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Abstract
In this paper, we provide a new sequence converging to the Euler–Mascheroni
constant. Finally, we establish some inequalities for the Euler–Mascheroni constant by
the new sequence.
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1 Introduction
The Euler–Mascheroni constant was first introduced by Leonhard Euler (1707–1783) in
1734 as the limit of the sequence

γ (n) :=
n∑

m=1

1
m

– ln n. (1.1)

There are many famous unsolved problems about the nature of this constant (see, e.g., the
survey papers or books of Brent and Zimmermann [1], Dence and Dence [2], Havil [3], and
Lagarias [4]). For example, it is a long-standing open problem if the Euler–Mascheroni
constant is a rational number. A good part of its mystery comes from the fact that the
known algorithms converging to γ are not very fast, at least when they are compared to
similar algorithms for π and e.

The sequence (γ (n))n∈N converges very slowly toward γ , like (2n)–1. Up to now, many
authors are preoccupied to improve its rate of convergence; see, for example, [2, 5–14] and
references therein. We list some main results:

n∑

m=1

1
m

– ln

(
n +

1
2

)
= γ + O

(
n–2) (DeTemple [6]),

n∑

m=1

1
m

– ln
n3 + 3

2 n2 + 227
240 + 107

480

n2 + n + 97
240

= γ + O
(
n–6) (Mortici [13]),

n∑

m=1

1
m

– ln

(
1 +

1
2n

+
1

24n2 –
1

48n3 +
23

5760n4

)
= γ + O

(
n–5)

(Chen and Mortici [5]).
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Recently, Mortici and Chen [14] provided a very interesting sequence

ν(n) =
n∑

m=1

1
m

–
1
2

ln

(
n2 + n +

1
3

)

–
( – 1

180

(n2 + n + 1
3 )2

+
8

2835

(n2 + n + 1
3 )3

+
5

1512

(n2 + n + 1
3 )4

+
592

93,555

(n2 + n + 1
3 )5

)

and proved that

lim
n→∞ n12(ν(n) – γ

)
= –

796,801
43,783,740

. (1.2)

Hence the rate of the convergence of the sequence (ν(n))n∈N is n–12.
Very recently, by inserting the continued fraction term into (1.1), Lu [9] introduced a

class of sequences (rk(n))n∈N (see Theorem 1) and showed that

1
72(n + 1)3 < γ – r2(n) <

1
72n3 , (1.3)

1
120(n + 1)4 < r3(n) – γ <

1
120(n – 1)4 . (1.4)

In fact, Lu [9] also found a4 without proof, and his works motivate our study. In this paper,
starting from the well-known sequence γn, based on the early works of Mortici, DeTemple,
and Lu, we provide some new classes of convergent sequences for the Euler–Mascheroni
constant.

Theorem 1 For the Euler–Mascheroni constant, we have the following convergent se-
quence:

r(n) = 1 +
1
2

+ · · · +
1
n

– ln n – ln

(
1 +

a1

n

)
– ln

(
1 +

a2

n2

)
– · · · ,

where

a1 =
1
2

, a2 =
1

24
, a3 = –

1
24

, a4 =
143

5760
,

a5 = –
1

160
, a6 = –

151
290,304

, a7 = –
1

896
, . . . .

Let

rk(n) :=
n∑

m=1

1
m

– ln n –
k∑

m=1

ln

(
1 +

am

nm

)
.

For 1 ≤ k ≤ 7, we have

lim
n→∞ nk+2(rk(n) – γ

)
= Ck , (1.5)
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where

C1 =
1

24
, C2 = –

1
24

, C3 =
143

5760
, C4 = –

1
160

,

C5 = –
151

290,304
, C6 = –

1
896

, C7 =
109,793

22,118,400
, . . . .

Furthermore, for r2(n) and r3(n), we also have the following inequalities.

Theorem 2 Let r2(n) and r3(n) be as in Theorem 1. Then

1
24

1
(n + 1)3 < γ – r2(n) <

1
24

1
n3 , (1.6)

143
5760

1
(n + 1)4 < r3(n) – γ <

143
5760

1
n4 . (1.7)

Remark 1 Certainly, there are similar inequalities for rk(n) (1 ≤ k ≤ 7); we omit the details.

2 Proof of Theorem 1
The following lemma gives a method for measuring the rate of convergence. This lemma
was first used by Mortici [15, 16] for constructing asymptotic expansions or accelerating
some convergences. For a proof and other details, see, for example, [16].

