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Abstract
This work mainly studies the robust stability analysis and design of a controller for
uncertain neutral stochastic nonlinear systems with time-delay. Using a modified
Lyapunov–Krasovskii functional and the free-weighting matrices technique, we
establish some new delay-dependent criteria in terms of linear matrix inequality (LMI).
The innovative point of this work is that we generalize the robust stability analysis of
nonlinear stochastic time-delay systems to the uncertain neutral stochastic systems.
Due to the added derivative term of time-delay, the proposed scheme can be applied
more widely. Finally, numerical examples are provided to validate the derived results.
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1 Introduction
Time-delay systems are widely used to model concrete systems in engineering sciences,
such as biology, chemistry, mechanics [1–3]. Time-delay systems, with the rate of current
state affected by past state, are negative for the analysis and design of control systems
since they may be responsible for performance degradation and instability [4, 5]. There are
many valuable results about stability conditions for time-delay systems [6–9]. Generally,
the delay-dependent stability condition is less conservative than the delay-independent
one. Thus, pursuing the delay-dependent stability condition motivates the present study
[10–14].

Over the past years, the Brownian motion phenomenon has been common in biol-
ogy, economics, and engineering applications. Considerable attention has been devoted to
stochastic systems governed by Itô stochastic differential equations, where the noises are
described by Brownian motion [15, 16]. A large number of works that focused on stochas-
tic time-delay systems have been published; see, for example, [17–20]. Wang et al. in [19]
considered the problems of non-fragile robust stochastic stabilization and robust H∞ con-
trol for uncertain stochastic nonlinear time-delay systems. Both the robust stability anal-
ysis and non-fragile robust control for a class of uncertain stochastic nonlinear time-delay
systems that satisfy a one-sided Lipschitz condition were investigated in [17]. Based on
the stochastic Lyapunov–Krasovskii stability approach, the problem of stochastic stability
analysis was investigated for H∞ control of uncertain stochastic Markovian jump systems
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(SMJSs) with mixed time-varying delays [18]; meanwhile, some delay-dependent sufficient
conditions on the stochastic stability and γ -disturbance attenuation were presented.

The neutral stochastic systems can effectively model a class of physical dynamical sys-
tems, since the mathematical models of them include the time-delays of state and its
derivative. These models have received considerable attention recently [21–25]. In fact,
neutral stochastic systems are applied widely in automatic control, aircraft stabilization,
lossless transmission lines, and system of turbojet engine [26–28]. Both the stability anal-
ysis and synthesis of neutral stochastic systems have been extensively studied [29–36].
By using the generalized integral inequality and the nonnegative local martingale conver-
gence theorem, the authors in [30] investigated the exponential stability and the almost
sure exponential stability of neutral stochastic delay systems (NSDSs) with Markovian
switching. The authors in [33] constructed a new sliding surface functional and consid-
ered the H∞ sliding mode control (SMC) for uncertain neutral stochastic systems with
Markovian jumping parameters and time-varying delays. Using a delayed output-feedback
control method, Karimi et al. in [36] designed a controller, which guarantees H∞ synchro-
nization of the second-order neutral master and slave systems.

On the other hand, a useful one-sided Lipschitz condition was developed in [37]. Since
the nonlinear part satisfying this condition can make positive contributions to the stability
of systems, we can easily solve the observer design problem for nonlinear systems [17, 38–
40]. Inspired by the above works, we investigate the robust stability of neutral stochastic
time-delay nonlinear systems with one-sided Lipschitz condition.

In this paper, we propose a class of uncertain neutral stochastic nonlinear systems.
Since the systems have a derivative term of time-delay of state, they can be used in lots
of fields. We investigate the nonlinear function with both one-sided Lipschitz condition
and a quadratic inner-bounded condition. Firstly, a delay-dependent sufficient condition
is proposed by constructing an appropriate Lyapunov–Krasovskii functional based on the
free-weighting matrices method. Secondly, we construct a memory-less non-fragile state-
feedback controller to guarantee asymptotical stability of the closed-loop systems. Finally,
we present some numerical examples to illustrate the advantages and effectiveness of our
results and find that the proposed method is less conservative.

The organization of this paper is given as follows. In the next section, we recall some
notations, lemmas, and definitions of stochastic differential equations. In Sect. 3, the
main problems are formulated. In Sect. 4, we give two delay-dependent sufficient con-
ditions for uncertain neutral stochastic nonlinear time-delay systems. In Sect. 5, we de-
sign a memory-less non-fragile state-feedback controller to guarantee that the closed-loop
systems are asymptotically stable, and in Sect. 6, we present two numerical examples to
demonstrate the validity of the mentioned method. The last section contains a conclusion.

2 Notations and preliminaries
In this section, we introduce some basic concepts, properties, and notations. These basic
facts can be found in any introductory book on stochastic differential equations; see, for
example, [41–43].

Throughout this paper, let (Ω ,F ,P) be a complete probability space with a filtration
{Ft}t≥0 satisfying the usual conditions (i.e., the filtration contains all P-null sets and is
right continuous). B(t) is a one-dimensional Brownian motion defined on the probability
space adapted to the filtration. Rn and R

m×n denote the n-dimensional Euclidean space
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and the set of all m×n real matrices, respectively. ‖·‖2 stands for the usual L2[0,∞) norm.
The inner product of vectors x and y in R

n is denoted by < x, y > or xT y. Let C2,1(Rn ×
R+;R+) denote the family of all real-valued functions V (x(t), t) defined on R

n × R+ such
that they are continuously twice differentiable in x and once in t. C([–τ , 0];Rn) denotes
the space of all continuous Rn-valued functions ϕ defined on [–τ , 0] with a norm ‖ϕ‖ =
sup–τ≤θ≤0|ϕ(θ )|. The notation P > 0 means that P is real symmetric and positive definite;
the asterisk “∗” denotes a matrix that can be inferred by symmetry and the superscript
“T” represents the transpose of a matrix or a vector. In a matrix, (i, j) denotes an (i, j)-
block element of the matrix. The notation E{·} represents the mathematical expectation
operator. I denotes the identity matrix of compatible dimension.

