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Abstract
In this paper, we investigate the existence of a positive periodic solution for the
following fourth-order p-Laplacian generalized neutral differential equation with
attractive and repulsive singularities:

(ϕp(u(t) – c(t)u(t – δ(t)))′′
)
′′ + f (u(t))u′(t) + g(t,u(t)) = k(t),

where g has a singularity at the origin. The novelty of the present article is that we
show that attractive and repulsive singularities enable the achievement of a new
existence criterion of a positive periodic solution through an application of
coincidence degree theory. Recent results in the literature are generalized and
significantly improved.
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1 Introduction
In this paper, we consider the existence of a positive periodic solution for the following
fourth-order p-Laplacian generalized neutral differential equation with singularity:

(
ϕp
(
u(t) – c(t)u

(
t – δ(t)

))′′)′′ + f
(
u(t)

)
u′(t) + g

(
t, u(t)

)
= k(t), (1.1)

where p ≥ 2, ϕp(u) = |u|p–2u for u �= 0 and ϕp(0) = 0; f : R → R is a continuous function,
|c(t)| �= 1, for all t ∈ [0, T], c, δ ∈ C2(R,R) and c, δ are T-periodic functions for some T > 0,
δ′(t) < 1 for all t ∈ [0, T]; k : R → R is continuous periodic functions with k(t + T) ≡ k(t)
and

∫ T
0 k(t) dt = 0; g(t, u) = g0(u) + g1(t, u), g1 : R × (0, +∞) → R is an L2-Carathéodory

function and g1(t, ·) = g1(t + T , ·); g0 : (0, +∞) → R is a continuous function. g can come
with a singularity at the origin, i.e.,

lim
u→0+

g(t, u) = +∞
(

or lim
u→0+

g(t, u) = –∞
)

, uniformly in t.
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It is said that (1.1) is of repulsive type (resp. attractive type) if g → +∞ (resp. g → –∞) as
u → 0+.

In recent years, the study of periodic solutions for neutral differential equations has at-
tracted the attention of many researchers; see [2–9, 14, 16–18, 20, 21] and the references
cited therein. For related books, we refer the reader to [1, 12]. Most work concentrated on
the neutral operator (A1u)(t) := u(t)–cu(t –δ) (see [6, 7, 14, 16, 21]) or the neutral operator
with variable parameter (A2u)(t) := u(t) – c(t)u(t – δ) (see [3, 8]) or the neutral operator
with variable delay (A3u)(t) := u(t) – cu(t – δ(t)) (see [4, 5]). However, the study of a neu-
tral operator with linear autonomous difference operator (Au)(t) := u(t) – c(t)u(t – δ(t)) is
relatively rare.

At the same time, some authors began to consider neutral differential equations with
repulsive singularity [11, 13, 23]. Kong et al. [11] in 2015 discussed the following second-
order neutral differential equation with repulsive singularity:

(
u(t) – cu(t – δ)

)′′ + f
(
u(t)

)
u′(t) + g

(
t, u(t – τ )

)
= e(t), (1.2)

where c is a constant with |c| < 1, g allowed is to be repulsive singular at u = 0. By applying
Mawhin’s continuation theorem, the authors have shown that (1.2) had at least one posi-
tive T-periodic solution. The authors employed an interesting technique dealing with the
singularity of g(t, u) at u = 0. Afterwards, Xin and Cheng [23] in 2017 investigated a kind
of second-order neutral differential equation with repulsive singularity:

(
u(t) – cu(t – δ)

)′′ + f
(
t, u′(t)

)
+ g
(
t, u(t)

)
= e(t), (1.3)

where |c| �= 1 and g had a repulsive singular at u = 0. The authors found that the existence
of positive T-periodic solution for (1.3) by applications of coincidence degree theory.

All the aforementioned results are related to neutral differential equations or neutral dif-
ferential equations with repulsive singularity. Naturally, a new question arises: how does
the neutral differential equation with linear autonomous difference operator work on at-
tractive and repulsive singularities? Besides practical interests, the topic has obvious in-
trinsic theoretical significance. To answer this question, in this paper, we try to establish
the existence of periodic solutions of (1.1) by employing coincidence degree theory. The
techniques used are quite different from that in [11, 13, 23] and our results are more gen-
eral than those in [11, 13, 23] in two aspects. Firstly, we first analyze qualitative properties
of the neutral operator with a linear autonomous difference operator (Au)(t) in the case
that |c| > 1. Secondly, an attractive singularity is in contradiction with the repulsive singu-
larity. Therefore, the above methods of [11, 13, 23] are no longer applicable to a study of
(1.1) with an attractive singularity. So we need to find a new method.

The paper is organized as follows: In Sect. 2, we first analyze qualitative properties of the
neutral operator (Au)(t) in the case that |c| > 1, which will be helpful for further studies of
differential equations with this neutral operator. In Sect. 3, we get existence results of pos-
itive T-periodic solution for (1.1) with repulsive singularity. In Sect. 4, we investigate the
existence of a positive T-periodic solution for (1.1) with attractive singularity. In Sect. 5,
we illustrate our results with a numerical example.

2 Preliminary lemmas
Firstly, we recall the coincidence degree theory.
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Lemma 2.1 (Gaines and Mawhin [10]) Suppose that X and Y are two Banach spaces, and
L : D(L) ⊂ X → Y is a Fredholm operator with index zero. Let � ⊂ X be an open bounded
set and N : � → Y be L-compact on �. Assume that the following conditions hold:

(1) Lu �= λNu, ∀u ∈ ∂� ∩ D(L), λ ∈ (0, 1);
(2) Nu /∈ Im L, ∀u ∈ ∂� ∩ Ker L;
(3) deg{JQN ,� ∩ Ker L, 0} �= 0, where J : Im Q → Ker L is an isomorphism.

