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1 Introduction

It is known that variational inequality, as a greatly important tool, has already been stud-
ied for a wide class of unilateral, obstacle, and equilibrium problems arising in several
branches of pure and applied sciences in a unified and general framework. Many numer-
ical methods have been developed for solving variational inequalities and some related
optimization problems; see [2—5] and the references therein.

The split monotone variational inclusion problem, which is the core of the modeling
of many inverse problems arising in phase retrieval and other real-world problems, has
been widely studied in sensor networks, intensity-modulated radiation therapy treatment
planning, data compression, and computerized tomography in recent years; see, e.g., [6—
10] and the references therein.

Split monotone variational inclusion problem (in short, SMVIP) was firstly introduced
by Moudafi [11] as follows: find x* € H; such that

0 € fix* + B1x™,

y* =Ax* € Hy: 0 € foy* + Byy™,

(1.1)
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where fi : H; — H; and f, : H, — H; are two given single-valued mappings, A : H; — H,
is a bounded linear operator, B; : H; — 2/ and B, : H, — 22 are multi-valued maximal
monotone mappings.

Iff; = f, =0, then problem (1.1) reduces to the following split variational inclusion prob-
lem (in short, SVIP): find x* € H; such that

0 Ele*,

y*=Ax" € Hy : 0 € Byy*.

(1.2)

Also, if fi = 0, then problem (1.1) reduces to the following split monotone variational
inclusion problem (in short, SMVIP): find x* € H; such that

0 Ele*,

y* = Ax* € Hy: 0 € fy* + Byy*.

(1.3)

We denote the solution sets of variational inclusions 0 € Bix* and 0 € fy* + Byy* by
SOLVIP(B;) and SOLVIP(f + B,), respectively. Thus, the solution set of problem (1.3) can
be denoted by I" = {x* € H; : x* € SOLVIP(B;), Ax* € SOLVIP(f + B,)}.

In 2012, Byrne et al. [12] studied the following iterative scheme for SVIP (1.2): for given
x9 € Hy and A >0,

KXpal :]igl [x,, +eA*( fz —I)Axn]. (1.4)

Recently, Kazmi and Rivi [13] introduced a new iterative scheme for SVIP (1.2) and the
fixed point problem of a nonexpansive mapping:

Uy = Iy [0 + €A* (T2 = DAx,),

Xn+l = anf(xn) + (1 -a,)Tu,,

(1.5)

where A is a bounded linear operator, A* is the adjoint of A, f is a contraction on H;, T is
a nonexpansive mapping of H;. They obtained a strong convergence theorem under some
mild restrictions on the parameters.

Very recently, Jitsupa et al. [1] modified algorithm (1.5) for SVIP (1.2) and the fixed point
problem of a finite family of strict pseudo-contractions:

= I o + Y A2 = DA,
Y = Bulhy + (1-8,) Zf\:[l n,(n) Tithy, (1.6)

Xn+l = anff(xn) + (I_anD)ym n= 1,

where A is a bounded linear operator, A* is the adjoint of A, {T;}Y, is a finite family of k;-
strictly pseudo-contractions, f is a contraction, D is a strong positive linear bounded op-
erator. They proved, under certain appropriate assumptions on the sequences {«,}, {8},
and {175") N, that {x,} defined by (1.6) converges strongly to a common solution of SVIP
(1.2) and a fixed point of a finite family of k;-strictly pseudo-contractions, which solves
some variational inequality problem.
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Remark 1.1
(1) We notice that Jitsupa et al. [1] did not define the domains and the ranges of B; and
B, in the iteration process (1.6) and Theorem 3.1 of [1]. Certainly, it is easy to
misunderstand that B; is defined on H; into 21 and B, is defined on H, into 22, In
that case, {u,} defined in (1.6) lies in H;. However, the domain of T; is C but not H,
which makes the iteration process (1.6) not well-defined. Thus, it is necessary to
give the definite domains and ranges of By and B,.

(2) Can the iterative scheme (1.6) be modified for solving more problems?

In this paper, we introduce a new general iterative scheme as follows:

Uy = Jo [+ Y A2 = dof ) = D)Ax),

Vu = Pc(u, — EDuy),

Yn = IBnVn + (1 - ,Bn) Zf\il 77,('”) Tivn:

Xns1 = Pclo, TF (%) + VnXn + (- Vn)l - Oln,U«V)yn]» n>1,

(1.7)

where By : C — 21, B, : H, — 22 are two multi-valued maximal monotone operators,
f:Hy — H, is a p-inverse strongly monotone operator, A : H; — H, is a bounded linear
operator, and A* is the adjoint of A, D: C — H is a §-inverse strongly monotone oper-
ator, {T;}YY, : C — C is a finite family of k;-strictly pseudo-contractions, Pc is the metric
projection of H; onto the closed convex set C, F is L-Lipschitzian on H;, and V is a n-
strongly monotone and K-Lipschitzian operator. Under some suitable assumptions on the
")}f\f 1» we prove that the sequence {x,} defined by (1.7) con-

sequences {«,}, {B,}, and {'75
verges strongly to a common solution of SMVIP (1.3) with the constraints of a variational
inequality and a fixed point problem of a finite family of strict pseudo-contractions, which
solves the following variational inequality:

(uVg—-tFq,q-p) <0, VpeF,

where F denotes the set of common solutions of SMVIP (1.3), a variational inequality,
and a fixed point problem of a finite family of strict pseudo-contractions. Finally, we also

provide a numerical example to support our strong convergence result.

2 Preliminaries
Throughout this paper, let H; and H; be two real Hilbert spaces with the inner product
(-,-) and the norm || - ||. Let C be a nonempty closed convex subset of Hj.

Recall that S : H; — H; is said to be a nonexpansive mapping if ||Sx — Sy|| < |lx — y||,
Vx,y € Hy. It is also called firmly nonexpansive if (Sx — Sy,x — y) > ||Sx — Sy||%, Vx,y € H;.
We can easily see that S is firmly nonexpansive if and only if S can be written as S = % (I+T1),
where T : Hy — H; is nonexpansive.

Moreover, S : H; — H; is called

(i) contractive if there exists a constant « € (0, 1) such that

ISx— Syl <eallx—yll, VxyeH; (2.1)
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(i) L-Lipschitzian if there exists a positive constant L such that

ISx —Syll < Lllx—yll, Vx,y€H; (2.2)
(iii) n-strongly monotone if there exists a positive constant 7 such that

(Sx—Sy,x—y) = nllx—ylI*>, Vx,y€Hi; (2.3)

(iv) B-inverse strongly monotone (in short, B-ism) if there exists a positive constant 8
such that

(Sx—Sy,x—y) > BlISx — Syl>, Vx,y € Hy; (2.4)

(v) averaged if it can be expressed as the average of the identity mapping and a

nonexpansive mapping, i.e.,
S=01-a)+aT, (2.5)

where « € (0,1), [ is the identity operator on H; and T : H; — H; is nonexpansive.

It is easily seen that averaged mappings are nonexpansive. In the meantime, firmly non-
expansive mappings are averaged.

In addition, a mapping S : H; — H; is called k-strict pseudo-contractive if there exists a
constant k € [0, 1) such that

2
)

1S Syll* < llx = ylI* + k| (I = S)x — T - S)y

Vx,y € Hj. (2.6)

A linear operator D is said to be a strongly positive bounded linear operator on H; if
there exists a positive constant T such that

(Dx,x) > T||xl|?, Vx€H,.

From the definition above, we obtain easily that a strongly positive bounded linear op-
erator D is T-strongly monotone and ||D||-Lipschitzian.

A multi-valued mapping M : D(M) € H; — 21 is called monotone if, for all x, y € D(M),
u € Mx and v € My such that

x—y,u—v)>0.

A monotone mapping M is maximal if the Graph(M) is not properly contained in the
graph of any other monotone mapping. It is well known that a monotone mapping M is
maximal if and only if for x € D(M), u € Hy, (x — y,u — v) > 0 for each (y,v) € Graph(M)
implies that u € Mx.