Definition 2.1 ([17]) The nonlinear function f (x, y) is said to be one-sided Lipschitz if
there exist α1,α2 ∈R such that

〈
f (x, y), x

〉 ≤ α1xT x + α2yT y (1)

for ∀x, y ∈R
n, where constants α1 and α2 are positive, zero, or even negative, and they are

called one-sided Lipschitz constants for f (x, y) with respect to x and y.

Definition 2.2 ([17]) The nonlinear function f (x, y) is called quadratic inner-bounded in
the region C if, for any x, y ∈ C, there exist constants β1, β2, and γ such that

f (x, y)T f (x, y) ≤ β1xT x + β2yT y + γ
〈
x, f (x, y)

〉
. (2)

Lemma 2.1 (Schur complement [43]) For a given symmetric matrix

S =

[
S11 S12

ST
12 S22

]

,

the following conditions are equivalent:
(1) S < 0,
(2) S11 < 0, S22 – ST

12S–1
11 S12 < 0,

(3) S22 < 0, S11 – S12S–1
22 ST

12 < 0.

Lemma 2.2 ([44]) Let E ∈R
n, G ∈R

n, and ε > 0. Then we have

ET G + GT E ≤ εGT G + ε–1ET E.

Lemma 2.3 (S-procedure [45]) Denote the set Z = {z}, and let F (z), y1(z), y1(z), . . . , yk(z)
be some functions or functionals. Further define the domain D as follows:

D =
{

z ∈Z : y1(z) ≥ 0, y2(z) ≥ 0, . . . , yk(z) ≥ 0
}

,

and the two following conditions:
(1) F (z) > 0,∀z ∈D,
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(2) ∃ ε1 ≥ 0, ε2 ≥ 0, . . . , εk ≥ 0 such that

S(ε, z) = F (z) –
k∑

i=1

εiyi(z) > 0, ∀z ∈Z .

Then (2) implies (1). The procedure of replacing (1) by (2) is called the S-procedure.

3 Problem formulation
Consider the following uncertain neutral stochastic time-delay system described in Itô’s
form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d[x(t) – Cx(t – τ (t))]

= [(A + 
A(t))x(t) + (Aτ + 
Aτ (t))x(t – τ (t))

+ f (x(t), x(t – τ (t)) + Uu(t)] dt

+ [(H + 
H(t))x(t) + (Hτ + 
Hτ (t))x(t – τ (t))] dB(t),

x(t) = φ(t), t ∈ [–τ , 0],

(3)

where x(t) ∈R
n is the state vector, u(t) ∈R

p is the control input, and τ (t) is the unknown
time-varying delay satisfying 0 ≤ τ (t) < τ and τ̇ (t) ≤ d with real constants τ , d. f (x(t), x(t –
τ (t))) ∈R

n is a nonlinear function with respect to the state x(t) and the delayed state x(t –
τ (t)), f (0, 0) = 0. φ(t) ∈ C([–τ , 0];Rn) is a continuous vector-valued initial function, and
B(t) is a one-dimensional Brownian motion satisfying

E
{

dB(t)
}

= 0, E
{

dB(t)
}2 = dt,

in which A, Aτ , C, H , Hτ ∈R
n×n, and U ∈R

n×p are known real constant matrices of appro-
priate dimensions. Moreover, 
A(t), 
Aτ (t), 
H(t), and 
Hτ (t) are unknown matrices
representing time-varying parameter uncertainties and are assumed to be of the form

[

A(t) 
Aτ (t)

H(t) 
Hτ (t)

]

=

[
E1

E2

]

F(t)
[
G1 G2

]
, (4)

where E1, E2, G1, andG2 are known real constant matrices and F(t) is an unknown time-
varying matrix function satisfying

FT (t)F(t) ≤ I, ∀t ∈R
+. (5)

The parameter uncertainties 
A(t), 
Aτ (t), 
H(t), and 
Hτ (t) are said to be admissible
if both (4) and (5) hold [17].

4 Robust stability analysis
Let

h(t) = F(t)
[
G1x(t) + G2x

(
t – τ (t)

)]
,

h1(t) = Ax(t) + Aτ x
(
t – τ (t)

)
+ f

(
x(t), x

(
t – τ (t)

))
+ E1h(t) + Uu(t).
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System (3) can be rewritten as follows:
⎧
⎨

⎩
d[x(t) – Cx(t – τ (t))] = h1(t) dt + [Hx(t) + Hτ x(t – τ (t)) + E2h(t)] dB(t),

h(t)T h(t) ≤ [G1x(t) + G2x(t – τ (t))]T [G1x(t) + G2x(t – τ (t))].
(6)

We will consider the problem of robust stability for time-varying delay system (6) with
u(t) = 0.

Theorem 4.1 Consider the neutral stochastic time-delay system (6) with u(t) = 0. The non-
linear function f (x(t), x(t –τ (t))) satisfies (1) and (2). For given scalars τ and d, if there exist
matrices P > 0, W1 > 0, W2 > 0, R > 0, Mi > 0 (i = 1, . . . , 5), and Nj (j = 1, . . . , 4) of appropri-
ate dimensions and positive scalars ε1, ε2, ε3 satisfying the following LMIs:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ω̄11 Ω̄12 0 NT
2 0 Ω̄16 Ω̄17 AT R M̄1