Lemma 1 If the sequence (xn)n∈N converges to zero and there exists the limit

lim
n→+∞ ns(xn – xn+1) = l ∈ [–∞, +∞] (2.1)

with s > 1, then there exists the limit

lim
n→+∞ ns–1xn =

l
s – 1

. (2.2)

We need to find the value a1 ∈R that produces the most accurate approximation of the
form

r1(n) =
n∑

m=1

1
m

– ln n – ln

(
1 +

a1

n

)
. (2.3)

To measure the accuracy of this approximation, we usually say that an approximation (2.3)
is better as r1(n) – γ faster converges to zero. Clearly,

r1(n) – r1(n + 1) = ln

(
1 +

1
n

)
–

1
n + 1

+ ln

(
1 +

a1

n + 1

)
– ln

(
1 +

a1

n

)
. (2.4)

Developing expression (2.4) into a power series expansion in 1/n, we obtain

r1(n) – r1(n + 1) =
(

1
2

– a1

)
1
n2 +

(
–

2
3

+ a1 + a1
2
)

1
n3 + O

(
1
n4

)
. (2.5)

From Lemma 1 we see that the rate of convergence of the sequence (r1(n) –γ )n∈N is even
higher as the value s satisfies (2.1). By Lemma 1 we have
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(i) If a1 �= 1/2, then the rate of convergence of the (r1(n) – γ )n∈N is n–2, since

lim
n→∞ n

(
r1(n) – γ

)
=

1
2

– a1 �= 0.

(ii) If a1 = 1/2, then from (2.5) we have

r1(n) – r1(n + 1) =
1

12
1
n3 + O

(
1
n4

)
.

Hence the rate of convergence of the (r1(n) – γ )n∈N is n–3, since

lim
n→∞ n3(r1(n) – γ

)
=

1
24

:= C1.

We also observe that the fastest possible sequence (r1(n))n∈N is obtained only for a1 =
1/2.

We repeat our approach to determine a1 to a7 step by step. In fact, we can easily compute
ak , k ≤ 15, by the Mathematica software. In this paper, we use the Mathematica software
to manipulate symbolic computations.

Let

rk(n) :=
n∑

m=1

1
m

– ln n –
k∑

m=1

ln

(
1 +

am

nm

)
. (2.6)

Then

rk(n) – rk(n + 1)

= ln

(
1 +

1
n

)
–

1
n + 1

+
k∑

m=1

ln

(
1 +

am

(n + 1)m

)
–

k∑

m=1

ln

(
1 +

am

nm

)
. (2.7)

Hence the key step is to expand rk(n) – rk(n + 1) into power series in 1/n. Here we use
some examples to explain our method.

Step 1: For example, given a1 to a4, find a5. Define

r5(n) :=
n∑

m=1

1
m

– ln n –
5∑

m=1

ln

(
1 +

am

nm

)
.

By using the Mathematica software (the Mathematica Program is very similar to that
given further in Remark 2; however, it has the parameter a8) we obtain

r5(n) – r5(n + 1) =
(

–
1

32
– 5a5

)
1
n6 +

(
4385

48,384
+ 15a5

)
1
n7 + O

(
1
n8

)
. (2.8)

The fastest possible sequence (r5(n))n∈N is obtained only for a5 = – 1
160 . At the same time,

it follows from (2.8) that

r5(n) – r5(n + 1) = –
151

48,384
1
n7 + O

(
1
n8

)
. (2.9)
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The rate of convergence of (r8(n) – γ )n∈N is n–7, since

lim
n→∞ n7(r5(n) – γ

)
= –

151
290,304

:= C5.

We can use this approach to find ak (1 ≤ k ≤ 15). From the computations we may the
conjecture an+1 = Cn, n ≥ 1. Now, let us check it carefully.

Step 2: Check a6 = – 151
290,304 to a7 = – 1

896 .
Let a1, . . . , a6, and r6(n) be defined as in Theorem 1. Applying the Mathematica software,

we obtain

r6(n) – r6(n + 1) = –
1

128
1
n8 + O

(
1
n9

)
. (2.10)

The rate of convergence of (r6(n) – γ )n∈N is n–8, since

lim
n→∞ n8(r6(n) – γ

)
= –

1
896

:= C6.