Let M : D(M) € H; — 2! be a multi-valued maximal monotone mapping. Then the
resolvent operator J : H; — D(M) is defined by

]f\VIx = [+ AM) L (x), VxeH,

Page 4 of 29
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for VA > 0, where I stands for the identity operator on H;. We observe that 2/ is single-
valued, nonexpansive, and firmly nonexpansive.

Let D: C — H; be a nonlinear mapping. Then the variational inequality problem (VIP)
is to find u# € C such that

(Du,v—u)>0, VveC. (2.7)

We denote the solution set of VIP (2.7) by VI(C, D). Many different approaches have been
studied for solving this problem; see, e.g., [14—17].

For each point x € H, there exists a unique nearest point in C denoted by Pcx such that

¥ —Pex|| < [lx—yll, VyeC. (2.8)

Pc is called the metric projection of H; onto C.
It is known that P¢ is nonexpansive and satisfies the following inequalities:

|Pcx — Pcyll* < (x —y,Pcx — Pcy), Vx,y € Hy, (2.9)

(x — Pcx,y — Pcx) <0, VxeH;yeC. (2.10)

We note that each nonexpansive mapping S : H; — H; satisfies the following inequality
(see Theorem 3 in [18] and Theorem 1 in [19]):

1
(= Sx) = (y— Sy), Sy - Sx) < 5 [(Sx—2)—(Sy-n|>, VxyeH, (2.11)
particularly, for Vx € Hj, y € F(S),
1 2
(¢ — Sx,y — Sx) < 5||Sx—x|| . (2.12)

Proposition 2.1 ([11])
(i) fT=Q0-a)S+aV,whereS: Hy — H, is averaged, V : H — H, is nonexpansive,
and a € [0,1], then T is averaged.
(ii) The composite of finitely many averaged mappings is averaged.
(iti) If the mappings {T;}\ | are averaged and have a nonempty common fixed point, then

N
(\E(T;) = F(Ty0 Tyo-- 0 Ty).

i=1

(iv) If T is v-ism, then for y >0, y T is %-ism.
1

(V) T is averaged if and only if its complement I — T is v-ism for some v > 5

Proposition 2.2 ([11]) Let A > 0, h be an a-ism operator, and B be a maximal monotone
operator. If A € (0,20, then it is easily seen that the operator J(I — Ah) is averaged.

Proposition 2.3 ([11]) Let A > 0 and B, be a maximal monotone operator. Then

x*solves (1.1) & «&* =],{31 - Afl)(x*) and Ax* =]f2(1— AMr)Ax™.

Page 5 of 29
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Proposition 2.4 ([20]) Let D: C — H; be an inverse strongly monotone operator. Then
ueVI(C,D) < u=Pc(u-ADu), VA>O0.

Proposition 2.5 ([21]) Let D be an inverse strongly-monotone mapping of C into H;. Let
Ncv be the normal coneto Catve C, i.e.,

Ncv = {weH1|(v—u,w) >0,Yu e C},
and define

Dv+Ncv, veC,
78 VGHI\C.

V=

Then T is maximal monotone and 0 € Tv if and only if v € VI(C, D).
In order to prove our main results, we need the following lemmas.

Lemma 2.1 ([22]) Let T : C — C be a k-strict pseudo-contraction. For X € [k, 1), define
§:C— CbySx=xx+(1-X)Tx for each x € C. Then S is a nonexpansive mapping such
that F(S) = F(T).

Lemma 2.2 ([23]) If T : C — C is a k-strict pseudo-contraction, then the fixed point set
F(T) is closed convex so that the projection Pr(r) is well-defined.

Lemma 2.3 ([23]) Let C be a nonempty closed convex subset of the Hilbert space H;.
Given an integer N > 1, assume that {T:}Y, : C — C is a finite family of k;-strict pseudo-
contractions. Suppose that {n;}\, is a positive sequence such that Y~ n; = 1. Then
Zfil n;T; : C — C is a k-strict pseudo-contraction with k = max{k; : 1 < i < N} and
FOZX, T = (% F(T).

Lemma 2.4 ([24]) Let E be an inner product space. Then, for any x,y,z € E and a, B,y €
[0,1] witha + B+y =1, we have

lax + By + yzll* = allxl|® + Blyl* + vzl - allx - yII> —ay llx - zI* - By Iy - zI1*.
Lemma 2.5 ([25]) Let {«,} be a sequence of nonnegative numbers satisfying the property
Ayt < (L= Yu)oty + Yuby, n=0,
where {y,} is a sequence in (0, 1) and {3,,} is a real sequence in R such that
(i) 2221 VYn =00
(i) limsup,_, o 8, <0 0r > oo |¥ubul < 00.

Then lim,,_, o o, = 0.

Lemma 2.6 ([26]) Assume that T is nonexpansive self-mapping of a closed convex subset
C of a Hilbert space Hy. If T has a fixed point, then I — T is demiclosed, i.e., whenever {x,}
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weakly converges to some x and {(I — T)x,} converges strongly to y, it follows that (I - T)x = y.
Here I is the identity mapping on H;.

Lemma 2.7 ([27]) Let V be a K-Lipschitzian and n-strongly monotone operator on a
nonempty closed convex subset C of a Hilbert space Hy with 0 <n <K and 0 < t < 2n/K>.
Then the mapping S : C — C defined by S := (I — tV) is a contraction with coefficient
ttzl—t(n—%).

Lemma 2.8 ([28]) Let C be a nonempty closed convex subset of a Hilbert space H, and
P be the metric projection of Hy onto C. Let S : C — C be a nonexpansive mapping with
F(S) #9 and F : C — H; be an L-Lipschitzian mapping with constant L > 0. Let V : C —
H, be an n-strongly monotone and K-Lipschitzian mapping. Suppose that 0 < ju < 2n/K?
and 0 < tL < 1y, where 19 = 1 — \/1 — u(2n — nK?). Then the net {x;},c(0,1) defined by x, =
PclttFx, + (I -t V)Sx:] converges strongly as t — 0 to a fixed point q of S which solves the
variational inequality

((WV —tF)q,q-p) <0, VpeF(©).

3 Main results
Lemma 3.1 Let Hy and H, be two real Hilbert spaces and C be a nonempty closed con-
vex subset of Hy. Let A : Hi — Hj be a bounded linear operator, A* be the adjoint of
A, and r be the spectral radius of the operator A*A. Let f : Hy — Hjy be a p-inverse
strongly monotone operator and B, : C — 21, By : Hy — 22 be two multi-valued max-
imal monotone operators. Let D : C — H; be a §-inverse strongly monotone operator. As-
sume that {T;}Y, : C — C is a finite family of k;-strict pseudo-contraction mappings such
that F = ﬂf\il F(T;))NI' N VI(C,D) # . Let Pc be the metric projection of Hy onto C, and
F:C — H; be an L-Lipschitzian mapping with constant L > 0. Suppose that V : C — H;
is an n-strongly monotone and K-Lipschitzian mapping with 0 <n < K, 0 < u < 2n/K?* and
0<tL<ty, wherety=1- m For x, € C, let {x,} be a sequence of C gen-
erated by (1.7). Assume that the following conditions hold:
(i) 21>0,0<A2<2p,0<y < %,O<$<28;

(i) O<ay <1, Y oo oy =00, lim, ooy = 0;

(iif) maxj<j<n ki < Bn <I<1,limy_ 00 By =1

(i) YNy = 1,0 <y < L, limysoo v = 0;

W) 208 (s =l + 1 But = Bul + [¥er = vl + 2y 1™V = ™)) < o0,
Then lim,,_, o || %01 — %4 = 0.

Proof Let G, := Zﬁl r)l(”) T;. By Lemma 2.3, we obtain that, for each n > 1, G, is a k-strict
pseudo-contraction on C and F(G,) = ﬂﬁl F(T;), where k = max{k;:1 <i<N}. Let U :=
],\BZ2 (I = Aof). Then the iterative scheme (1.7) can be rewritten as

Uy =]ff [x, + yA*(U - DAx,],

Vn = Pc(uy — §Duy),

Yn = BuVn + (L= B1) GV,

Fni1 = PelanTFxy + Vuxy + (L= vl —auuV)y,], n>1.