Then the equation Lu = Nu has a solution in � ∩ D(L).

On the other hand, we consider the properties of the neutral operator A.

Lemma 2.2 (see [22]) If |c(t)| < 1, then the operator (Au)(t) has a continuous inverse A–1

on the space

CT :=
{

u|u ∈ (R,R), u(t + T) ≡ u(t),∀t ∈R
}

,

satisfying

∣∣(A–1u
)
(t)
∣∣≤ ‖u‖

1 – c∞
, for c∞ := max

t∈[0,T]

∣∣c(t)
∣∣ < 1 ∀u ∈ CT .

Next, we study the properties of the neutral operator A in the case that |c(t)| > 1. Firstly,
we give the following lemma.

Lemma 2.3 (see [15]) If c(t) ∈ CT , δ(t) ∈ C1
T := {u ∈ C1(R,R) : u(t + T) = u(t)} and

δ′(t) < 1, then c(μ(t)) ∈ Cω , here μ(t) is the inverse function of t – δ(t).

Lemma 2.4 If |c(t)| > 1 and δ′(t) < 1, then the operator A has a continuous inverse A–1 on
CT , satisfying

∣∣(A–1u
)
(t)
∣∣≤ ‖u‖

c0 – 1
, for c0 := min

t∈[0,T]

∣∣c(t)
∣∣ > 1 ∀u ∈ CT .

Proof Let t – δ(t) := s ∈R. From Lemma 2.3, there exists a continuous function μ : R →R

such that μ(t – δ(t)) = μ(s) = t. Let

V : CT → CT , (Vu)(t) := u
(
t – δ(t)

)
.

Then there exists an operator V –1 : CT → CT such that (V –1u)(t –δ(t)) = (V –1u)(s) = u(t) =
u(μ(s)), i.e., (V –1u)(t) = u(μ(t)).

Let

E : CT → CT , (Eu)(t) := u(t) –
1

c(t)
u
(
μ(t)

)
,

B : CT → CT , (Bu)(t) :=
1

c(t)
u
(
μ(t)

)
,

and

D0 = t, Dj = μ
(
μ
(
μ
(· · ·μ(μ

︸ ︷︷ ︸
j

(t)
))))

, j = 1, 2, 3, . . . .
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By the definition of the linear operator B, we can get

(
B2u

)
(t) =

1
c(t)

· 1
c(μ(t))

u
(
μ
(
μ(t)

))
=

1
c(D0)

· 1
c(D1)

u(D2),

· · ·
(
Bju

)
(t) =

j∏

i=1

1
c(Di–1)

u(Dj).

Then

∞∑

j=0

(
Bju

)
(t) =

∞∑

j=0

j∏

i=1

1
c(Di–1)

u(Dj) = u(t) +
∞∑

j=1

j∏

i=1

1
c(Di–1)

u(Dj).

Since ‖B‖ < 1, we can see that the operator E has a continuous inverse E–1 : Cω → Cω ,
satisfying

(
E–1u

)
(t) =

(
(I – B)–1u

)
(t) =

∞∑

j=0

(
Bju

)
(t).

From (Au)(t) = u(t) – c(t)u(t – δ(t)), we have

(Au)(t) = u(t) – c(t)u
(
t – δ(t)

)

= –c(t)
[

u
(
t – δ(t)

)
–

1
c(t)

u(t)
]

= –c(t)V
[

u(t) –
1

c(t)
u
(
μ(t)

)]

= –c(t)(VEu)(t).

Then, from the above analysis, we can see that there exists an operator A–1, and

(
A–1u

)
(t) = –

1
c(t)

(
E–1V –1u

)
(t)

= –
1

c(t)
(
E–1u

)(
μ(t)

)
.

Therefore, we have

∣
∣(A–1u

)
(t)
∣
∣ =
∣∣
∣∣–

1
c(t)

(
E–1u

)(
μ(t)

)
∣∣
∣∣ =

∣∣
∣∣
∣

1
c(t)

∞∑

j=0

(
Bju

)(
μ(t)

)
∣∣
∣∣
∣

=

∣∣
∣∣
∣

1
c(t)

(

u
(
μ(t)

)
+

∞∑

j=1

(
Bju

)(
μ(t)

)
)∣∣
∣∣
∣

≤ 1
c0

∣∣
∣∣
∣
u
(
μ(t)

)
+

∞∑

j=1

j∏

i=1

1
c(Di)

u(Dj+1)

∣∣
∣∣
∣
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≤ 1
c0

(

1 +
∞∑

j=1

(
1
c0

)j
)

‖u‖

≤ ‖u‖
c0 – 1

. �

Next, we rewrite (1.1) in the form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(Au1)′(t) = u2(t),

u′
2(t) = ϕq(u3(t)),

u′
3(t) = u4(t),

u′
4(t) = –f (u1(t))u′

1(t) – g(t, u1(t)) + k(t),

(2.1)

where 1
p + 1

q = 1. Clearly, if u(t) = col(u1(t), u2(t), u3(t), u4(t)) is periodic solution for (2.1),
then u1(t) must be a periodic solution for (1.1). Therefore, the problem of finding an T-
periodic solution for (1.1) reduces to finding one for (2.1).