∗ Ω̄22 NT
3 Ω̄24 NT

4 –CT P Ω̄27 AT
τ R M̄2

∗ ∗ Ω̄33 Ω̄34 Ω̄35 0 0 0 M̄3

∗ ∗ ∗ Ω̄44 Ω̄45 0 0 0 M̄4

∗ ∗ ∗ ∗ Ω̄55 0 0 0 M̄5

∗ ∗ ∗ ∗ ∗ –ε3I 0 R 0
∗ ∗ ∗ ∗ ∗ ∗ Ω̄77 ET

1 R 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ –τ–1R 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –M̄

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (7)

where

Ω̄11 = PA + AT P + HT PH + W1 + W2 + ε1GT
1 G1 + ε2α1I + ε3β1I,

Ω̄12 = PAτ – AT PC + HT PHτ + NT
1 + ε1GT

1 G2,

Ω̄16 = P –
1
2
ε2I +

1
2
ε3γ I, Ω̄17 = PE1 + HT PE2,

Ω̄22 = –CT PAτ – AT
τ PC + HT

τ PHτ – (1 – d)W1

– N1(C + I) – (C + I)T NT
1 + ε1GT

2 G2 + ε2α2I + ε3β2I,

Ω̄24 = N1C – CT NT
2 – NT

2 , Ω̄27 = –CT PE1 + HT
τ PE2

Ω̄33 = –W2 – N3 – NT
3 , Ω̄34 = –N3C, Ω̄35 = N3C – NT

4 ,

Ω̄44 = N2C + CT NT
2 , Ω̄45 = –CT NT

4 , Ω̄55 = N4C + CT NT
4 ,

Ω̄77 = ET
2 PE2 – ε1I, M̄ = diag

{
τ–1M1, τ–1M2, τ–1M3, τ–1M4, τ–1M5

}
,

M̄1 = [M1, 0, 0, 0, 0], M̄2 = [0, M2, 0, 0, 0], M̄3 = [0, 0, M3, 0, 0],

M̄4 = [0, 0, 0, M4, 0], M̄5 = [0, 0, 0, 0, M5],

Λ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

–M1 0 0 0 0 0
∗ –M2 0 0 0 0
∗ ∗ –M3 0 0 –N3

∗ ∗ ∗ –M4 0 0
∗ ∗ ∗ ∗ –M5 –N4

∗ ∗ ∗ ∗ ∗ –R

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (8)
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Π =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

–M1 0 0 0 0 0
∗ –M2 0 0 0 –N1

∗ ∗ –M3 0 0 0
∗ ∗ ∗ –M4 0 –N2

∗ ∗ ∗ ∗ –M5 0
∗ ∗ ∗ ∗ ∗ –R

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (9)

then the null solution of the stochastic time-delay system (6) is asymptotically stable in the
mean square.

Proof Choose the following Lyapunov–Krasovskii functional:

V
(
x(t), t

)
=

4∑

i=1

Vi, (10)

where

V1 =
[
x(t) – Cx

(
t – τ (t)

)]T P
[
x(t) – Cx

(
t – τ (t)

)]
, V2 =

∫ t

t–τ (t)
xT (s)W1x(s) ds,

V3 =
∫ t

t–τ

xT (s)W2x(s) ds, V4 =
∫ 0

–τ

∫ t

t+θ

hT
1 (s)Rh1(s) ds dθ .

Using Itô’s formula [41], we obtain the stochastic differential of V (x(t), t) as follows:

dV
(
x(t), t

)

= LV
(
x(t), t

)
dt + 2

[
x(t) – Cx

(
t – τ (t)

)]T P
[
Hx(t) + Hτ x

(
t – τ (t)

)
+ E2h(t)

]
dB(t),

=
{

2
[
x(t) – Cx

(
t – τ (t)

)]T P
[
Ax(t) + Aτ x

(
t – τ (t)

)
+ f

(
x(t), x

(
t – τ (t)

))
+ E1h(t)

]

+
[
Hx(t) + Hτ x

(
t – τ (t)

)
+ E2h(t)

]T P
[
Hx(t) + Hτ x

(
t – τ (t)

)
+ E2h(t)

]

+ xT (t)W1x(t) – (1 – τ̇ (t)xT(
t – τ (t)

)
W1x

(
t – τ (t)

)

+ xT (t)W2x(t) – xT (t – τ )W2x(t – τ )

+ τhT
1 (t)Rh1(t) –

∫ t

t–τ

hT
1 (s)Rh1(s)ds

}
dt

+
{

2
[
x(t) – Cx

(
t – τ (t)

)]T P
[
Hx(t) + Hτ x

(
t – τ (t)

)
+ E2h(t)

]}
dB(t). (11)

Taking the expectation of both sides of (11), we have

E dV
(
x(t), t

)
= ELV

(
x(t), t

)
dt. (12)

Set

xτ

(
t – τ (t)

) ≡ x
(
t – τ (t) – τ

(
t – τ (t)

))
,

xτ (t – τ ) ≡ x
(
t – τ – τ (t – τ )

)
.
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Using the Newton–Leibniz formula and the free-weighting matrices technique, we can
derive the following equations:

2
[
xT(

t – τ (t)
)
N1 + xT

τ

(
t – τ (t)

)
N2

][
x(t) – Cx

(
t – τ (t)

)
– x

(
t – τ (t)

)
+ Cxτ

(
t – τ (t)

)

–
∫ t

t–τ (t)
h1(s) ds –

∫ t

t–τ (t)

(
Hx(s) + Hτ x

(
s – τ (s)

)
+ E2h(s)

)
dB(s)

]
= 0, (13)

2
[
xT (t – τ )N3 + xT

τ (t – τ )N4
][

x
(
t – τ (t)

)
– Cxτ

(
t – τ (t)

)
– x(t – τ ) + Cxτ (t – τ )

–
∫ t–τ (t)

t–τ

h1(s) ds –
∫ t–τ (t)

t–τ

(
Hx(s) + Hτ x

(
s – τ (s)

)
+ E2h(s)

)
dB(s)

]
= 0, (14)

where Nj (j = 1, . . . , 4) are arbitrary matrices with appropriate dimensions. Using the prop-
erties of the stochastic integral [41], we have

E
{[

xT(
t – τ (t)

)
N1 + xT

τ

(
t – τ (t)

)
N2

] ∫ t

t–τ (t)

(
Hx(s) + Hτ x

(
s – τ (s)

)
+ E2h(s)

)
dB(s)

}
= 0,

E
{[

xT (t – τ )N3 + xτ (t – τ )NT
4
] ∫ t–τ (t)

t–τ

(
Hx(s) + Hτ x

(
s – τ (s)

)
+ E2h(s)

)
dB(s)

}
= 0.