(3.1)

We divide the rest of the proof into two steps.
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Step 1. We claim that the sequence {x,} is bounded.

Indeed, take p € F. Then ]fllp =p, U(Ap) = Ap, G,p =p, Pc(I - ED)p = p, and it is easily
seen that Wp = p, where W := I + yA*(U — I)A. From the definition of firm nonexpansion
and Proposition 2.2, we have that ]fll and U are averaged. Likewise W is also averaged
because it is - -ism for some v > % Actually, by (v) of Proposition 2.1, we know that 7 — U

is v-ism with v > % Hence, we have

(A* U - t)Ax - A*(I - ) Ay, x — y) = (I - U)Ax — (I - U)Ay, Ax — Ay)
> v|(I - ) Ax - (I - U)Ay|)?
> 2 ar(1 - thAx - a1 - Ay,
r
Thus yA*(I - U)A is %—ism. Due to the condition 0 < y < %, the complement 7 — yA*(I -
U)A is averaged, and so is M := ]fll I + yA*(U — I)A]. Therefore, ]fll, U, W, and M are

nonexpansive mappings.

From (3.1), we estimate

4 = pI? = T2 [0 + yA*(U = DA%, ] -T2 p|)?
< ||xn +yA*(U -1D)Ax, —p”2

= o, = plI> + ¥ | A*(U - DAx, || + 2y (x, — p, A*(U - D)Ax,). (3.2)
Thus, we get
sty =pI* < 1w =pI1? + v (U =D Ax, AA* (U 1) A+ 2y (0 —p, AU =D Ax,). (3.3)
Next, setting A := y2((U - I)Ax,,, AA*(U - I)Ax,), we estimate

Ay =y*((U - DAx,, AA*(U - 1)Ax,,)
<ry*((U - DAx,, (U - )Ax,)

2
=ry?|(U - DAx,|". (3.4)
Setting Aj := 2y (x, — p, A*(U — I)Ax,), we obtain from (2.12)

2 =2y (%, — p, A*(U — D)Ax,)

2y(A@x, — p), (U - DAx,,)

2y(A@x, — p) + (U - DAx, — (U - DAx,, (U — 1) Ax,)

2y ((UAx, - Ap, (U - DAx,) - | (U - DAx,|”)
<2y (% | - DAx, | - (U - DA, ”2>

< —y| W -Dax,|”. (3.5)

Page 8 of 29
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In view of (3.3)—(3.5), we have

i = plI? < 120 = pII* + y (ry = V| (U - DA, |*. (3.6)

FromO0<y < %, we obtain

letn =PIl < llxn - pII. (3.7)
Since D is §-inverse strongly monotone and 0 < £ < 2§, we estimate

1va - pII? = | P - §D)u, - Pl - €D)p |
< | -&Dyu, - - D)p|
= || (n - p) — §(Du, — Dp)||*
= ||uy - p||* — 2& (Du,, — Dp, uy - p) + §*||Du,, — Dp|*
< llu - plI* - 26|\ Du,, — Dp|* + £*||Du, — Dp|)?
= |ty — pII* + £(& - 28)||Du, — Dp|®

2
=< ||u}’l _p” )

which implies
Ve = pll < llun - pll. (3.8)

Define S,x := B,x + (1 — 8,)G,x, Vx € C. Using Lemma 2.1, we obtain that S,,: C — Cisa
nonexpansive mapping and F(S,) = F(G,). It is clear that S,p = p, and hence

190 = pll = 1Suvn =PIl = [ISuvi = Supll < lIva = pII. (3.9)

By (3.7)-(3.9), we have

170 =PIl < 1V = pIl < llttw = pll < %0 = pII- (3.10)

It follows from (3.1) and Lemma 2.7 that

%41 = P
= | Pc[etntExn + yutn + (1= vl — 0tutV) 3] = Pep|
< JotuTFxy + yutn + (1= yu)I = atuit V)3 = p |
= |otu(tFxn — V) + Yu(n = p) + [(1 = )T = it V]yn = [(1 = y)I = cuaV]p |

<[ = y)I = it V]yu = [Q = v = cuisV]p| + vulltn — pll + il TFxy — 1 Vpl|
o, K2

< 1-vu—awu| 1= —— ) |y =Pl + Vullxn — pll + aulltFx, — nVpl|
2(1_Vn)

o, K>

< [1 - Vn —an/x(n - m)] I = pIl + Vullxn — pll + nllTFx, — nVpl|
—/n
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o, K2
[1 am(n z ))]nxn—pn+an||rFxn—an

[ 217
[

o, uK?
=|1-au| un— =———— —1L | |llxn — pll + ctulltEp — uVpl.
2(1_)/;1)

S |1-aun ))}len—pll+an[llfon—pr||+||pr—MVPII]

(l_yn

IA

a, K>
1- ow( (; y )>]|Ixn =pll +a, L%, = pll + olltEp — nVpl|
— /n

By induction, we derive

where M; = sup,,.;

{2}

ll, — pll < max{|lxo — pll, M1},

llrEp— I/-VP”
anuK
2(1 Yn)

—tL

Step 2. We claim ||x,,,1 — x,]| = 0 as n — oo.
Indeed, from (3.1), we have

%41 = %l

= | PclantExy + yutn + (1 = vl — utV)y,]
= Pclen1TFxn1 + Yn1%n1 + (1= Va1 — w1t V) yut ]|

< |l etnTFxn + yutn + (1 = vl = tut V)
= 0y 1 TFx1 = Y11 — (1= Vo)) = oyt V) Yt |

< (@ =y = ureV)yu = (1 = Y- = @pr V) | + 0nT[1Fty = Fta |
+ V%0 = Yn1%n-1 | + oty — |1t Fxpa ||

< (@ =y = it V)yn = (1= y)I = upt V) yuor || + [ (1 = v = €tuptV)yuor
(= YT = yca stV )yt | + T = Rt |+ |V — Y-

+ [1Vn%Xn-1 = Vn-1%n1 | + |t — @y [ TEX1 |l

o, K2
S| 1=-Yu—aup ﬂ—r_” lyn = yu-1ll

+ |V = Va1 1=t | + |y = a1 e VY1 |l + e L% — %1 ||

+ Vull®n = %1 | + 1V = Va1 =t | + |ty — a1 || T Ex1 ||

o, K>
= [1 ~ Vi —anu(n - Z(I—y))} 19 = V1 |l + (Vi + 0uTL) 1% = % |
— /n

+ latn = et L (Il Vit L+ 1T Ea 1) + 17 = Vi | (12l + 191 )

o, K>
= [1 —Vn— anﬂ(” - 2(1,7)/))] 1y = yn-all + (Vn + auTL) oy — %1 |l
—Vu

+ oy — a1 | M + |y = Yu-1|Ms3, (3.11)

. This shows that {x,} is bounded, and so are {y,}, {v,,}, and

Page 10 of 29
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where My = sup,,o  {luVyn-1ll + ITFxu-1ll}, Mz = sup,o i {l®n-1ll + y4-1ll}. Furthermore,
since y, = S,v,, we have

19n = Y1l
= S0V = Snu-1Vu-1l
= NSuVi = SuVu-1 L + 1SuVi-1 = Su-1Vu-1 |l
< Wa = vietll + || Bavin1 + (1= Ba)Guvuo1 = [Bu1Vn-1 + (1= Buc1) Guo1v ||
=11V = Vit | + [|(Bn = Bu-1) Vet = Gucavit) + (1 = Bu) GVt — GVt ||

< Nu = Vuall + 180 = Bt lIVi-1 = Gu1 Vi1 | + (1 = B Guvner — Guo1 Vit |l

N
< V= Vel + 1Bn = BualMa+ Y [0 = 0" V|| Tivieal, (3.12)
i=1

where My = sup,-, [[Vu-1 — Guo1 Vo1l
By the nonexpansion of Pc and I — £D, we get

Vs = Vet Il = | Pc = ED)uty, — Pc(I = ED)uty |

< || - ED)uy = (I = DYty || = N1t — |- (3.13)
Note that M := ]fll [ + yA*(U - I)A] is nonexpansive, we have

ot = s = |51 + v A*(U = DAY, = JH T+ v A*(U = DA]x |

= ”xn —Xn-1 ” (314‘)