Set X = Y = {u = col(u1(t), u2(t), u3(t), u4(t)) ∈ C1(R,R4) : u(t + T) ≡ u(t)} with the norm
‖u‖ = max{‖u1‖,‖u2‖,‖u3‖,‖u4‖}. Clearly, X and Y are both Banach spaces. Meanwhile,
define

L : D(L) =
{

u ∈ C1(
R,R4) : u(t + T) = u(t), t ∈R

}⊂ X → Y

by

(Lu)(t) =

⎛

⎜
⎜⎜
⎝

(Au1)′(t)
u′

2(t)
u′

3(t)
u′

4(t)

⎞

⎟
⎟⎟
⎠

and N : X → Y by

(Nu)(t) =

⎛

⎜
⎜⎜
⎝

u2(t)
ϕq(u3(t))

u4(t)
–f (u1(t))u′

1(t) – g(t, u1(t)) + k(t)

⎞

⎟
⎟⎟
⎠

. (2.2)

Then (2.1) can be converted to the abstract equation Lu = Nu.

From ∀u ∈ Ker L, u =

( u1
u2
u3
u4

)

∈ Ker L, i.e.

{ (u1(t) – c(t)u1(t – δ(t)))′ = 0
u′

2(t) = 0,
u′

3(t) = 0,
u′

4(t) = 0,

we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u1(t) – c(t)u1(t – δ(t)) = a1,

u2(t) = a2,

u3(t) = a3,

u4(t) = a4,
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where a1, a2, a3, a4 ∈ R are constant. Let φ(t) �= 0 is a solution of u(t) – c(t)u(t – δ(t)) = 1,

then Ker L = u =

( a1φ(t),
a2
a3
a4

)

. From the definition of L, one can easily see that

Ker L ∼= R
4, Im L =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y ∈ Y :
∫ T

0

⎛

⎜
⎜⎜
⎝

y1(s)
y2(s)
y3(s)
y4(s)

⎞

⎟
⎟⎟
⎠

ds =

⎛

⎜
⎜⎜
⎝

0
0
0
0

⎞

⎟
⎟⎟
⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

So L is a Fredholm operator with index zero. Let P : X → Ker L and Q : Y → Im Q ⊂R
4 be

defined by

Px =

⎛

⎜⎜
⎜
⎝

(Au1)(0)
u2(0)
u3(0)
u4(0)

⎞

⎟⎟
⎟
⎠

;

Qy =
1
T

∫ T

0

⎛

⎜⎜
⎜
⎝

y1(s)
y2(s)
y3(s)
y4(s)

⎞

⎟⎟
⎟
⎠

ds,

then Im P = Ker L, Ker Q = Im L. So, L is a Fredholm operator with index zero. Let K denote
the inverse of L|Ker p∩D(L), we have

[Ky](t) = col

(∫ T

0
G1(t, s)y1(s) ds,

∫ T

0
G2(t, s)y2(s) ds,

∫ T

0
G3(t, s)y3(s) ds,

∫ T

0
G4(t, s)y4(s) ds

)
,

where

Gi(t, s) =

⎧
⎨

⎩

s
T , 0 ≤ s < t ≤ T ;
s–T

T , 0 ≤ t ≤ s ≤ T ;
i = 1, 2, 3, n. (2.3)

From (2.2) and (2.3), it is easy to see that QN and K(I – Q)N are continuous, QN(�) is
bounded and then K(I – Q)N(�) is compact for any open bounded � ⊂ X, which means
N is L-compact on �̄.

3 Periodic solutions for (1.1) with repulsive singularity
In this section, we investigate the existence of positive periodic solution for (1.1) with
repulsive singularity. Firstly, we embed Eq. (2.1) into the following equation family with a
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parameter λ ∈ (0, 1]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(Au1)′(t) = λu2(t),

u′
2(t) = λϕq(u3(t)),

u′
3(t) = λu4(t),

u′
4(t) = –λf (u1(t))u′

1(t) – λg(t, u1(t)) + λk(t).

(3.1)

Substituting u4(t) = λ1–p(ϕp((Au1)′′(t)))′ into the last equation of (3.1), we can get

(
ϕp(Au1)′′(t)

)′′ + λpf
(
u1(t)

)
u′

1(t) + λpg
(
t, u1(t)

)
= λpk(t). (3.2)

Lemma 3.1 Suppose the following condition is satisfied:
(H1) There exist two constants 0 < d1 < d2 such that g(t, u) < 0 for all (t, u) ∈ [0, T] ×

(0, d1), and g(t, u) > 0 for all (t, u) ∈ [0, T] × (d2, +∞).
Then there exists a point τ ∈ [0, T] such that

d1 ≤ u1(τ ) ≤ d2. (3.3)

Proof Integration of both sides of (3.2) from 0 to T , we have

∫ T

0
g
(
t, u1(t)

)
dt = 0. (3.4)

From (3.4), there exists a point τ ∈ [0, T] such that

g
(
t1, u1(τ )

)
= 0.

From (H1), we can see that (3.3) is satisfied. �

Lemma 3.2 Assume that c∞ < 1 and (H1) hold. Suppose the following conditions are sat-
isfied:

(H2) There exist positive constants α, β such that

g(t, u) ≤ αup–1 + β , for all (t, u) ∈ [0, T] × (0, +∞). (3.5)

(H3) There exist two positive constants a, b such that

∣∣f
(
u(t)

)∣∣≤ a|u|p–2 + b, ∀u ∈R.