Adding the left-hand sides of (13) and (14) onto LV (x(t), t), (12) is transformed to

E dV
(
x(t), t

)
= ELṼ

(
x(t), t

)
dt, (15)

where

LṼ
(
x(t), t

)

= LV
(
x(t), t

)
+ 2

[
xT(

t – τ (t)
)
N1 + xT

τ

(
t – τ (t)

)
N2

][
x(t)

– Cx
(
t – τ (t)

)
– x

(
t – τ (t)

)
+ Cxτ

(
t – τ (t)

)
–

∫ t

t–τ (t)
h1(s) ds

]

+ 2
[
xT (t – τ )N3 + xT

τ (t – τ )N4
]

×
[

x
(
t – τ (t)

)
– Cxτ

(
t – τ (t)

)
– x(t – τ ) + Cxτ (t – τ ) –

∫ t–τ (t)

t–τ

h1(s) ds
]

. (16)

For τ̇ (t) ≤ d, we have

LṼ
(
x(t), t

)

= LV
(
x(t), t

)
+ 2

[
xT(

t – τ (t)
)
N1 + xT

τ

(
t – τ (t)

)
N2

][
x(t)

– Cx
(
t – τ (t)

)
– x

(
t – τ (t)

)
+ Cxτ

(
t – τ (t)

)
–

∫ t

t–τ (t)
z(s) ds

]

+ 2
[
xT (t – τ )N3 + xT

τ (t – τ )N4
]

×
[

x
(
t – τ (t)

)
– Cxτ

(
t – τ (t)

)
– x(t – τ ) + Cxτ (t – τ ) –

∫ t–τ (t)

t–τ

h1(s) ds
]



Ma and Li Journal of Inequalities and Applications        (2018) 2018:293 Page 8 of 19

≤
{

2
[
x(t) – Cx

(
t – τ (t)

)]T P
[
Ax(t) + Aτ x

(
t – τ (t)

)
+ f

(
x(t), x

(
t – τ (t)

))

+ E1h(t)
]

+
[
Hx(t) + Hτ x

(
t – τ (t)

)
+ E2h(t)

]T P

× [
Hx(t) + Hτ x

(
t – τ (t)

)
+ E2h(t)

]
+ xT (t)W1x(t)

– (1 – d)xT(
t – τ (t)

)
W1x

(
t – τ (t)

)
+ xT (t)W2x(t)

– xT (t – τ )W2x(t – τ ) + τhT
1 (t)Rh1(t) –

∫ t–τ (t)

t–τ

hT
1 (s)Rh1(s) ds

–
∫ t

t–τ (t)
hT

1 (s)Rh1(s) ds
}

+ 2
[
xT(

t – τ (t)
)
N1 + xT

τ

(
t – τ (t)

)
N2

]

×
[

x(t) – Cx
(
t – τ (t)

)
– x

(
t – τ (t)

)
+ Cxτ

(
t – τ (t)

)
–

∫ t

t–τ (t)
h1(s) ds

]

+ 2
[
xT (t – τ )N3 + xT

τ (t – τ )N4
]

×
[

x
(
t – τ (t)

)
– Cxτ

(
t – τ (t)

)
– x(t – τ ) + Cxτ (t – τ ) –

∫ t–τ (t)

t–τ

h1(s) ds
]

. (17)

On the other hand, by using the one-sided Lipschitz (1) and the quadratically inner-
bounded condition (2), we obtain the following inequalities:

α1xT (t)x(t) + α2xT(
t – τ (t)

)
x
(
t – τ (t)

)
– xT (t)f

(
x(t), x

(
t – τ (t)

)) ≥ 0, (18)

β1xT (t)x(t) + β2xT(
t – τ (t)

)
x
(
t – τ (t)

)
– f

(
x(t), x

(
t – τ (t)

))T f
(
x(t), x

(
t – τ (t)

))

+ γ xT (t)f
(
x(t), x

(
t – τ (t)

)) ≥ 0. (19)

Using the S-procedure in (17), we obtain that LṼ (x(t), t) < 0 is satisfied if there exist
positive scalars ε1, ε2, ε3 satisfying

LṼ
(
x(t), t

)
+ ε1

[
G1x(t) + G2x

(
t – τ (t)

)]T[
G1x(t) + G2x

(
t – τ (t)

)]
– ε1h(t)T h(t)

+ ε2α1xT (t)x(t) + ε2α2xT(
t – τ (t)

)
x
(
t – τ (t)

)
– ε2xT (t)f

(
x(t), x

(
t – τ (t)

))

+ ε3β1xT (t)x(t) + ε3β2xT(
t – τ (t)

)
x
(
t – τ (t)

)
– ε3f

(
x(t), x

(
t – τ (t)

))T

× f
(
x(t), x

(
t – τ (t)

))
+ ε3γ xT (t)f

(
x(t), x

(
t – τ (t)

))
< 0. (20)

Moreover, the following formula holds for any positive definite matrix M1(M2, . . . , M5)
of appropriate dimensions:

τxT (t)M1x(t) –
∫ t

t–τ

xT (t)M1x(t) ds = 0. (21)

We can decompose the integration interval [t –τ , t] into two subintervals that are [t –τ , t –
τ (t)] and [t – τ (t), t], and let

ξT (t) =
[
xT (t)xT(

t – τ (t)
)
xT (t – τ )xT

τ

(
t – τ (t)