Finally, we check that a7 = – 1
896 :

r7(n) – r7(n + 1) =
(

–
1

128
– 7a7

)
1
n8 +

(
196,193

2,764,800
+ 28a7

)
1
n9 + O

(
1

n10

)
. (2.11)

Since a7 = – 1
896 and

lim
n→∞ n9(r7(n) – γ

)
=

109,793
22,118,400

:= C7,

the rate of convergence of the (r7(n) – γ )n∈N is n–9.
This completes the proof of Theorem 1.

Remark 2 From the computations we can guess that an+1 = Cn, n ≥ 1. It is a very interest-
ing problem to prove this. However, it seems impossible by the provided method.

3 Proof of Theorem 2
Before we prove Theorem 2, let us give a simple inequality, which follows from the
Hermite–Hadamard inequality and plays an important role in the proof.

Lemma 2 Let f be a twice continuously differentiable function. If f ′′(x) > 0, then

∫ a+1

a
f (x) dx > f (a + 1/2). (3.1)

By Pk(x) we denote polynomials of degree k in x such that all its nonzero coefficients are
positive; it may be different at each occurrence.

Let us prove Theorem 2. Noting that r2(∞) = 0, we easily see that

γ – r2(n) =
∞∑

m=n

(
r2(m + 1) – r2(m)

)
=

∞∑

m=n
f (m), (3.2)
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where

f (m) =
1

m + 1
– ln

(
1 +

1
m

)
– ln

(
1 +

a1

m + 1

)
– ln

(
1 +

a2

(m + 1)2

)

+ ln

(
1 +

a1

m

)
+ ln

(
1 +

a2

m2

)
.

Let D1 = 1/2. By using the Mathematica software we have

– f ′(x) – D1
1

(x + 1)5

=
300 + 2739x + 11,434x2 + 24,870x3 + 28,314x4 + 15,936x5 + 3472x6

2x(1 + x)5(1 + 2x)(3 + 2x)(1 + 24x2)(25 + 48x + 24x2)
> 0

and

– f ′(x) – D1
1

(x + 1
2 )5

= –
P6(x)(x – 1) + 151,085

2x5(1 + x)2(1 + 2x)(3 + 2x)(1 + 24x2)(25 + 48x + 24x2)
< 0.

Hence, we get the following inequalities for x ≥ 1:

D1
1

(x + 1)5 < –f ′(x) < D1
1

(x + 1
2 )5

. (3.3)

Since f (∞) = 0, from the right-hand side of (3.3) and Lemma 2 we get

f (m) = –
∫ ∞

m
f ′(x) dx ≤ D1

∫ ∞

m

(
x +

1
2

)–5

dx

=
D1

4

(
m +

1
2

)–4

≤ D1

4

∫ m+1

m
x–4 dx. (3.4)

From (3.1) and (3.4) we obtain

γ – r2(n) ≤
∞∑

m=n

D1

4

∫ m+1

m
x–4 dx

=
D1

4

∫ ∞

n
x–4 dx =

D1

12
1
n3 . (3.5)

Similarly, we also have

f (m) = –
∫ ∞

m
f ′(x) dx ≥ D1

∫ ∞

m
(x + 1)–5 dx

=
D1

4
(m + 1)–4 ≥ D1

4

∫ m+2

m+1
x–4 dx
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and

γ – r2(n) ≥
∞∑

m=n

D1

4

∫ m+2

m+1
x–4 dx

=
D1

4

∫ ∞

n+1
x–4 dx =

D1

12
1

(n + 1)3 . (3.6)

Combining (3.5) and (3.6) completes the proof of (1.6).
Noting that r3(∞) = 0, we easily deduce

r3(n) – γ =
∞∑

m=n

(
r3(m) – r3(m + 1)

)
=

∞∑

m=n
g(m), (3.7)

where

g(m) = r3(m) – r3(m + 1).

Let D2 = 143
288 . By using the Mathematica software we have

– g ′(x) – D2
1

(x + 1)6

=
P12(x)

288n(1 + n)6(1 + 2n)(3 + 2n)(1 + 24n2)(25 + 48n + 24n2)(–1 + 24n3)P3(x)
> 0

and

– g ′(x) – D2
1

(x + 1
2 )6

= –
P12(x)(x – 4) + 2,052,948,001,087,775

9x(1 + x)2(1 + 2x)6(3 + 2x)(1 + 24x2)(25 + 48x + 24x2)(–1 + 24x3)P3(x)
< 0.