(H4) We have

0 <
T(aT + 2α)

(1 – c∞ – ( T2
2π

c2 + 2Tc1 + 2Tc1δ1 + Tc∞δ2 + c∞δ2
1 + 2c∞δ1))p–1

< 1,

where δi = maxt∈[0,ω] |δ(i)(t)|, ci = maxt∈[0,ω] |c(i)(t)|, i = 1, 2.
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Then there exist positive constants M1, M2, M3, M4 such that

u1(t) ≤ M1, ‖u2‖ ≤ M2, ‖u3‖ ≤ M3, ‖u4‖ ≤ M4. (3.6)

Proof Firstly, we will consider (Au1)′′(t). Since (Au1)(t) = u1(t) – c(t)u1(t – δ(t)), we have

(Au1)′(t) =
(
u1(t) – c(t)u1

(
t – δ(t)

))′

= u′
1(t) – c′(t)u1

(
t – δ(t)

)
– c(t)u′

1
(
t – δ(t)

)
+ c(t)u′

1
(
t – δ(t)

)
δ′(t) (3.7)

and

(Au1)′′(t) =
(
u′

1(t) – c′(t)u1
(
t – δ(t)

)
– c(t)u′

1
(
t – δ(t)

)
+ c(t)u′

1
(
t – δ(t)

)
δ′(t)

)′

= u′′
1(t) –

[
c′′(t)u1

(
t – δ(t)

)
+ c′(t)u′

1
(
t – δ(t)

)(
1 – δ′(t)

)
+ c′(t)u′

1
(
t – δ(t)

)

+ c(t)u′′
1
(
t – δ(t)

)(
1 – δ′(t)

)

– c′(t)u′
1
(
t – δ(t)

)
δ′(t) – c(t)u′′

1
(
t – δ(t)

)(
1 – δ′(t)

)
δ′(t)

– c(t)u′
1
(
t – δ(t)

)
δ′′(t)

]

= u′′
1(t) – c(t)u′′

1
(
t – δ(t)

)
–
[
c′′(t)u1

(
t – δ(t)

)
+
(
2c′(t) – 2c′(t)δ′(t)

– c(t)δ′′(t)
)
u′

1
(
t – δ(t)

)

+
(
c(t)

(
δ′(t)

)2 – 2c(t)δ′(t)
)
u′′

1
(
t – δ(t)

)]
.

Hence, we can get

(
Au′′

1
)
(t) = (Au1)′′(t) + c′′(t)u1

(
t – δ(t)

)
+
(
2c′(t) – 2c′(t)δ′(t) – c(t)δ′′(t)

)
u′

1
(
t – δ(t)

)

+
(
c(t)

(
δ′(t)

)2 – 2c(t)δ′(t)
)
u′′

1
(
t – δ(t)

)
.

By applying Lemma 2.2 and c∞ < 1, we have

∥∥u′′
1
∥∥ = max

t∈[0,T]

∣∣A–1Au′′
1(t)

∣∣

≤ maxt∈[0,T] |Au′′
1(t)|

1 – c∞

≤ ϕq(‖u3‖) + c2‖u1‖ + (2c1 + 2c1δ1 + c∞δ2)‖u′
1‖ + (c∞δ2

1 + 2c∞δ1)‖u′′
1‖

1 – c∞
,

where ci = maxt∈[0,T] |c(i)(t)| and δi = maxt∈[0,T] |δ(i)(t)|, i = 1, 2. From (3.3) and the Wirtinger
inequality (see [19], Lemma 2.4), we have

u1(t) ≤ d2 +
∫ T

0

∣∣u′
1(t)

∣∣dt

≤ d2 + T
1
2

(∫ T

0

∣
∣u′

1(t)
∣
∣2 dt

) 1
2
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≤ d2 + T
1
2

T
2π

(∫ T

0

∣∣u′′
1(t)

∣∣2 dt
) 1

2

≤ d2 +
T2

2π

∥∥u′′
1
∥∥. (3.8)

From u1(0) = u1(T), there exists a point t2 ∈ [0, T] such that u′
1(t2) = 0, then we have

∥
∥u′

1
∥
∥≤ u′

1(t2) +
∫ T

0

∣
∣u′′

1(t)
∣
∣dt ≤ T

∥
∥u′′

1
∥
∥. (3.9)

Therefore, we have

∥
∥u′′

1
∥
∥

≤ ϕq(‖u3‖) + c2(d2 + T2

2π
‖u′′

1‖) + T(2c1 + 2c1δ1 + c∞δ2)‖u′′
1‖ + (c∞δ2

1 + 2c∞δ1)‖u′′
1‖

1 – c∞

≤ ϕq(‖u3‖) + ( T2

2π
c2 + 2Tc1 + 2Tc1δ1 + Tc∞δ2 + c∞δ2

1 + 2c∞δ1)‖u′′
1‖ + c2d2

1 – c∞
.