)
xT

τ (t – τ )f T(
x(t), x

(
t – τ (t)

))
hT (t)

]
,

ηT (t, s) =
[
xT (t)xT(

t – τ (t)
)
xT (t – τ )xT

τ

(
t – τ (t)

)
xT

τ (t – τ )hT
1 (s)

]
.
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Combining the above formula (21) and rearranging (20), we have the following inequality:

ξT (t)Ωξ (t) + τhT
1 (t)Rh1(t)

+
∫ t–τ (t)

t–τ

ηT (t, s)Λη(t, s) ds +
∫ t

t–τ (t)
ηT (t, s)Πη(t, s) ds < 0, (22)

where

Ω =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ω11 Ω12 0 NT
2 0 Ω16 PE1 + HT PE2

∗ Ω22 NT
3 Ω24 NT

4 –CT P –CT PE1 + HT
τ PE2

∗ ∗ Ω33 Ω34 Ω35 0 0
∗ ∗ ∗ Ω44 Ω45 0 0
∗ ∗ ∗ ∗ Ω55 0 0
∗ ∗ ∗ ∗ ∗ –ε3I 0
∗ ∗ ∗ ∗ ∗ ∗ ET

2 PE2 – ε1I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (23)

Λ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

–M1 0 0 0 0 0
∗ –M2 0 0 0 0
∗ ∗ –M3 0 0 –N3

∗ ∗ ∗ –M4 0 0
∗ ∗ ∗ ∗ –M5 –N4

∗ ∗ ∗ ∗ ∗ –R

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0,

Π =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

–M1 0 0 0 0 0
∗ –M2 0 0 0 –N1

∗ ∗ –M3 0 0 0
∗ ∗ ∗ –M4 0 –N2

∗ ∗ ∗ ∗ –M5 0
∗ ∗ ∗ ∗ ∗ –R

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0.

Ω11 = PA + AT P + HT PH + W1 + W2 + ε1GT
1 G1 + τM1 + ε2α1I + ε3β1I,

Ω12 = PAτ – AT PC + HT PHτ + NT
1 + ε1GT

1 G2,

Ω16 = P –
1
2
ε2I +

1
2
ε3γ I,

Ω22 = –CT PAτ – AT
τ PC + HT

τ PHτ – (1 – d)W1 – N1(C + I) – (C + I)T NT
1

+ ε1GT
2 G2 + τM2 + ε2α2I + ε3β2I,

Ω24 = N1C – CT NT
2 – NT

2 ,

Ω33 = –W2 + τM3 – N3 – NT
3 ,

Ω34 = –N3C,

Ω35 = N3C – NT
4 ,

Ω44 = N2C + CT NT
2 + τM4,

Ω45 = –CT NT
4 ,

Ω55 = N4C + CT NT
4 + τM5.
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Utilizing the Schur complement Lemma 2.1, (23) is equivalent to the following LMI:

Ω̄ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ω̄11 Ω̄12 0 NT
2 0 Ω̄16 Ω̄17 AT M̄1

∗ Ω̄22 NT
3 Ω̄24 NT

4 –CT P Ω̄27 AT
τ M̄2

∗ ∗ Ω̄33 Ω̄34 Ω̄35 0 0 0 M̄3

∗ ∗ ∗ Ω̄44 Ω̄45 0 0 0 M̄4

∗ ∗ ∗ ∗ Ω̄55 0 0 0 M̄5

∗ ∗ ∗ ∗ ∗ –ε3I 0 I 0
∗ ∗ ∗ ∗ ∗ ∗ Ω̄77 ET

1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ –τ–1R–1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –M̄

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (24)

Ω̄11 = PA + AT P + HT PH + W1 + W2 + ε1GT
1 G1 + ε2α1I + ε3β1I,

Ω̄12 = PAτ – AT PC + HT PHτ + NT
1 + ε1GT

1 G2,

Ω̄16 = P –
1
2
ε2I +

1
2
ε3γ I, Ω̄17 = PE1 + HT PE2,

Ω̄22 = –CT PAτ – AT
τ PC + HT

τ PHτ – (1 – d)W1

– N1(C + I) – (C + I)T NT
1 + ε1GT

2 G2 + ε2α2I + ε3β2I,

Ω̄24 = N1C – CT NT
2 – NT

2 , Ω̄27 = –CT PE1 + HT
τ PE2,

Ω̄33 = –W2 – N3 – NT
3 Ω̄34 = –N3C, Ω̄35 = N3C – NT

4 ,

Ω̄44 = N2C + CT NT
2 , Ω̄45 = –CT NT

4 , Ω̄55 = N4C + CT NT
4 ,

Ω̄77 = ET
2 PE2 – ε1I, M̄ = diag

{
τ–1M1, τ–1M2, τ–1M3, τ–1M4, τ–1M5

}
,

M̄1 = [M1, 0, 0, 0, 0], M̄2 = [0, M2, 0, 0, 0], M̄3 = [0, 0, M3, 0, 0],

M̄4 = [0, 0, 0, M4, 0], M̄5 = [0, 0, 0, 0, M5].

Pre-and post-multiplying (24) by diag{I, I, I, I, I, I, I, R, I}, we obtain LMI (7). Combining
with Λ < 0 and Π < 0, we find that ELṼ (ξ (t), t) < 0, i.e., it guarantees the asymptotic sta-
bility of system (6) in the mean square. �

If the uncertain parameters 
A(t), 
Aτ (t), 
H(t), and 
Hτ (t) in system (6) are equal
to zero, the system is simplified to the following deterministic stochastic system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d[x(t) – Cx(t – τ (t))]

= [Ax(t) + Aτ x(t – τ (t)) + f (x(t), x(t – τ (t)) + Uu(t)] dt

+ [Hx(t) + Hτ x(t – τ (t))] dB(t),

x(t) = φ(t), t ∈ [–τ , 0].

(25)

The following conclusion of the robust asymptotic stability is obtained by Theorem 4.1
for the deterministic stochastic system (25).

