn–1 – xn〉
+ α2

n‖xn–1 – xn‖2},
Qn = {u ∈ H : 〈u – xn, x1 – xn〉 ≤ 0},
xn+1 = PCn∩Qn x1,

(4.5)

for each n ≥ 1, where γ ∈ (0, 2), λn > 0, and

βn =

⎧
⎨

⎩

ϕ(wn ,yn)
‖d(wn ,yn)‖ , if d(wn, yn) 	= 0,

0, if d(wn, yn) = 0,
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where

ϕ(wn, yn) =
〈
wn – yn, d(wn, yn)

〉
.

If yn = wn or d(wn, yn) = 0, then calculate xn+1 and the iterative process stops; otherwise,
we set n := n + 1 and go on to (4.5) to calculate the next iterate xn+2.

Theorem 4.6 Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1 and
H2, respectively. Let A be a bounded linear operator with A 	= 0. Set Γ = C ∩ A–1Q. Assume
that Γ 	= ∅ and 0 < a ≤ λn ≤ b < 1

L . Let {xn} be a sequence generated by Algorithm 3. If
yn = wn or d(wn, yn) = 0, then xn+1 ∈ Γ .

Proof Putting F = A∗(I – PQ)A in Theorem 3.1, we get the desired result by Lemmas 4.4
and 4.5. �

Theorem 4.7 Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1 and
H2, respectively. Let A be a bounded linear operator with A 	= 0. Set Γ = C ∩ A–1Q. Assume
that Γ 	= ∅ and 0 < a ≤ λn ≤ b < 1

L . Let {xn} be a sequence generated by Algorithm 3. If
yn 	= wn for each n ∈ N , then {xn} converges strongly to x∗ = PΓ x1.

Proof Putting F = A∗(I – PQ)A in Theorem 3.2, we get the desired result by Lemmas 4.4
and 4.5. �

5 Numerical experiments
In this section, we give some numerical results to illustrate the effectiveness of our iterative
scheme in Sect. 3 and compare with extragradient method [5] and iterative scheme (1.2).
All the programs are written in Matlab 7.10 and performed on a PC Desktop Intel® Core™
i5-2450M CPU @ 2.50 GHz 2.50 GHz, RAM 4.00 GB. All the projections over C and
Cn ∩ Qn are computed effectively by the function quadprog in Matlab 7.10 Optimization
Toolbox.

Example 1 Let H = R and C = [–2, 5]. Let F be a function given by

Fx := x + sin x

for each x ∈R. For all x, y ∈ H , we have

‖Fx – Fy‖ = ‖x + sin x – y – sin y‖ ≤ ‖x – y‖ + ‖ sin x – sin y‖ ≤ 2‖x – y‖,

〈Fx – Fy, x – y〉 = (x + sin x – y – sin y)(x – y) = (x – y)2 + (sin x – sin y)(x – y) ≥ 0.

Therefore, F is monotone and 2-Lipschitz continuous.
Choose x0 = 2, λn = λ, αn = 2, and γ = 1 for our iterative scheme (3.1). It is easy to find

that VI(C, F) = {0}. We denote x∗ = 0 and use ‖xn – x∗‖ ≤ 10–5 for stopping criterion. The
numerical results for this example are described in Table 1.
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Table 1 Numerical results as regards Example 1

x1 λ Alg. (3.1) Extragradient method Alg. (1.2)

Iter. Time [s] Iter. Time [s] Iter. Time [s]

1 0.05 82 4.89 124 8.52 111 4.32
0.02 178 9.42 297 19.45 285 9.87
0.01 177 8.60 585 39.08 574 19.35

2 0.05 97 5.53 132 8.95 119 4.47
0.02 81 4.81 317 20.57 305 12.14
0.01 138 7.11 627 41.91 615 20.62

3 0.05 94 5.36 139 9.40 126 4.64
0.02 234 11.63 334 21.41 321 12.92
0.01 190 9.15 659 42.03 647 22.89

Figure 1 Numerical results as regards Example 2

Example 2 Let H = R
m. We consider a classical problem [23, 24]. The feasible set is C = R

m

and F : Rm →R
m is a linear operator in the form

F(x) := Ax

for each x ∈R
m, where A = (ai,j)1≤i,j≤m is a matrix in R

m×m whose terms are given by

ai,j =

⎧
⎪⎪⎨

⎪⎪⎩

–1, if j = m + 1 – i and j > i,

1, if j = m + 1 – i and j < i,

0, otherwise.

Then F is monotone and ‖A‖-Lipschitz continuous. This is a classical example of a prob-
lem where the usual gradient method does not converge. We can easily see that VI(C, F) =
F–1(0) and the zero vector is the unique element in VI(C, F). We denote x∗ = (0, 0, . . . , 0)T .

Choose x1 = (1, 1, . . . , 1)T and λn = λ = 0.2/‖A‖ in each iterative scheme. Take x0 =
(2, 2, . . . , 2)T , αn = 2, and γ = 1 in our iterative scheme (3.1). We show the numerical results
for the cases m = 10, 20, 30, 40 respectively in Fig. 1, Fig. 2, Fig. 3, and Fig. 4.
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Figure 2 Numerical results as regards Example 2

Figure 3 Numerical results as regards Example 2

6 Conclusion
For a variational inequality problem, Algorithms (1.2) and (1.3) have been studied. Consid-
ering that sometimes the conditions of operators are not strong enough, He proposed the
projection and contraction algorithm. In 2017, Dong et al. proposed the inertial projection
and contraction algorithm originated from the second-order dynamical systems. Recently,
Dong et al. proposed a strong convergence method for solving zero point problems by us-
ing hybrid method. Motivated by their work, we propose an inertial hybrid algorithm for
solving variational inequality problems in Hilbert spaces and obtain strong convergence
theorems.
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Figure 4 Numerical results as regards Example 2
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