Since 1 – c∞ – ( T2

2π
c2 + 2Tc1 + 2Tc1δ1 + Tc∞δ2 + c∞δ2

1 + 2c∞δ1) > 0, we have

∥
∥u′′

1
∥
∥≤ ϕq(‖u3‖) + c2d2

1 – c∞ – ( T2
2π

c2 + 2Tc1 + 2Tc1δ1 + Tc∞δ2 + c∞δ2
1 + 2c∞δ1)

. (3.10)

On the other hand, from u3(0) = u3(T), there exists a point t4 ∈ [0, T] such that u4(t4) = 0,
we have

∣∣u4(t)
∣∣≤

(
u4(t4) +

∫ T

0

∣∣u′
4(t)

∣∣dt
)

= λ

∫ T

0

∣∣–f
(
u1(t)

)
u′

1(t) – g
(
t, u1(t)

)
+ k(t)

∣∣dt

≤
∫ T

0

∣∣f
(
u1(t)

)∣∣∣∣u′
1(t)

∣∣dt +
∫ T

0

∣∣g
(
t, u1(t)

)∣∣dt +
∫ T

0

∣∣k(t)
∣∣dt. (3.11)

From (H2) and (3.4), we have

∫ T

0

∣
∣g
(
t, u1(t)

)∣∣dt =
∫

g(t,u1(t))≥0
g
(
t, u1(t)

)
dt –

∫

g(t,u1(t))≤0
g
(
t, u1(t)

)
dt

= 2
∫

g(t,u1(t))≥0
g+(t, u1(t)

)
dt

≤ 2
∫

g(t,u1(t))≥0

(
αup–1

1 (t) + β
)

dt

≤ 2α

∫ T

0

∣
∣u1(t)

∣
∣p–1 dt + 2βT , (3.12)
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where g+(t, u1) := max{0, g(t, u1)}. Substituting (3.8), (3.9) and (3.12) into (3.11), and from
(H3), we have

∣∣u4(t)
∣∣≤ a

∫ T

0

∣∣u1(t)
∣∣p–2∣∣u′

1(t)
∣∣dt + b

∫ T

0

∣∣u′
1(t)

∣∣dt

+ 2α

∫ T

0

∣
∣u1(t)

∣
∣p–1 dt + 2βT + ‖k‖T

≤ aT‖u1‖p–2∥∥u′
1
∥∥ + bT

∥∥u′
1
∥∥ + 2Tα‖u1‖p–1 +

(
2β + ‖k‖)T

≤ aT2
(

d2 +
T2

2π

∥
∥u′′

1
∥
∥
)p–2∥

∥u′′
1
∥
∥ + bT2∥∥u′′

1
∥
∥

+ 2Tα

(
d2 +

T2

2π

∥
∥u′′

1
∥
∥
)p–1

+
(
2β + ‖k‖)T

≤ aT2
(

1 +
2πd2

T2‖u′′
1‖
)p–2∥∥u′′

1
∥∥p–1 + 2Tα

(
1 +

2πd2

T2‖u′′
1‖
)p–1∥∥u′′

1
∥∥p–1

+ bT2∥∥u′′
1
∥
∥ +

(
2β + ‖k‖)T

≤ aT2
(

1 +
2πd2(p – 2)

T2‖u′′
1‖

)∥∥u′′
1
∥∥p–1 + 2Tα

(
1 +

2πd2(p – 1)
T2‖u′′

1‖
)∥∥u′′

1
∥∥p–1

+ bT2∥∥u′′
1
∥
∥∞
(
2β + ‖k‖)T

=
(
aT2 + 2Tα

)∥∥u′′
1
∥
∥p–1 +

(
2aπd2(p – 2) +

4παd2(p – 1)
T

)∥
∥u′′

1
∥
∥p–2

+ bT2∥∥u′′
1
∥
∥ +

(
2β + ‖k‖)T (3.13)

since (1 + u)l ≤ 1 + (1 + l)u for u ∈ [0,μ], μ is a constant. Substituting (3.10) into (3.13), we
have

∣
∣u4(t)

∣
∣≤ (

aT2 + 2Tα
)

× (ϕq(‖u3‖) + c2d2)p–1

(1 – c∞ – ( T2
2π

c2 + 2Tc1 + 2Tc1δ1 + Tc∞δ2 + c∞δ2
1 + 2c∞δ1))p–1

+
(

2aπd2(p – 2) +
4παd2(p – 1)

T

)

· (ϕq(‖u3‖) + c2d2)p–2

(1 – c∞ – ( T2
2π

c2 + 2Tc1 + 2Tc1δ1 + Tc∞δ2 + c∞δ2
1 + 2c∞δ1))p–2

+ bT2 ϕq(‖u3‖) + c2d2

1 – c∞ – ( T2
2π

c2 + 2Tc1 + 2Tc1δ1 + Tc∞δ2 + c∞δ2
1 + 2c∞δ1)

+
(
2β + ‖k‖)T . (3.14)

Since
∫ T

0 ϕq(u3(t)) dt =
∫ T

0 u′
2(t) dt = 0, then there exists a point t3 ∈ [0, T] such that

u3(t3) = 0. From the Wirtinger inequality and (3.14), we can easily get

‖u3‖ ≤
∫ T

0

∣
∣u4(t)

∣
∣dt

≤ T‖u4‖
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≤ T
[(

aT2 + 2Tα
)

· (ϕq(‖u3‖) + c2d2)p–1

(1 – c∞ – ( T2
2π

c2 + 2Tc1 + 2Tc1δ1 + Tc∞δ2 + c∞δ2
1 + 2c∞δ1))p–1

+
(

2aπd2(p – 2) +
4παd2(p – 1)

T

)

· (ϕq(‖u3‖) + c2d2)p–2

(1 – c∞ – ( T2
2π

c2 + 2Tc1 + 2Tc1δ1 + Tc∞δ2 + c∞δ2
1 + 2c∞δ1))p–2

+ bT2 ϕq(‖u3‖) + c2d2

1 – c∞ – ( T2
2π

c2 + 2Tc1 + 2Tc1δ1 + Tc∞δ2 + c∞δ2
1 + 2c∞δ1)

+
(
2β + ‖k‖)T

]
.