Corollary 4.1 Consider the stochastic time-delay system (25). The nonlinear function
f (x(t), x(t – τ (t))) satisfies (1) and (2). For given scalars τ and d, if there exist matrices
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P > 0, W1 > 0, W2 > 0, R > 0, Mi > 0 (i = 1, . . . , 5), and matrices Nj (j = 1, . . . , 4) of appropri-
ate dimensions and positive scalars ε1, ε2, ε3 satisfying the following LMIs:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ω11 Ω12 0 NT
2 0 Ω16 AT R M̄1

∗ Ω22 NT
3 Ω24 NT

4 –CT P AT
τ R M̄2

∗ ∗ Ω33 –N3C Ω35 0 0 M̄3

∗ ∗ ∗ Ω44 –CT NT
4 0 0 M̄4

∗ ∗ ∗ ∗ Ω55 0 0 M̄5

∗ ∗ ∗ ∗ ∗ –ε3I R 0
∗ ∗ ∗ ∗ ∗ ∗ –τ–1R 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ –M̄

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (26)

where

Ω11 = PA + AT P + HT PH + W1 + W2 + ε2α1I + ε3β1I,

Ω12 = PAτ – AT PC + HT PHτ + NT
1 , Ω16 = P –

1
2
ε2I +

1
2
ε3γ I,

Ω22 = –CT PAτ – AT
τ PC + HT

τ PHτ – (1 – d)W1

– N1(C + I) – (C + I)T NT
1 + ε2α2I + ε3β2I,

Ω24 = N1C – CT NT
2 – NT

2 , Ω33 = –W2 – N3 – NT
3 ,

Ω35 = N3C – NT
4 , Ω44 = N2C + CT NT

2 , Ω55 = N4C + CT NT
4 ,

M̄ = diag
{
τ–1M1, τ–1M2, τ–1M3, τ–1M4, τ–1M5

}
,

M̄1 = [M1, 0, 0, 0, 0], M̄2 = [0, M2, 0, 0, 0], M̄3 = [0, 0, M3, 0, 0],

M̄4 = [0, 0, 0, M4, 0], M̄5 = [0, 0, 0, 0, M5],

Λ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

–M1 0 0 0 0 0
∗ –M2 0 0 0 0
∗ ∗ –M3 0 0 –N3

∗ ∗ ∗ –M4 0 0
∗ ∗ ∗ ∗ –M5 –N4

∗ ∗ ∗ ∗ ∗ –R

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (27)

Π =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

–M1 0 0 0 0 0
∗ –M2 0 0 0 –N1

∗ ∗ –M3 0 0 0
∗ ∗ ∗ –M4 0 –N2

∗ ∗ ∗ ∗ –M5 0
∗ ∗ ∗ ∗ ∗ –R

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (28)

the null solution of the stochastic time-delay system (25) is asymptotically stable in the
mean square.
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5 Non-fragile robust state feedback controller design
In this section, we consider the design of a non-fragile state-feedback controller:

u(t) = K(t)x(t) =
(
K + 
K(t)

)
x(t), (29)

guaranteeing the robust stability for the closed-loop system (3). K is the controller gain,
and 
K(t) represents the gain perturbations with the following assumption:


K(t) = E3F(t)G3, (30)

where E3 and G3 are given real constant matrices with appropriate dimensions.

Theorem 5.1 Consider the stochastic time-delay system (6). The nonlinear function
f (x(t), x(t – τ (t))) satisfies (1) and (2). For given scalars τ and d, if there exist matrices
P > 0, W1 > 0, W2 > 0, R > 0, Mi > 0 (i = 1, . . . , 5), and matrices Nj (j = 1, . . . , 4) of appropri-
ate dimensions and positive scalars ε1, ε2, ε3, ε4, and σ satisfying the following LMIs:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ω11 Ω12 0 NT
2 0 Ω16 Ω17 AT R M̄1 J1 0

∗ Ω22 NT
3 Ω24 NT

4 –CT P Ω27 AT
τ R M̄2 0 0

∗ ∗ Ω33 Ω34 Ω35 0 0 0 M̄3 0 0
∗ ∗ ∗ Ω44 Ω45 0 0 0 M̄4 0 0
∗ ∗ ∗ ∗ Ω55 0 0 0 M̄5 0 0
∗ ∗ ∗ ∗ ∗ –ε3I 0 R 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ω77 ET

1 R 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ –τ–1R 0 0 L1

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –M̄ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –J 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –L

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (31)

Λ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

–M1 0 0 0 0 0
∗ –M2 0 0 0 0
∗ ∗ –M3 0 0 –N3

∗ ∗ ∗ –M4 0 0
∗ ∗ ∗ ∗ –M5 –N4

∗ ∗ ∗ ∗ ∗ –R

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (32)

Π =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

–M1 0 0 0 0 0
∗ –M2 0 0 0 –N1

∗ ∗ –M3 0 0 0
∗ ∗ ∗ –M4 0 –N2

∗ ∗ ∗ ∗ –M5 0
∗ ∗ ∗ ∗ ∗ –R

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (33)