Substituting (3.13) and (3.14) for (3.12), we have

N
1y = Puell < 160 = Kt Il + 1B = BualMa+ D1 = 0" P || Tewvca . (3.15)

i=1

This together with (3.11) leads to

11 — %l

o, K2
=< [1 —Vn _anﬂ(n - m)] |:||xn — X1l + |Bn = Bu-11M4

N
-1
£y | =l >|||Tivn1||} + (Vi + 0 TL) 126 = X |
i=1
+ oy — a1 | Mo + |V — Yu1 M3

o, K2
<|1-yu—ouu|n- 207 16 = %1 Il + (Vi + €uTL) 126 — X |l
—/n

N
-1
1t = et Mo + Y = Vet IMs + 1By = Buca Mo+ |0 = 10" |1 T |
i=1
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o, K2
=11 — Oy un - - 175 ”xn _xn—lll + |an _an—1|M2
2(1 - Vn)

N
1= Vw1 lMs + 1By = Bt lMa + Y1 = 0" P [ T . (3.16)
i=1

Noticing condition (v) and applying Lemma 2.5 to (3.16), we obtain

lim [|%,41 — %, = 0. (3.17)
n— 00
This completes the proof. d

Lemma 3.2 Let H; and H, be two real Hilbert spaces and C be a nonempty closed con-
vex subset of Hy. Let A : H) — H, be a bounded linear operator, A* be the adjoint of A,
and r be the spectral radius of the operator A*A. Let f : Hy — Hj be a p-inverse strongly
monotone operator and By : C — 21, By : Hy — 22 be two multi-valued maximal mono-
tone operators. Let D : C — H be a §-inverse strongly monotone operator. Assume that
(TN, : C— C is a finite family of k;-strict pseudo-contraction mappings such that F # .
Let Pc be the metric projection of Hy onto C, and F : C — Hy be an L-Lipschitzian map-
ping with constant L > 0. Suppose that V : C — H; is an n-strongly monotone and K-
Lipschitzian mapping, where 1 and (v satisfy the conditions of Lemma 3.1. For x, € C, let
{x.} be a sequence of C generated by (1.7). Assume that conditions (i)—(v) in Lemma 3.1
hold. Then {x,} converges strongly to q € F, which solves the following variational inequal-

ity:
(WVq—-tFq,q-p) <0, VpelF.

Proof The proof of the lemma is divided into four steps.
Step 1. We claim lim,,_, o, ||x,, — G,x,]| = 0.
Indeed, take Vp € F. From (3.1) and (3.6), we have

%1 = pII?
= | Pc[entFxn + yurn + (L = yidl = uitV)ya] - p|)?
< || entFx + yun + (1= y)I = ait V)3 - p|
= (T Fxs = VD) + yuln = p) + [(1 = y)] = ctut V] = [(1 = yi)] = etV ]p|)?
< [l an(tFrs = V) + [ = vl = aut V] = [ = y)] = aueV]p |
+ Y 1% =PI + 29l = pll| ctn (2 Fx = 1 Vp)

+ [ =y = auuV]ys = [ =y - auuV]p|
auuk? \ 1
< [1—y,,—anu<n—”—)] lyn = pII” + eyl T F, = 1 VI
2(1_)/}1)

o, K2

N NeFx - uVplllyn - pl
2(1—yn)>} PR =P

+206n|:1—)/n—0lnli<'7—

+ Vllxn =PI + 27012, = pll{enll T Fx, — nVpl|

Page 12 of 29
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+ [ =y = utV]yu = [(Q = y)I = auV]p| }

2(1-y)

+ 20, | TExn — Vol llyn — 2l + v, 1% = pII?

L SRYE 2, 2 2
S| l=-vn—opu|n——— )| lwn—pI" + ol TEx, — nVpll

o K
+2¥ullxn = pllynlltFxy — u Vol + | 1= v —opu\ 1= —— ) |lyn =PIl
Z(I_Vn)

o, uK? 2 2
< [1 ~Vn —anu(n - )] [lx = plI? + v (ry = 1) | (U - DA%, | 7]
2(1_Vn)
+ ap || TFxy — uVPII* + 20| T Fxn — Vo lyn = pIl + v, l6n = pII?

+ Zyn”xn —P|| (an”TFxn - MVPH + ”yn —P||): (3~18)

which implies

K2\
[l—yn—anu<n—%>} y(1—ry)| (U - DAx, |

2

2

oK

< [l—yn—anu(n—z(;iy))] s = pII* + )it Fxy — uVpll*
—Vn

+ 20, | TExy — Vol llyn — ol + v, 1% = pII?

+ 29ull%n = pll (anllTFxy — w Vil + llyw = pll) = %001 = pII>

a, K>
2(1=yn)

+ 200, | TFxy — VIl = Pl + 7,2 1% = pI* + 2¥ll%n — pll (@l T Ex — 1 Vp I

2
<%, —pl* + [yn + ow(n )} I, — plI* + &2l T Fx,, — 1 Vpl|*

+yn = pll) = %ne1 - pII

2

2

o, K

< [yn +anu(n— z(l—y))} %, = plI* + o2l T Fx,, — n Vipl|*
— /n

+ 200, | TFxy — VPl Iy = Il + vl — pII
+ 29ull% — pll (T Fx — n VIl + llyw — pll)
+ 1% = Xt [| (60 = Pl + %01 = pII).-

Since y(1-ry) >0, lim,,_, o @, = 0, lim,,_, » ¥, = 0, and {x,,}, {y,,} are bounded, from (3.17)

we get

lim | (U - D)Ax,| = 0. (3.19)
n—0oQ
In addition, by the firm nonexpansion of ]fll, (3.2), (3.6), and y € (0, %), we estimate

litn = pI> = |5 [0 + yA* (U = DA%, ] = J2p
< (]fll [%n + yA*(U - DAx,] —]fllp,xn +yA*(U - DAx, - p)

= (un —p %y + YA (U - 1) Ax, —p)

Page 13 of 29
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= %(llun ~pl* + % + yA*(U - DAx, ~p|
~ @t = p) = [0 + yA* (WU - DA%, - p] )

B P e e Y
~ |t = 20 = y A*(U = DA%, "]

< 2t I + =PI = [ty - 3~ yA* (U~ Dt | )

= %[Ilun =PI+ e = pI? = Nty = 21 = v A% (U = DA, [
+ 29ty — 0, A" (U ~ DA, )]

1
[llztn = P12 + 6w =PI = Nty = 21 + 29 (s — 20, A*(U - DAx,)|

< =
-2
1
= E[”un —P||2 + ”xn —P||2 - ”Mn _anZ + 2V<A(un _xn)»(u _I)Axn)]
1
< E[Hun = I + %0 = pI* = Nt — x> + 27 | At — %) || | (U = DAx,]|],
and hence
et = PI? < 16 = pI* = st = 2011 + 2 | Aty = 2) | | (U = DA . (3.20)
In view of (3.18) and (3.20), we obtain

|2

=

=

=

=

-pl?

o, K> 2
[1 ~ Vn —an/x(n - 2(1'7)/))] ltn = plI* + @l T Fxy — nVp |
- /n

+ 20, | TExy — Vol llyn — 2l + v, 1% = pII?

o, k2
+2¥ll%n = pllynlltFxy — u Vol + | 1= v — o\ 1 = =— ) |lyn =PIl
Z(I_Vn)
o, K 2
[l—yn—anu(n—"i)] 4 — plI* + @2l T Fxy — 1 Vp |1
2(1_Vn)

+ 20| TFxy — 1 Vpllllyn = pll + v, 1% = p1I?

+ Zyn”xn _p”(an”TFxn —MVPH + ”yn —P||)

o, uK? 2 9 2
1_v — e _ _ _
[ Vn am(n 2(1—yn))] [1%n = 211 = N2t — %4l

+2y ||A(uy, —xn)” || (U -DAx, ||] + aﬁlltFxn —uVp|?
+ 20, | TFx, = Vpllllyn = pll + v, 1% — pII?