Therefore, we get

‖u3‖ ≤ T
[
(
aT2 + 2Tα

)

· ‖u3‖ + (p – 1)‖u3‖2–qc2d2 + · · · + (c2d – 2)p–1

(1 – c∞ – ( T2
2π

c2 + 2Tc1 + 2Tc1δ1 + Tc∞δ2 + c∞δ2
1 + 2c∞δ1))p–1

+
(

2aπd2(p – 2) +
4παd2(p – 1)

T

)

· ‖u3‖2–q + · · · + (c2d2)p–2

(1 – c∞ – ( T2
2π

c2 + 2Tc1 + 2Tc1δ1 + Tc∞δ2 + c∞δ2
1 + 2c∞δ1))p–2

+ bT2 ϕq(‖u3‖) + c2d2

1 – c∞ – ( T2
2π

c2 + 2Tc1 + 2Tc1δ1 + Tc∞δ2 + c∞δ2
1 + 2c∞δ1)

+
(
2β + ‖k‖∞

)
T
]

.

Since p ≥ 2 and T(aT2+2Tα)
(1–c∞–( T2

2π c2+2Tc1+2Tc1δ1+Tc∞δ2+c∞δ2
1 +2c∞δ1))p–1

< 1, there exists a positive con-

stant M3 (independent of λ) such that

‖u3‖ ≤ M3. (3.15)

Substituting (3.15) into (3.10), we get

∥∥u′′
1
∥∥≤ ϕq(‖u3‖) + c2d2

1 – c∞ – ( T2
2π

c2 + 2Tc1 + 2Tc1δ1 + Tc∞δ2 + c∞δ2
1 + 2c∞δ1)

≤ Mq–1
3 + c2d2

1 – c∞ – ( T2
2π

c2 + 2Tc1 + 2Tc1δ1 + Tc∞δ2 + c∞δ2
1 + 2c∞δ1)

:= M∗
2.

Thus, we have

u1(t) ≤ d2 +
T2

2π

∥
∥u′′

1
∥
∥≤ d2 +

T2

2π
M∗

2 := M1, (3.16)
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and from (3.9), we have

∥
∥u′

1
∥
∥≤ T

∥
∥u′′

1
∥
∥≤ TM∗

2 := M∗
1. (3.17)

Therefore, from (3.7), (3.16) and (3.17), we have

‖u2‖ ≤ M∗
1 + c1M1 + c∞M∗

1(1 + δ1) := M2. (3.18)

On the other hand, from (3.11) and (3.12), we can get

‖u4‖ ≤ max

∣
∣∣
∣

∫ T

0
u′

4(t) dt
∣
∣∣
∣≤ λ

∫ T

0

∣∣–f
(
u1(t)

)
u′

1(t) – g
(
t, u1(t)

)
+ k(t)

∣∣dt

≤ λ

(∫ T

0

∣
∣f
(
u1(t)

)∣∣
∣
∣u′(t)

∣
∣dt +

∫ T

0

∣
∣g
(
t, u1(t)

)∣∣dt +
∫ T

0

∣
∣k(t)

∣
∣dt
)

≤ λ
(‖fM1‖M∗

1T + 2αTMp–1
1 + 2βT + T‖k‖) := M4, (3.19)

where ‖fM1‖ = max0<u1≤M1 |f (u1(t))|. �

Lemma 3.3 Assume that c0 > 1 and (H1)–(H3) hold. Suppose the following conditions are
satisfied:

(H5) We have

0 <
T(aT + 2α)

(c0 – 1 – ( T2
2π

c2 + 2Tc1 + 2Tc1δ1 + Tc∞δ2 + c∞δ2
1 + 2c∞δ1))p–1

< 1.

Then there exist positive constants M′
1, M′

2, M′
3, . . . , M′

n such that

u1(t) ≤ M′
1, ‖u2‖ ≤ M′

2, ‖u3‖ ≤ M′
3, ‖u4‖ ≤ M′

4. (3.20)

Proof We follow the same strategy and notation as in the proof of Lemma 3.2. From c0 > 1
and Lemma 2.4, we have

∥∥u′′
1
∥∥ = max

t∈[0,T]

∣∣A–1Au′′
1(t)

∣∣

≤ maxt∈[0,T] |Au′′
1(t)|

c0 – 1

≤ ϕq(‖u3‖) + c2‖u1‖ + (2c1 + 2c1δ1 + c∞δ2)‖u′
1‖ + (c∞δ2

1 + 2c∞δ1)‖u′′
1‖

c0 – 1

≤ ϕq(‖u3‖) + ( T2

2π
c2 + 2Tc1 + 2Tc1δ1 + Tc∞δ2 + c∞δ2

1 + 2c∞δ1)‖u′′
1‖ + c2d2

c0 – 1
.

Since c0 – 1 – ( T2

2π
c2 + 2Tc1 + 2Tc1δ1 + Tc∞δ2 + c∞δ2

1 + 2c∞δ1) > 0, we have

∥∥u′′
1
∥∥≤ ϕq(‖u3‖) + c2d2

c0 – 1 – ( T2
4π

c2 +
√

Tc1 +
√

Tc1δ1 +
√

T
2 c∞δ2 + c∞δ2

1 + 2c∞δ1)
.