where

Ω11 = PA + AT P + HT PH + W1 + W2 + ε1GT
1 G1 + ε2α1I + ε3β1I + 2ε4GT

3 G3,

Ω12 = PAτ – AT PC + HT PHτ + NT
1 + ε1GT

1 G2,
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Ω16 = P –
1
2
ε2I +

1
2
ε3γ I,

Ω17 = PE1 + HT PE2,

Ω22 = –CT PAτ – AT
τ PC + HT

τ PHτ – (1 – d)W1 – N1C – CT NT
1 – N1

– NT
1 + ε1GT

2 G2 + ε2α2I + ε3β2I,

Ω24 = N1C – CT NT
2 – NT

2 ,

Ω27 = –CT PE1 + HT
τ PE2, Ω33 = –W2 – NT

3 – N3, Ω34 = –N3C,

Ω35 = N3C – NT
4 , Ω44 = N2C + CT NT

2 , Ω45 = –CT NT
4 ,

Ω55 = N4C + CT NT
4 , Ω77 = ET

2 PE2 – ε1I,

M̄ = diag
{
τ–1M1, τ–1M2, τ–1M3, τ–1M4, τ–1M5

}
,

M̄1 = [M1, 0, 0, 0, 0], M̄2 = [0, M2, 0, 0, 0], M̄3 = [0, 0, M3, 0, 0],

M̄4 = [0, 0, 0, M4, 0], M̄5 = [0, 0, 0, 0, M5], J = diag

{
1
2
σ I, ε4I,σ I

}
,

J1 = [PU , PUE3, PU], L = diag{ε4I,σ I}, L1 = [RUE3, RU],

the closed-loop systems are asymptotically stable in the mean square with the non-fragile
state-feedback controller K = σ –1BT P.

Proof By using the controller K = σ –1UT P and letting

h1(t) =
(
A + U

(
K + 
K(t)

))
x(t) + Aτ x

(
t – τ (t)

)
+ f

(
x(t), x

(
t – τ (t)

))
+ E1h(t),

system (6) can be rewritten as follows:

⎧
⎪⎪⎨

⎪⎪⎩

d[x(t) – Cx(t – τ (t))]

= h1(t) dt + [Hx(t) + Hτ x(t – τ (t)) + E2h(t)] dB(t),

h(t)T h(t) ≤ [G1x(t) + G2x(t – τ (t))]T [G1x(t) + G2x(t – τ (t))].

(34)

Similar to Theorem 4.1, ELṼ (ξ (t), t) < 0 is guaranteed by the following matrix inequality
Ω < 0:

Ω =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ω11 Ω12 0 NT
2 0 Ω16 Ω17 Ω18 M̄1

∗ Ω22 NT
3 Ω24 NT

4 CT P Ω27 AT
τ M̄2

∗ ∗ Ω33 –N3C Ω35 0 0 0 M̄3

∗ ∗ ∗ Ω44 –CT NT
4 0 0 0 M̄4

∗ ∗ ∗ ∗ Ω55 0 0 0 M̄5

∗ ∗ ∗ ∗ ∗ –ε3I 0 I 0
∗ ∗ ∗ ∗ ∗ ∗ Ω77 ET

1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ –τ–1R–1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –M̄

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,
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where

Ω11 = P(A + UK) + (A + UK)T P + HT PH + W1 + W2 + ε1GT
1 G1

+ ε2α1I + ε3β1I + PUE3F(t)G3 + GT
3 FT (t)ET

3 UT P,

Ω12 = PAτ – AT PC + HT PHτ + NT
1 + ε1GT

1 G2,

Ω16 = P –
1
2
ε2I +

1
2
ε3γ I,

Ω17 = PE1 + HT PE2,

Ω18 = AT R + KT UT R + G3FT (t)ET
3 UT R,

Ω22 = –CT PAτ – AT
τ PC + HT

τ PHτ – (1 – d)W1 – N1C – CT NT
1 – N1 – NT

1

+ ε1GT
2 G2 + ε2α2I + ε3β2I,

Ω24 = N1C – CT NT
2 – NT

2 ,

Ω27 = –CT PE1 + HT
τ PE2, Ω33 = –W2 – NT

3 – N3, Ω35 = N3C – NT
4 ,

Ω44 = N2C + CT NT
2 , Ω55 = N4C + CT NT

4 , Ω77 = ET
2 PE2 – ε1I

M̄ = diag
{
τ–1M1, τ–1M2, τ–1M3, τ–1M4, τ–1M5

}
,

M̄1 = [M1, 0, 0, 0, 0], M̄2 = [0, M2, 0, 0, 0], M̄3 = [0, 0, M3, 0, 0],

M̄4 = [0, 0, 0, M4, 0], M̄5 = [0, 0, 0, 0, M5].

According to condition (30), we have

Ω = Ω̂ + ĒFḠ + ḠT FT ĒT + K̄ R̄ + R̄T K̄T ,

where

Ω̂ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ω̂11 Ω̂12 0 NT
2 0 Ω̂16 Ω̂17 AT R M̄1

∗ Ω̂22 NT
3 Ω̂24 NT

4 –CT P Ω̂27 AT
τ M̄2

∗ ∗ Ω̂33 –N3C N3C – NT
4 0 0 0 M̄3

∗ ∗ ∗ Ω̂44 Ω̂45 0 0 0 M̄4

∗ ∗ ∗ ∗ Ω̂55 0 0 0 M̄5

∗ ∗ ∗ ∗ ∗ –ε3I 0 I 0
∗ ∗ ∗ ∗ ∗ ∗ Ω̂77 ET

1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ –τ–1R–1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –M̄

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

where

Ω̂11 = P(A + UK) + (A + UK)T P + HT PH + W1 + W2 + ε1GT
1 G1 + ε2α1I + ε3β1I,

Ω̂12 = PAτ – AT PC + HT PHτ + NT
1 + ε1GT

1 G2,

Ω̂16 = P –
1
2
ε2I +

1
2
ε3γ I, Ω̂17 = PE1 + HT PE2,

Ω̂22 = –CT PAτ – AT
τ PC + HT

τ PHτ – (1 – d)W1 – N1C – CT NT
1 – N1 – NT

1
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+ ε1GT
2 G2 + ε2α2I + ε3β2I,

Ω̂24 = N1C – CT NT
2 – NT

2 ,

Ω̂27 = –CT PE1 + HT
τ PE2,

Ω̂33 = –W2 – NT
3 – N3,

Ω̂44 = N2C + CT NT
2 ,

Ω̂45 = –CT NT
4 ,

Ω̂55 = N4C + CT NT
4 ,

Ω̂77 = ET
2 PE2 – ε1I,

M̄ = diag
{
τ–1M1, τ–1M2, τ–1M3, τ–1M4, τ–1M5

}
, M̄1 = [M1, 0, 0, 0, 0],

M̄2 = [0, M2, 0, 0, 0], M̄3 = [0, 0, M3, 0, 0],

M̄4 = [0, 0, 0, M4, 0], M̄5 = [0, 0, 0, 0, M5].