Hence, for x ≥ 4,

D2
1

(n + 1)6 < –g ′(x) < D2
1

(x + 1
2 )6

. (3.8)

Since g(∞) = 0, by (3.8) we get

g(m) = –
∫ ∞

m
g ′(x) dx ≤ D2

∫ ∞

m

(
x +

1
2

)–6

dx

=
D2

5

(
m +

1
2

)–5

≤ D2

5

∫ m+1

m
x–5 dx. (3.9)

It follows from (3.7), (3.9), and Lemma 2 that

r3(n) – γ ≤
∞∑

m=n

D2

5

∫ m+1

m
x–5 dx

=
D2

5

∫ ∞

n
x–5 dx =

D2

20
1
n4 . (3.10)
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Finally,

g(m) = –
∫ ∞

m
g ′(x) dx ≥ D2

∫ ∞

m
(x + 1)–6 dx

=
D2

5
(m + 1)–5 ≥ D2

5

∫ m+2

m+1
x–5 dx

and

r3(n) – γ ≥
∞∑

m=n

D2

5

∫ m+2

m+1
x–5 dx

=
D2

5

∫ ∞

n+1
x–5 dx =

D2

20
1

(n + 1)4 . (3.11)

Combining (3.10) and (3.11) completes the proof of (1.7).

Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant Nos. 11571267, 61403034, and
91538112) and Beijing Municipal Commission of Education Science and Technology Program KM201810017009.
Computations made in this paper were performed using Mathematica 9.0.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors read and approved the final manuscript.

Author details
1Department of Mathematics and Physics, Beijing Institute of Petrochemical Technology, Beijing, P.R. China. 2Department
of Mathematics, Wuhan Textile University, Wuhan, P.R. China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 19 January 2018 Accepted: 2 April 2018

References
1. Brent, R.P., Zimmermann, P.: Modern Computer Arithmetic. Cambridge Monographs on Applied and Computational

Mathematics, vol. 18. Cambridge University Press, Cambridge (2011). pp. xvi+221
2. Dence, T.P., Dence, J.B.: A survey of Euler’s constant. Math. Mag. 82, 255–265 (2009)
3. Havil, J.: Gamma: Exploring Euler’s Constant. Princeton University Press, Princeton (2003)
4. Lagarias, J.C.: Euler’s constant: Euler’s work and modern developments. Bull. Am. Math. Soc. (N.S.) 50(4), 527–628

(2013)
5. Chen, C.P., Mortici, C.: New sequence converging towards the Euler–Mascheroni constant. Comput. Math. Appl. 64,

391–398 (2012)
6. DeTemple, D.W.: A quicker convergence to Euler’s constant. Am. Math. Mon. 100(5), 468–470 (1993)
7. Gavrea, I., Ivan, M.: Optimal rate of convergence for sequences of a prescribed form. J. Math. Anal. Appl. 402(1), 35–43

(2013)
8. Gourdon, X., Sebah, P.: Collection of formulae for the Euler constant.

http://numbers.computation.free.fr/Constants/Gamma/gammaFormulas.pdf, or see
http://numbers.computation.free.fr/Constants/constants.html

9. Dawei, L.: A new quiker sequence convergent to Euler’s constant. J. Number Theory 136, 320–329 (2014)
10. Dawei, L.: Some quicker classes of sequences convergent to Euler’s constant. Appl. Math. Comput. 232, 172–177

(2014)
11. Dawei, L.: Some new convergent sequences and inequalities of Euler’s constant. J. Math. Anal. Appl. 419(1), 541–552

(2014)
12. Dawei, L.: Some new improved classes of convergence towards Euler’s constant. Appl. Math. Comput. 243, 24–32

(2014)
13. Mortici, C.: On new sequences converging towards the Euler–Mascheroni constant. Comput. Math. Appl. 59(8),

2610–2614 (2010)
14. Mortici, C., Chen, C.P.: On the harmonic number expansion by Ramanujan. J. Inequal. Appl. 2013 222 (2013)
15. Mortici, C.: Product approximations via asymptotic integration. Am. Math. Mon. 117(5), 434–441 (2010)
16. Mortici, C.: New approximations of the gamma function in terms of the digamma function. Appl. Math. Lett. 23,

97–100 (2010)

http://numbers.computation.free.fr/Constants/Gamma/gammaFormulas.pdf
http://numbers.computation.free.fr/Constants/constants.html

	A new sequence convergent to Euler-Mascheroni constant
	Abstract
	MSC
	Keywords

	Introduction
	Proof of Theorem 1
	Proof of Theorem 2
	Acknowledgements
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