Similarly, we can get ‖u3‖ ≤ M′
3. �
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Lemma 3.4 Assume that c∞ < 1 and (H1)–(H4) hold. Furthermore, suppose the following
repulsive condition is satisfied:

(H6) limu→0+
∫ 1

u g0(s) ds = –∞.
Then there exists a positive constant M∗ such that

u(t) > M∗, for all t ∈ [0, T]. (3.21)

Proof From g(t, u) = g0(u) + g1(t, u), (3.2) is rewritten in the form

(
ϕp(Au1)′′(t)

)′′ + λpf
(
u1(t)

)
u′

1(t) + λp(g0
(
u1(t)

)
+ g1

(
t, u1(t)

)
= λpk(t). (3.22)

Let τ ∈ [0, T] be as in (3.3), for any τ ≤ t ≤ T . Multiplying both sides of (3.22) by u′
1(t) and

integrate on [τ , t], we have

λp
∫ u1(t)

u1(τ )
g0(u) du = λp

∫ t

τ

g0
(
u1(s)

)
u′

1(s) ds

= –
∫ t

τ

(
ϕp(Au1)′′(s)

)′′u′
1(s) ds – λp

∫ t

τ

f
(
u1(s)

)∣∣u′
1(s)

∣∣2 ds

– λp
∫ t

τ

g1
(
s, u1(s)

)
u′

1(s) ds + λp
∫ t

τ

k(s)u′
1(s) ds. (3.23)

By (3.2), (3.12), (3.16) and (3.17), we have

∣∣∣
∣

∫ t

τ

(
ϕp(Au1)′′(s)

)′′u′
1(s) ds

∣∣∣
∣

≤
∫ t

τ

∣∣(ϕp(Au1)′′(s)
)′′∣∣∣∣u′

1(s)
∣∣ds

≤ ∥∥u′
1
∥∥
∫ T

0

∣∣(ϕp(Au1)′′(s)
)′′∣∣ds

≤ λpM∗
1

(∫ T

0

∣∣f
(
u1(s)

)∣∣∣∣u′
1(s)

∣∣ds +
∫ T

0

∣∣g
(
s, u1(s)

)∣∣ds +
∫ T

0

∣∣e(s)
∣∣ds
)

≤ λpM∗
1
(‖fM1‖M∗

1T + 2αTMp–1
1 + 2Tβ + T‖k‖). (3.24)

Moreover, we have

∣∣∣
∣

∫ t

τ

f
(
u1(s)

)∣∣u′
1(s)

∣∣2 ds
∣∣∣
∣≤

∥∥u′
1
∥∥2
∫ T

0

∣∣f
(
u1(s)

)∣∣ds ≤ ‖fM1‖M∗2
1 T ,

∣
∣∣∣

∫ t

τ

g1
(
s, u1(s)

)
u′

1(s) ds
∣
∣∣∣≤

∥∥u′
1
∥∥
∫ T

0

∣∣g1(t, u(t)
∣∣dt ≤ M∗

1
√

T‖gM1‖2,

∣∣
∣∣

∫ t

τ

k(s)u′
1(s)|dt

∣∣
∣∣≤ M∗

1T‖k‖,

(3.25)
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where gM1 := max0≤u1≤M1 |g1(t, u1)| ∈ L2(0, T) is as in (H3). Substituting (3.24) and (3.25)
into (3.23), we have

∣∣
∣∣

∫ u1(t)

u1(τ )
g0(u) du

∣∣
∣∣≤ M∗

1
(
2‖fM1‖M∗

1T + 2αTMp–1
1 + 2Tβ +

√
T‖gM1‖2 + 2T‖k‖)

:= M∗
5.

From the repulsive condition (H6), it is clear that there exists a constant M∗ > 0 such that

u1(t) ≥ M∗, ∀t ∈ [τ , T]. (3.26)

The case t ∈ [0, τ ] can be treated similarly. �

Lemma 3.5 Assume that c0 > 1 and (H1)–(H3), (H5), (H6) hold. Then there exists a positive
constant M′ such that

u(t) > M′, for all t ∈ [0, T]. (3.27)

Proof We follow the same strategy and notation as in the proof of Lemma 3.4. �

By Lemma 2.1, 3.1, 3.2, 3.4, we get the following main result.

Theorem 3.6 Assume that c∞ < 1 and (H1)–(H4), (H6) hold. Then (1.1) has at least one
positive periodic solution.

Proof From Lemma 3.1, 3.2, 3.4, we have

�2 =
{

u = col(u1, u2, u3, u4) : E∗ ≤ u1(t) ≤ E1,‖u2‖ ≤ E2,‖u3‖ ≤ E3,‖u4‖ ≤ E4,

∀t ∈ [0, T]
}

,

where 0 < E∗ < min(M∗, d1), E2 > max(M1, d2), E2 > M2, E3 > M3, E4 > M4.
� = {u : u ∈ ∂�2 ∩ Ker L} then ∀u ∈ ∂� ∩ Ker L,

QNu =
1
T

∫ T

0

⎛

⎜⎜
⎜
⎝

u2(t)
ϕq(u3(t))

u4(t)
–f (u1(t))u′

1(t) – g(t, u1(t)) + k(t)

⎞

⎟⎟
⎟
⎠

dt.

If QNu = 0, then u1 = E1, u2 = 0, u3 = 0, u4 = 0. But if u1(t) = E1, we know

∫ T

0
g(t, E1) dt = 0.

From assumption (H1), we have u1(t) ≤ d2 ≤ E1, which yields a contradiction. We also
have QNu �= 0, i.e., ∀u ∈ ∂� ∩ Ker L, u /∈ Im L, so conditions (1) and (2) of Lemma 2.1 are
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both satisfied. Next, we consider (3) of Lemma 2.1 to be also satisfied. In fact, from (H1),
we have

g(t, E1) < 0 and g(t, E1) > 0.