+ 2 [l%n _p||(an||TFxn = uVpll + lyn _P”)

K2 \7?
1 = I+ | v+ i (1= 222} | s — 2
2(1_%'1)
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1 LIS 2|| >
—(1-vu—« - Uy — X
vo e\ =50 n=%n

o, nK?
2(1 - Vn)

+ o | TFx, = VpII? + 2l TFxy = nVpll 1y = pll + v, 1%, = pII®

2
+2V[1—)/n—otn,u<n )} 4Gt =) | (U = DA% |

+2¥ull%n = pl (an||TFxn = uVpll + lyn —P||),

which hence implies that

o K2 \ 12
|:1—Vn—05nli<77—2(;7y)>:| N2t —
—rn

auK? \ T
< 1% =PI = s = pII* + [yn +0tnu<n - W)] s = pII?

o uK? \ T
27 1=y, - - A, — u-nA
+ )/|: Vi am(n 2(1—y,,)>j| | AGtn = x0) ||| (U = DAx, |
+ a2 TFx, — nVpl1 + 20, | TFx, — £Vl Iy = pll + v2 1%, — P

+ 2¥ull% = pll (@l T Fry = wVpll + 11y, — pll)

o, uk? 2 9
< 1% = %ns1 Il (1% = Il + %001 — pII) + |:Vn + o, <77 - m)} I, - pl
e[ (1 2N T -l s
2(1 - yn)

+ o T, — pVplI* + 20 0Py = wVplllyn = pll + v, % — P11

+ 2 [|%n _p”(an”TFxn = uVpll + lyn _P”)'
From conditions (ii), (iv), (3.17), and (3.19), we get
lim |, —x,| =0.
n— 00
According to (3.1) and (3.10), we obtain

%1 =PI = | Pefatnt Fxn + yuen + (1 = )] = auV)y,] - p|
< [lotnExy + v + (= )l = ut V)3 = p|°
= [ tn(TFxn = V) + 7 = 30) + 30— 1|
= 1w =PI + | e(TExy = Vi) + v = 3
+ 2{tn(TFxn = V) + VX = V)oY — )
<1 =PI + (T Fxy = Vi) + vl = 3

+ 2((1,,(‘51:96" = Vyn) + Vu(%n = V), Y —P>

(3.21)

(3.22)

< llun —P||2 +&(& — 20)[|1Duy, _DPHZ + ”an(fon — V) + V(o —yn)”Z

+ Z(Oln(fon = V) + VX = Yn)s Y _p>

Page 15 of 29
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=<l —P||2 +&(& —26)|1Du, _DP”2 + ”Oln(‘L'ny, - /’Lvyn) + V(X —%:)Hz

+ z(an(TFxn — V) + V(% = V) Y —}9>;

and hence

£(28 - £)||Du, — Dp|*
= ”xn p” - ||xn+l —P” + ”an TFxn MV}’n) + Vn n yn)”
+ 2ctn (TFxy — WVY) + Vnn = Y)Y — P)

< 11960 = Zet [ (120 = I+ 121 = Pl + (T B = 1 V30) + = 3 |

+ 2(0[,,(‘[1:96,, = Vyn) + Vu (X = V) I _p>
2
< [l%n _xn+1||(||xn =Pl + 1%ni1 _P”) + (O‘n”TFxn =1Vl + vaullxn _.yn”)

+ 2(ullTFxn = £Vl + Vulltn = ¥ull) 1y — pII.
Since lim,,—, 5 &, = 0, lim,,_, o ¥ = 0, and {x,}, {y,} are bounded, by (3.17), we obtain
nlingo \|Du,, — Dp|| = 0. (3.23)
It follows from (2.9), (3.1), and (3.10) that
va - plI?
= || Pc(i - €D)u, - Pc(i - £D)p|”

<(Pc(I - €D)u, - Pc(I - €D)p, (I - ED)u, — (I - £D)p)
= <Vn —P: (1 - SD)M,, - (I - SD)p)

- l{nvn I + |ty —p — £Du, ~ Dp) |
~ |~ p) - [ - £D)u, — 1 - £D)p] |*}

< {1V = I + 4 — pII* + £ (& — 28Dt — Dp|* - || (v — ) + € (D1, ~ Dp) |’}

l\.)|'—‘

< S{Iva=pI* + lun = p1I* + £(§ - 28)I|Dus,, — Dp|®

l\)lb—‘

— 1V = unll* = E*|| D1ty — Dp||* = 2 (vyy — 14, Dty — Dp) }

1 2 2 2
:5{||vn—p|| + |ty — plI* — 268 Du, — Dpl|

~ Vs — wall* + 26 (4, — v, Dus, — Dp) }

< S (v = pII* + st = pI? = 1V = tall* + 25 (4, = v, Dut, — Dp))

— [\Jl)—t

(”Vn = pIP + 1% = pII* = 1vs = |* + 26 |ty = v,u|l| Dut, — Dpll),

which implies

Vi =PI < 1% = plI* = Vs — tnl|* + 2€ |14y, — V|l || Duts — Dpl|. (3.24)



Guan et al. Journal of Inequalities and Applications (2018) 2018:311 Page 17 of 29

From (3.18) and (3.24), we have

%01 =PI

auK? \ 1

m)] llyn = pII? + el TP, — 1 Vp1?
n

o, K2

2(1_%’1)

+ Vo llxn =PI + 27l — pll{eull T Fx — nVpl|

+ ” [(1 -y — anﬂv]yn - [(1 -yl - Oln/LV]P” }

auk? \ 1
[1 —Vn —OlnM<U - h)] Vi —P||2 +a5||t[-'x,, - MVPH2

= I:l_yn_anﬂ(n_

+2an[1—yn—anu<n— ):|”7-'Fxn—,uVP||”yn -2l

IA

+ 20| TFxy = 1 Vpllllyn = pll + v, 1% = p1I?

o, K2
+2yullxn = pllyoullTFxy — nVpll + | 1= vy — o\ 1 = = | |llyn — £l

2(1 - Vn)
auk? \ 1
[l_y"_“”“("' 2(1—yn)>]

X (6 =PI = Vi = |I* + 2§ |14, = v, ||| Dus, — Dpll)

IA

+ o TFx, — pVplI* + 20 0Py = wVplllyn = pll + v,/ % — 11

+ 2¥ullxn — pll(ctnll TFxn — VoIl + llyn — pll)

2
K>
<llxn—pl* + [yn +anu<n— —yﬂ llx, — pII*

2(1_ n)
auuk?® \ 12
- |:1 = Vn —Olnll-(ﬁ— 2(%}/))} Vi — 11

+ 2§ ||ty — vl | Dty — Dpl| + @} | TFxy — VI + 20|t Fxy — 11 Vil 19 - pl

+ ¥ llxn =PI + 27112, = pll (@l T Fxy — 1Vl + llys - pll),

and hence
auk? \7? )
1—v, — _ _
|: Vn anﬂ(ﬁ 2(1_)/;4)>:| 1vie — uul
auK? \ T
< 1% = pII* = l1%ne1 = pII* + [ynwnu(n—i” )] %, = plI?
2(1_)/;1)

+ 2§ ||ty = vl | Dty — Dpl| + @} | TFxy — VoI + 20 | Fxy — 11 Vil 1y — pl

+ ¥l =PI + 27,1, = pll (@l TFxy — Vol + llys - pll)

<l {0 -1 I cunptk” 2|| |12
Xy — Xnst Xy =Pl = [%ne1 — + |Vt ay - Xy —
< 1 P +1—p Y nin 2(1-7,) p