Other notations are defined by (28), and Ē = {(PUE3)1,1, (RUE3)8,2} denotes a block matrix
with appropriate dimensions whose all nonzero blocks are the (1, 1)-block PUE3, the (8, 2)-
block RUE3, and all other blocks are zero matrices. Similarly, Ḡ = {(G3)1,1, (G3)2,1}, K̄ =
{(KT )1,1}, R̄ = {(UT R)1,8}. According to Lemma 2.2, for any scalars ε4 > 0 and σ > 0, we
have

Ω < Ω̂ + ε–1
4 ĒĒT + ε4ḠT Ḡ + σ K̄K̄T + σ –1R̄T R̄. (35)

Let K = σ –1UT P, using the Schur Lemma 2.1, we arrive at

Ω̂ + ε–1
4 ĒĒT + ε4ḠT Ḡ + σ K̄K̄T + σ –1R̄T R̄ < 0

if LMI (31) is satisfied. �

6 Two illustrative numerical examples
In order to illustrate the flexibility and reduced conservativeness of the proposed results,
we present two numerical examples in this section.

Example 6.1 [17] Consider the neutral stochastic time-delay nonlinear system (25) with

A =

[
–1.2 0.1
–0.1 –1

]

, Aτ =

[
–0.6 0.7
–1 –0.8

]

,

and the following nonlinear function that satisfies the one-sided Lipschitz (1) and the
quadratically innerbounded conditions (2):

f
(
x(t), x

(
t – τ (t)

))
=

[
0.1

sin2(x2–2)x1(t–τ (t))
0.1

sin1(x1–2)x2(t–τ (t))

]

,



Ma and Li Journal of Inequalities and Applications        (2018) 2018:293 Page 16 of 19

with α1 = 0.5, α2 = 0.005, γ = 5,β1 = –2.5, β2 = –0.015 (see [17]). We consider the coeffi-
cient matrix C as follows:

C =

[
–0.1 0.09

–0.02 –1

]

.

By Corollary 4.1, we can obtain the allowable upper bound of the time-delay τ = 3.0345 for
the above systems, which is greater than the previous result (the allowable upper bound
τ = 2.2487 in [17]). Comparing the allowable values of the systems, we see that our result
are less conservative. Since our system considers neutral stochastic systems with deriva-
tives of state time-delay, our results may have more extensive applications.

Example 6.2 Consider the uncertain neutral stochastic nonlinear time-delay system (3)
with

A =

[
–2.0 0.0
0.0 –0.9

]

, Aτ =

[
–1.0 0.0
–1.0 –1.0

]

,

C =

[
0.05 0
0.1 0.05

]

, B =

[
1
2

]

,

H =

[
–0.3 0.1
0.1 0.2

]

, Hτ =

[
–0.2 0.2
0.3 –0.2

]

,

E1 =

[
0.2 0
0 0.2

]

, E2 =

[
0.2 0
0 0.2

]

, E3 =
[
0.2 0.2

]
,

G1 =

[
0.2 0
0 0.2

]

, G2 =

[
0.2 0
0 0.2

]

, G3 =

[
0.2 0
0 0.2

]

.

Selecting the same nonlinear function f (x(t), x(t – τ (t))) as Example 6.1 and letting
d = 1.1, we solve LMIs (31), (32), and (33) to obtain the allowable bound τ = 3.2106. Hence,
for any time-delay τ satisfying 0 < τ ≤ 3.2106, there exists a non-fragile state-feedback
controller such that the closed-loop systems are asymptotically stable in the mean square.
For this example, if we choose the time-delay as τ = 2, according to Theorem 5.1, we can
obtain a set of solutions as follows:

P =

[
4.4021 –0.9004

–0.9004 0.8275

]

,

W1 =

[
1.6119 –0.0127

–0.0127 2.6697

]

, W2 =

[
28.4346 –0.5875
–0.5875 28.2063

]

,

R =

[
1.8078 –0.6499

–0.6499 0.8340

]

,

N1 =

[
–0.0561 –0.1719
–0.1719 0.0351

]

, N2 =

[
–0.0367 –0.0039
–0.0039 –0.0085

]

,

N3 =

[
–0.0114 –0.1333
–0.1333 0.0285

]

, N4 =

[
–0.0190 –0.0003
–0.0003 –0.0034

]

,
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M1 =

[
9.9084 –0.2109

–0.2109 10.0265

]

, M2 =

[
0.4494 0.0197
0.0197 0.8863

]

,

M3 =

[
10.1539 –0.1770
–0.1770 10.2906

]

, M4 =

[
0.0014 0.0004
0.0004 0.0003

]

,

M5 = 1.0 × 10–3

[
0.4711 0.0875
0.0875 0.0850

]

,

ε1 = 8.9466, ε2 = 1.0763 × 103, ε3 = 255.2072, ε4 = 29.2135,

σ = 38.2553,

and the desired state-feedback matrix K = σ –1BT P = [0.0680 0.0197].

7 Conclusions
In this work, the robust stability has been investigated for neutral stochastic time-delay
systems with disturbance, uncertainties, and one-sided Lipschitz nonlinearity. The para-
metric uncertainties are assumed to be time-varying and norm bounded. Firstly, the al-
lowable upper bound of time-delay has been obtained, which is a less conservative result.
Secondly, based on Lyapunov stability, a novel non-fragile state-feedback controller has
been designed to guarantee the robust stability of the closed-loop systems. Finally, two
numerical examples have been given to illustrate the effectiveness of the proposed control
scheme.
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