So condition (3) of Lemma 2.1 is satisfied. By application of Lemma 2.1, (1.1) has a positive
T-periodic solution. �

Similarly, by Lemma 2.1, 3.1, 3.3, 3.5, we have the following theorem.

Theorem 3.7 Assume that c0 > 1 and (H1)–(H3), (H5), (H6) hold. Then (1.1) has at least
one positive periodic solution.

Remark 3.8 If (1.1) satisfies attractive singularity, i.e., limx→0+
∫ 1

u g(s) ds = +∞. Obviously,
the attractive condition and (H1), (H2) are in contradiction. Therefore, the above method
is no long applicable to the proof of the existence of a periodic solution for (1.1) with
attractive singularity. We have to find another way.

4 Periodic solutions for (1.1) with attractive singularity
In this section, we investigate the existence of positive periodic solution for (1.1) with
attractive singularity.

Theorem 4.1 Assume that c∞ < 1 and (H3), (H4) hold. Furthermore, suppose the following
conditions hold:

(H7) There exist constants 0 < d3 < d4 such that g(t, u) > 0 for (t, u) ∈ [0, T] × (0, d3) and
g(t, u) < 0 for (t, u) ∈ [0, T] × (d4, +∞).

(H8) There exist positive constants α and β such that

– g(t, u) ≤ αup–1 + β , for all (t, u) ∈ [0, T] × (0, +∞). (4.1)

(H9) (Attractive singularity) limu→0+
∫ 1

u g0(s) ds = +∞.
Then (1.1) has at least one positive periodic solution.

Proof We follow the same strategy and notation as in the proof of Theorem 3.6. From
Lemma 3.1, we know that there exists a point ξ ∈ (0, T) such that

d3 ≤ u1(ξ ) ≤ d4.

From (3.12) and (H8), we have

∫ T

0

∣
∣g
(
t, u1(t)

)∣∣dt =
∫

g(t,u1(t))≥0
g
(
t, u1(t)

)
dt –

∫

g(t,u1(t))≤0
g
(
t, u1(t)

)
dt

= –2
∫

g(t,u1(t))≤0
g–(t, u1(t)

)
dt

≤ 2
∫

g(t,u1(t))≤0

(
αup–1

1 (t) + β
)

dt

≤ 2α

∫ T

0

∣
∣u1(t)

∣
∣p–1 dt + 2βT , (4.2)
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where g–(t, u1) := min{g(t, u1), 0}. The remaining part of the proof is the same as Theo-
rem 3.6. �

Theorem 4.2 Assume that c0 > 1 and (H3), (H5), (H7)–(H9) hold. Then (1.1) has at least
one positive periodic solution.

5 Example
We illustrate our results with one numerical example.

Example 5.1 Consider the following fourth-order neutral nonlinear differential equation
with repulsive singularity:

(
ϕp

(
u(t) –

1
64

sin(4t)u
(

t –
1

32
cos 4t

))′′)′′
+

1
25π2 u(t)u′(t)

+
1

100π
(cos 4t + 1)u2(t) –

1
uκ (t)

= 4 sin 4t, (5.1)

where κ ≥ 1 and p = 2. It is clear that T = π
2 , c(t) = 1

64 sin 4t, δ(t) = 1
32 cos 4t, τ (t) =

cos 4t, k(t) = sin 4t, c1 = maxt∈[0,T] | 1
16 cos 4t| = 1

16 , c2 = maxt∈[0,T] |– 1
4 sin 4t| = 1

4 , δ1 =
maxt∈[0,T] |– 1

8 sin 4t| = 1
8 , δ2 = maxt∈[0,T] |– 1

2 cos 4t| = 1
2 . g(t, u(t)) = 1

50π
(cos 4t + 1)u2(t) –

1
uκ (t) , α = 2

50π
, β = 1; f (u(t)) = 1

25π2 u(t), here a = 1
25π2 , b = 0. It is obvious that (H1)–(H3),

(H6) hold. Now we consider the assumption condition (H4),

T(aT + 2α)
(1 – c∞ – ( T2

2π
c2 + 2Tc1 + 2Tc1δ1 + Tc∞δ2 + c∞δ2

1 + 2c∞δ1))p–1

=
π ( 1

50π
+ 4

50π
)

2(1 – 1
64 – ( π

8 + π
16 + π

64 + π
256 + 1

64 × 1
64 + 1

32 × 1
8 ))3

≈ 0.4703 < 1.

So, by Theorem 3.6, (5.1) has at least one π
2 -periodic solution.

6 Conclusions
In this article we introduce the existence of periodic solution for a fourth-order gener-
alized neutral differential equation with attractive and repulsive singularities. The tech-
niques used are quite different from that in [11, 13, 23] and our results are more general
than those in [11, 13, 23] in two aspects. Firstly, we first analyze qualitative properties of
the neutral operator with linear autonomous difference operator (Au)(t) in the case that
|c| > 1. Secondly, an attractive singularity is in contradiction with the repulsive singularity.
Therefore, the methods of [11, 13, 23] are no long applicable to a study of (1.1) with attrac-
tive singularity. So we need to find a new method. In this paper, we discuss the existence of
a periodic solution for Eq. (1.1) with attractive and repulsive singularities by applications
of the coincidence degree theory. Moreover, in view of the mathematical points, the re-
sults satisfying conditions attractive and repulsive singularities are valuable to understand
the periodic solution for fourth-order general neutral singular differential equations.
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