+ 2§ ||ty — vl | Dty — Dpl| + @} | TFxy — VI + 20, By — 11 Vil 19 — pl

+ Y, 1% = PI” + 27ull%n — pll (ull TFxn — VIl + lyn — pII).-
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Since lim,, oo @, = 0, lim,,_, o ¥ = 0, and {x,}, {y,,} are bounded, we obtain from (3.17) and
(3.23)

lim ||v, — u,| =0. (3.25)
n—>00
Combining (3.22) with (3.25), we get
Vi = xull < M1Vie = thull + 4y —xn|l > O as n— oo. (3.26)
By (3.1) and the nonexpansion of S,;, we obtain
16 = Suxnll < 1% = Xne1 | + %41 — Sl
E ||xn —Xn+l ” + HO[,,'(F?C,, + ynxn + ((1 - yn)l - anﬂv)yn - Snxn H
= %0 — X1 | + ”an(fon — V) + Y = Spkn + V(% —yn)“

< Wn = Xnet | + ol TEx — uVyull + 180V — Suull + Yullxn — ¥l

< %n = Xna1 | + @nll Ty = £Vl + 1V = xull + Vil = yul-
It follows from lim,,_, o, &0, = 0, lim,,_, oo ¥, = 0, (3.17) and (3.26) that
lim ||x, — Syx,| = 0. (3.27)
n— 00
In the meantime, observe that

[l = Snxn” = ||,ann + (1 - ,Bn)ann —Xn ||
= ”ﬁnxn + (1= Bu)Gutn — Buxn — (1 = Bu)xn ”
= (1 - ﬁn)”xn - ann”'

From condition (iii), we have
lim ||x, — G,x,| =0. (3.28)
n— 00

Step 2. We claim that g € F, for g any weak cluster point of {x,}.

Indeed, by condition (v), we know that lim,_ 775") =1, for every 1 <i < N. It is
easy to see that each 1; >0 and YN, 5, = 1. Define G := YN, 0, T;. Then it follows from
Lemma 2.3 that G: C — Cisa k-strict pseudo-contraction and F(G) = F(G,) = ﬂﬁl F(T;).
Furthermore, G,x — Gx as n — oo for all x € C. In addition, S : C — C is defined as

Sx:=Ix + (1 -1)Gx. Then S is nonexpansive and F(S) = F(G) by Lemma 2.1. Observe that

%6 = Sxull < 1% = Suull + 1S — Sxul
= ”xn - Snxn” + ”;ann + (]- - lgn)ann - lxn - (1 - I)Gxn H
< %n = Suxnll + 180 = Ullxn — Guxnll + (1 = B Gy — Gl

N
< 10 = Sl + 1B = Ul = Gutll + (1= B) Y [0 = | Tieu .
i=1
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From (3.27) and (3.28), we obtain
lim ||x, — Sx,| =0. (3.29)
n— 00

Since {x,} is bounded, we may assume that g is any weak cluster point of {x,}. Hence,
there exists a subsequence {x,,} of {x,}, which converges weakly to g. Now, since S is
nonexpansive, by (3.29) and Lemma 2.6, we obtain that g € F(S). Thus, we have g € F(G) =
F(Gy) = it F(T)-

In addition, we rewrite u,, = ]fll (%4, + YA*(U —DAxy,] as

Ky — Uy + YAS(U —DAxy,
Al

By, (3.30)

Letting k — oo in (3.30) and using (3.19), (3.22) and the fact that the graph of a maximal
monotone operator is weakly-strongly closed, we have 0 € B; ¢, i.e., g € SOLVIP(B;). Fur-
thermore, since x, and u, have the same asymptotical behavior, Ax,, weakly converges
to Agq. It follows from (3.19), the nonexpansion of U, and Lemma 2.6 that (I — U)Aq = 0.
Thus, by Proposition 2.3, we have 0 € f(Aq) + B2(Aq), i.e., Aqg € SOLVIP(B,). As a result,
qel.

Moreover, it follows from (3.25) that v,, weakly converges to g. Define

Dv+Ncv, veC(C,
@, VGHI\C.

Hy =

Then H is maximal monotone by Proposition 2.5. Take V(v,w) € Graph(#). It is easy to
see that w — Dv € N¢v. Since v,, € C, we have

(v—v,,w—Dv)>0. (3.31)

Combining (2.10) with v, = Pc(u, — EDu,), we get

<un - SDun VYV, Vy — V) Z 0; (332)
and hence
Vp— Uy
<v -V ? + Dun> > 0. (3.33)

Thus, from (3.31) and (3.33), we obtain

(V - Vnkv W> > (V - VnkaV)

Vo, — U
> (v=vy,Dv) - <v— Vs Dty + %>

Vi — Un,
= (V=Vu, Dv=Dvy, ) + (Vv =V, Dvyyy = Dy ) =\ V= vy, T
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2 Vg — Ung
> 8|Dv = Dvy |7 + (v = Vi, DV = Dty ) =V = Vi, —f
Vnk _unk
> (V_ Vnk’DVnk _Dunk) - <V— V"k’ T>

Letting k — 00, we have (v — g,w) > 0 as k — 0o. Since H is maximal monotone, we get
g € H710. So it follows from Proposition 2.5 that ¢ € VI(C, D). Therefore, g € ﬂf\il F(T;)N
' nVI(C,D)=F.

Step 3. We claim that

lim sup((MV -tF)q,q - xn) <0,

n—0oQ0

where g = lim,_, ¢ x; with x; being the fixed point of the contraction ¥, on C defined by
Ux = Pc[trFx + - t/LV)Tx], Vx e C,

here ¢ € (0,27/K?) and Tx := SPc(I — ED)J2 [I + y A*(U — )Alx, Vx € C.
Indeed, first, for each x,y € C, note that
1 Tx - Tyl
= || SPc - ED)], M1+ yA*(U - DA]x - SPc(I - ED)], 1+ yAS(U-DA]y|
<|Pcl- ED)J, I+ yA (U - DA]x - Pc(l - ED)J, I+ yA (U -DA]y|
< |u-eDy I+ y A" (U -DAJx-(I - gD)]fll [1+yA*(U-DA)y|
<1+ yA* (WU - DAl -T2 I + y A" (U - DAY

which implies that T is nonexpansive. Further, we estimate

1T —

= || SPc(l - EDYM 1 + y A*(U — DA, — x|

= | SPc(l - §Dyuy — x4 |

|

<115V = Suvull + 1SV — 2l

= || Buvn + (1= Bi) G = Wy = (1= DGV | + 1Suvis = S + S = %

< 1B = 1lIve = Gyl + A =BGV = GVl + 1SV = Sdtll + 1Sy — 2
N

< 1B = Ulvi = Gvall + 1= B Y [0 = 0| I Tivall + 11V = Zll + 1S = 2.
i=1

From condition (iii), (3.26), and (3.27), we obtain

lim ||Tx, — x| = 0. (3.34)
n— 00

Page 20 of 29
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Also, for each x,y € C, it follows from Lemma 2.8 that ¥, has a unique fixed point x; € C
such that x; = Pc[ttFx + (I — t;uV)Tx,], and the net {x;};c(0,1) converges strongly as t — 0
to a fixed point g of T which solves the variational inequality ((uV — tF)q,q — p) <0,
Vp € F(T).

Next, from the above arguments, we know that F(S) N I" N VI(C,D) = ﬂfil F(T)ynrn
VI(C,D) = F. Further, for Vg, € F(T) = F(SPc(I - SD)]fl1 [ + yA*(U - I)A]) and VYq, €
F(S) N I' N VI(C, D). Then we have g5 =/ q2, Aqs = UAqa, g2 = J; 'l + yA*(U - DAl g,
and g2 = Pc(I — £D)q,. By the nonexpansion of S, Pc(I — £D) and ]fll , we get

g1 - g2
= |SPc( — DY [1 + yA*(U ~ DAqy - SPc( - D) [I + y A*(U - DA o |
< | Pett =DM [I + yA*(U - DA]qy - Pe(l - DY 1+ yA*(U - DA]gs |
< I {1+ yA* W - DAlqy - 21 + yA*(U ~ DA g2
< |[1+yA* W -DAlqy - [1 + yA* (WU - DA]gs |
= |q1 + yA* (U - DAG - s

2
<lq1 - @I+ vy -1)|(U -DAq|".
Since y € (0, %), we infer that
(U -DAq; =0, (3.35)

it follows from Proposition 2.3 that Aq; € SOLVIP(B,). In addition, since ]fll is firmly non-

expansive, from (3.35) we estimate

g1 - 211
< 2L+ yA U - DA]qr -T2 I + yA* (U - DA] g |
< (I +y AU - DA]qy =TI+ yA*(U - DA] g,
[1+yA*(U-DA]q: - [I+yA*(U-DA]q,)
=PI + yA*(U - DA]q1 - g, [1 + yA*(U = DA]q1 - [1 + yA*(U - DA] q2)
=a - qoq - ) < Vi ar - a2 l41 - g2

=i - llas - @2l < Nl - 4ol
which implies

gy - @l = 52 a1 — @201 — 42), (3.36)

hence

(]fllm -qu,q1-q2)=0 (3.37)
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Meanwhile, by (3.35) and (3.37), we have

g1 — a2l = [JPA[1 + yA*(U - DA]qi =M + yA* (U - DA]gs |
=B+ ya W - DAl - o |
= -a+ a1 -
=i -a I+ g - ol + 200 - q1,41 - 02)
=Vl -] + 4 - a1,
and hence J;'q1 = 1. Thus, 0 € Biqy, i.e., g1 € SOLVIP(By). As a result, we get 1 € I". By

the assumption ¢q; = Tg; = SPc(I — éD)]fl1 I +yA*(U-1)Alq:, we have q; = SPc(I —£D)q;.

Moreover, from the above arguments, we get

g1 — q2I* = | SPc(I - D)y — SPc(l - £D)gs |
< |Pct - £D)qy ~ Pc(l - £D)ga |
< |t -&D)q - 1 - D)ga |
= |41 - 42~ £(Dq - Do) |
< llg1 - gall* + £ —28)|Dg1 — DepaI?

<lq1 -l
thus, we have
Dq, - Dg = 0. (3.38)
From (3.38), we obtain

g1 - q211* = |SPc( — £D)qy — SPc(I - £D)gs |
< |Pct - £D)q1 - Pc(l - £D)ga |
< (Pcl - €D)qy — Pc(l ~£D)q, (I - ED)qy — (I - £D) )
= (Pc(I - £D)q1 - 42,91 - 42 - § (D1 — Dg))
= (Pc(I D)1 — g2, 41 — 42)
< |Pc - ED)q1 - g2 |l — g2l
= |Pc( - €D)q1 — Pc(I - ED)gs | llg1 — g2l

<llq1 - g211%,

and hence

g1 — g2l = (Pc( - €D)q1 — g2, 41 — ) (3.39)
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that is,
(PcI-§D)qy — 1,41 — 42) = 0. (3.40)

Meanwhile, from (3.40), we get

gy - 4a11* = |Pc(l — €D)qy — Pc(l - D)o |*
= |Pc( - ED)q1 - 612H2
= |Pcl - D)y — 1 + @1 — @
2

= |Pc - £D)q1 — a1 ||” + llgr — 421> + 2{Pc - ED)q1 - g1, 41 — 42)

= |Pctl - £D)gs — a1 |* + g1 - g1

> g1 - q21I”
which immediately implies Pc(I — £€D)q1 = g1, and so ¢q; € VI(C, D). It follows from ¢; =
SPc(I — €D)q, that q1 = Sq1, i.e., q1 € F(S). Thus, g1 € F(S) N VI(C, D). Since ¢; € I, we
obtain that ¢; € F(S) N I" N VI(C, D), which implies that F(T) C F(S) N I" N VI(C, D). In
addition, it is easy to see that F(S) N I" N VI(C,D) C F(T). Therefore, F(T) = F(S)N T N
VI(C,D) = Y, F(T) N ' NVI(C,D) = F.

Finally, we take a subsequence {x,, } of {x,}, assume that x,, — @, where w € F(T) = F.

By using Lemma 2.6 and (3.34), we have

lim sup((/LV -tF)q,q - xn) =lim sup((uV -tF)q,q- x,,k) = <(/,LV -tF)q,q - a)) <0.

n—00 k—o00

Step 4. We claim lim,,_, « ||%, — ¢|| = 0.
Indeed, we put

Zy = oy TEX, + Y, + [(1 — Y — a,,,uV]y,,. (3.41)
From (2.10), (3.1), (3.9), and (3.41), we obtain

%1 — g1
=(Pczy — Zn Xps1 = ) + (Zn — @ Xns1 — q)
= (Pczy — zn, Pczn — q) + (2n — @ %pe1 — q)
<(zu =@ %n1—9)
= (nTFxy + Yuon + [(L = yu)] — it V ]y — @, %11 — q)
=([A =y =V ]yn = [(1 = y)] - @utV]q
+ p(TFxy — V) + Vu(%n = 4)s X1 — q)
= ([ =y = auutV]yu = [(1 = y)I = upt V], %1 - q)
+ (@ (TFxy, — TFq), %1 — ) + @ (TFG — 11V X1 = G) + Vi (Kn — @ X1 — )

<[ =y = it V]yn = [(1 = v = 0t V]q| 151 - 4

Page 23 of 29
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+ a0y TLxn — qll[xXne1 — qll + € {TFq — Vg, %pi1 — q) + Vullxn — qllI1%n1 — 4l

[ o, K2\

< l_yn_anﬂ n——-—< ”yn _q””xnﬂ —6I|| +antL||xn_q””xn+l _q”
L 2(1 - Vn) .
+ o, (tFg — uVg, Xne1 — q) + Vullxn — qll1%ne1 — gl
i oK\

<|1-vu— am(n - "*) e = qllllns1 = gll + anTLl%n — qll11%0e1 — 4l
L 2(1 - Vn) .

+ Oln(TFq - qu:xn-d - q) + Vu ”xn - 61|| ||xn+1 - Q||

o, uK?
1—ay| un— ——— =1L ) |II%x = qll %041 — gll + 0t (TFg — £ Vg, %11 — q)
2(1 - yn)

i o, K2 1
=< 1—Oln<M77—2(I7y)—TL> (||xn_q||2+||xn+l_q”2)
L ~—/n .

+a,(tFg — uVg, xu1 — q)

i o K> ] , 1 5
l-« -—— 1L Xy — + =% —
i n<w7 30— )_II n=ql”+ 5 1% - 4l

+a,(tFg — uVg, xu1 — q),

1
2

IA
N =

which implies that

K?
—_alf<|1= _ R L _agll?
%01 —qll” < [ an<lm 30—y " % — 4l

+ Zan(th - /’quv Xnpsl — 4) (342)

2
Put a, = a,,(un — ;‘(”l‘fﬁ) —tL)andc, = W. Applying Lemma 2.5 to (3.42), we
T =7

obtain lim,,, o, ||x, — ¢|| = 0. This completes the proof. a

Theorem 3.1 Let H; and H, be two real Hilbert spaces and C be a nonempty closed con-
vex subset of Hy. Let A : Hi — Hy be a bounded linear operator, A* be the adjoint of A,
and r be the spectral radius of the operator A*A. Let f : Hy — Hj be a p-inverse strongly
monotone operator and B, : C — 21, By : Hy — 22 be two multi-valued maximal mono-
tone operators. Let D : C — H; be a §-inverse strongly monotone operator. Assume that
(TN, : C — Cis a finite family of k;-strict pseudo-contraction mappings such that F # (.
Let P¢ be the metric projection of Hy onto C, and F : C — H; be an L-Lipschitzian map-
ping with constant L > 0. Suppose that V : C — H is an n-strongly monotone and K-
Lipschitzian mapping, where 1 and | satisfy the conditions of Lemma 3.1. For x; € C, let
{x,} be a sequence of C generated by (1.7). Assume that conditions (i)—(v) in Lemma 3.1

hold. Then {x,} converges strongly to q € F, which solves the following variational inequal-
ity:

(uVg-tFq,q-p) <0, VpelF.

Proof Combining the proof of Lemma 3.1 with the proof of Lemma 3.2, we can obtain the

conclusion. O
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Remark 3.1 Compared with Theorem 3.1 of Jitsupa et al. [1], our result is different from
it in the following aspects:

(i) We not only change the parameter A of resolvent operators ]fl and ]fz into different
parameters A1 and A,, but also change the resolvent operator ]f2 into ]fzz (I = x5f)
which is more general than ]fz. It is worth stressing that the parameter A of
resolvent operators ]fl and ]fz in many results is the same A; see, e.g., [1, 11-13].
Thus our result improves and extends these results and other related results.

(ii) We improve and extend Theorem 3.1 of Jitsupa et al. [1]. Especially, we use the
Lipschitzian instead of the contraction, and also use the n-strongly monotone and
K-Lipschitzian operator instead of the strong positive linear bounded operator to
construct our iteration process.

(iii) It is worth mentioning here that our result in this paper is more applicable and
efficient than the result of Jitsupa et al. [1]. We give the definite domains and ranges
of B; and B, to make the iterative scheme (1.6) well-defined. We also modify the
iterative scheme (1.6) by adding the projection operator. As a result, our result can
be applied to finding a common solution of SMVIP (1.3) and VIP (2.7) and fixed
point problem of a finite family of strict pseudo-contraction mappings instead of
SVIP (1.2) and fixed point problem of a finite family of strict pseudo-contraction
mappings.

In Theorem 3.1, if Ay = Ay, f =D =0, y, =0, F is a contraction mapping, and V is a
strongly positive bounded linear operator, then we get the following corollary immediately.

Corollary 3.1 Let Hy and H; be two real Hilbert spaces and C be a nonempty closed con-
vex subset of Hy. Let A : Hy — H, be a bounded linear operator, A* be the adjoint of A,
and r be the spectral radius of the operator A*A. Let B, : C — 21, By : Hy — 22 be two
multi-valued maximal monotone operators. Assume that {T;}\ | : C — C is a finite family
of k;-strict pseudo-contraction mappings such that Fi= ﬂf\il F(T)NT #@.Letf :C — H;
be a contraction mapping with constant p € (0,1) and D : C — H; be a strongly positive
bounded linear operator with coefficient T > 0. For x; € C, let {x,} be a sequence generated
by the following scheme:

u, =],{31 [x, + yA* fz —DAx,],
Yn = Bulkn + 1-84 Zf\:[1 n,(n)Tiun:

Xntl = anff(xn) + (I_O[HD)yn’ n= 1.

Assume that conditions (ii), (iil) in Lemma 3.1 and the following conditions hold:

(i) )»>0,0<y<%;

(i) 3" = 1 00 (letmer =l + 1B = Bl + 30 1" = ")) < 0.
Then the sequence {x,} converges strongly to q € F, which solves the following variational
inequality:

(Dq-tfg,q-p) <0, VpelF.

4 Numerical examples
The purpose of this section is to give an example and numerical results to support Theo-
rem 3.1.
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Example4.1 Let H, = Hy = R3 and C = [0, +00) X [0, +00) x [0, +00). Let the inner product
(-} : R3 x R® — R be defined by (x,y) = x - ¥ = x151 + %2)2 + x3y3 and the usual norm

|1 : R® — R be defined by ||x| = \/x? + x5 + x3. Let two operators of matrix multiplication
By :C — R3, By : R?® — R3 be defined by

1
Bi=10 and B, =
0

S N O
w o O
S O N
[ 2 B )
w o o

Then we can define the resolvent operators ]fll and ]f; on R3 associated with B; and B,
where A1, Ay > 0. Let

S N O

0
0| eR¥>3
1

be a singular matrix operator and A* be the adjoint of A. It is easy to calculate that

=

*

I
S o N
© = O
N O O

The mappings T; : C — C defined by Tix = (10 ey 10(91Cix2) o 1+x3 ) Tox = (2‘(;(11131‘

| sinxo| | sinx3| X1 X2 _Xx3
0015y 20y ) and T3% = (355 552 30+x3) are k;-strict pseudo-contractions for i =

1,2,3 (see [29]). Let fx = %x (Vx € R3), Dx = 3x VxeC), Vx = %x (Vx € C), and Fx = %x
(Vx € C). Now, we present the following algorithm.

Algorithm 4.2
Step 0. Choose the initial pointx; =(2,3,4) € C. Put A= 1 S Ao = % Y =1 g 2, B = 10’
M=y =n =5 =g T =0 Vu=10 U= 13 whlch satisfy the all assumed

conditions of Theorem 3.1,and let n = 1.

Step 1. Given x,, € C, compute x,,; € C as follows:

U, = ?1[,, +3A BZ(I 3f) - DAx,),

Vn :PC(M}’I - _Dun)

9
In 10V"+10 z13TV"’

Xn+l = PC[@ EFle lon‘xn + ((1 10}1)1_ 813 V)yﬂ] n Z 1'

Step 2. Put n:=n+1and go to Step 1.

Setting [x,41 — %] < 107® as a stop criterion, we get the numerical results of Algo-
rithm 4.2.

Table 1 shows the values of the components of sequence x,, and [|x,.1 — %, ||

Figure 1 shows the convergence of the iterative sequence of Algorithm 4.2.

Solution: We can see from both Table 1 and Fig. 1 that the sequence {x,} converges
to (0,0,0), that is, (0,0,0) is the solution in Example 4.1. In addition, it is also easy to
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Table 1 Values of the components of x, and [|Xa+1 = Xl

1 2 3

n Xn Xn Xn X1 = Xn I
1 20000 3.0000 4.0000 45762
2 33463 x 107 44135 x 107! 5.9093 x 107" 6.8947 x 107!
3 54164 x 1072 64209x 1072 86473 x 1072 1.0297 x 107"
4 84481 x 1073 9.1707 x 1073 12416 x 1072 1.5088 x 1072
5 12664 x 1073 1.2838 x 1073 1.7454 x 10 321608 x 1073
6 1.8212x 107 1.7606 x 1074 24004 x 10 30176 x 107
7 25079 %107 23641 x107° 32281 x10° 41013 x 107
8 33006 x 10° 31068 x10° 42426 x107° 54163 x 107
9 41426 x 107 39941 x 1077 54467 x 107 69425 x 107/
10 4.9466 x 1078 50206 x 108 68263 x 10 86332x 1078
11 56050%x107°  61673x 1077 83472 x 107 1.0419 x 1078
12 60092 x 10710 73997 x 10710 99524 x 10710 12216 x 1072
45
X1
n |4
X2
n 1
3
mx: Xn
o= T
o
V—XC -
5
(9]
3 |
©
>
[0 4
ey
|_
6 8 10 12 14
The number of iteration (n)
Figure 1 The convergence of x, with initial x; = (2,3,4)

check from Example 4.1 that ﬂf\il F(T;)N I NVI(C,D) = {(0,0,0)}. Therefore, the iterative
algorithm of Theorem 3.1 is well-defined and efficient.

5 Results and discussion

In this paper, we propose a new iterative scheme for finding a solution of SMVIP (1.3)
with the constraints of a variational inequality and a fixed point problem of a finite family
of strict pseudo-contractions in real Hilbert spaces. Moreover, we prove a strong conver-
gence theorem for this iterative scheme.

In our main result, we not only give the definite domains and ranges of B; and B, to
make sure our iterative scheme (1.7) well-defined, but also modify the iterative scheme
(1.6) of Jitsupa et al. by adding the projection operator. Our result can be applied to finding
a common solution of SMVIP (1.3), VIP (2.7), and fixed point problem of a finite family
of strict pseudo-contraction mappings instead of SVIP (1.2) and fixed point problem of a
finite family of strict pseudo-contraction mappings. Thus, our result improves and extends
the result in [1].
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6 Conclusions

In this paper, we first propose a modified iterative scheme (1.7) and then prove the strong
convergence of the sequence {x,} generated by (1.7) to a common solution of SMVIP (1.3),
VIP (2.7), and a fixed point problem under suitable conditions. Finally, we give a numer-
ical example to support our strong convergence result. As a result, our result includes,
improves, and enriches the corresponding ones announced by some others, see, e.g., [1,
12,13].

7 Experimental

A numerical experiment is provided to support our iterative scheme in Algorithm 4.2,
Table 1 and Fig. 1 above indicate the strong convergence of Algorithm 4.2. Therefore, our
the iterative algorithm of Theorem 3.1 is well-defined and valid.
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