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Abstract
Motivated by the method of interpolating inequalities that makes use of the
improved Jensen-type inequalities, in this paper we integrate this approach with the
well known Zipf–Mandelbrot law applied to various types of f -divergences and
distances, such are Kullback–Leibler divergence, Hellinger distance, Bhattacharyya
distance (via coefficient), χ 2-divergence, total variation distance and triangular
discrimination. Addressing these applications, we firstly deduce general results of the
type for the Csiszár divergence functional from which the listed divergences
originate. When presenting the analyzed inequalities for the Zipf–Mandelbrot law, we
accentuate its special form, the Zipf law with its specific role in linguistics. We
introduce this aspect through the Zipfian word distribution associated to the English
and Russian languages, using the obtained bounds for the Kullback–Leibler
divergence.
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1 Introduction
Let us start with the notion of f -divergences which measure the distance between two
probability distributions by making an average value, which is weighted by a specific
function, of the odds ratio given by two probability distributions. Among the existing
f -divergences introduced in the process of finding the adequate distance between two
probability distributions, let us point out the Csiszár f -divergence [1, 2], some special
cases of which are the Kullback–Leibler divergence (see [3, 4]), the Hellinger distance,
the Bhattacharyya distance, the total variation distance, the triangular discrimination (see
[5, 6]). The notion of ‘distance’ mainly appears as somewhat stronger than ‘divergence’
since it suggests the properties of symmetry and the triangle inequality. Considering a
great number of fields in which probability theory cooperates, it is no wonder that diver-
gences between probability distributions have many specific applications in a variety of
those fields.

Jensen’s inequality, on the other hand, with its numerous refinements, variants and im-
provements is often called ‘a king inequality’, obviously not without a reason. Here we try
to integrate one of such results concerning Jensen’s inequality in order to obtain new es-
timates for mentioned divergences (which deal with the convex functions for the most
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part). It is well known that the Jensen inequality

f

(
1

Pn

n∑
i=1

pixi

)
≤ 1

Pn

n∑
i=1

pif (xi) (1)

holds for a convex function f : I → R, I ⊆ R, an n-tuple x = (x1, . . . , xn) ∈ In, n ≥ 2 and
nonnegative n-tuple p = (p1, . . . , pn), such that Pn =

∑n
i=1 pi > 0.

Here we cite a result of Pečarić [7, p. 717] who investigated the method of interpolating
inequalities which have reverse inequalities of Aczél type. Using Jensen’s inequality and
its reverse he proved the main and the following deduced result, which holds for a convex
function f defined on an interval I ⊂R:

min
1≤i≤n

{pi}
[ n∑
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f (xi) – nf

(
1
n

n∑
i=1

xi

)]

≤
n∑

i=1

pif (xi) – Pnf

(
1

Pn

n∑
i=1

pixi

)

≤ max
1≤i≤n

{pi}
[ n∑

i=1

f (xi) – nf

(
1
n

n∑
i=1

xi

)]
, (2)

where x = (x1, . . . , xn) ∈ In, n ≥ 2 and a nonnegative n-tuple p = (p1, . . . , pn) is such that
Pn =

∑n
i=1 pi > 0.

In recent investigations of relation (2) and its numerous consequences, it appeared as a
fruitful field for many significant results. We accentuate those which deal with this relation
in view of superadditivity and monotonicity of the Jensen-type functionals, in [8, 9] or [10],
obtained via [11] and suitably summarized in the monograph [12]. In the following part
we are going to make use of relation (2) while presenting certain bounds for a selected
spectrum of f -divergences that originate from the Csiszár divergence functional.

All of the results thus obtained concerning f -divergences are going to be observed here
in the context of the Zipf–Mandelbrot law and then specified for the Zipf law.

George Kingsley Zipf (1902–1950) was a linguist after whom one of the most common
laws in probability and statistics was named. Today this experimental law for the discrete
probability distribution frequently is used in information science, bibliometrics, linguis-
tics, social sciences, economy (where it is known as the Pareto law), as well as in physics,
biology, computer science etc. Thus the term ‘Zipfian distribution’ is used to describe var-
ious types of distributions of the probability occurrences which approximately follow the
mathematical form of the Zipf law. It was in the first place established with the frequency
of the words in a text in view and as such it revealed a hyperbolic relation. As is e.g. ex-
plained in [13], if words of a language are sorted in the order of decreasing frequency of
usage, a word’s frequency f is inversely proportional to its rank r, or sequence number
in the list and the product of these is a constant: r · f = C (‘A few occur very often while
many others occur rarely.’). Benoit Mandelbrot, a mathematician very well known for his
contribution in fractal theory, generalized the Zipf law in 1966 [14, 15] according to his
field of investigation and gave its improvement for the count of the low-rank words [16].
It is also used in information sciences for the purpose of indexing [17, 18], in ecological
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field studies [19] and it plays its role in art when determining the aesthetics criteria in mu-
sic [20]. The Zipf–Mandelbrot law is a discrete probability distribution and is defined by
the following probability mass function:

f (i; N , s, t) =
1

(i + t)sHN ,s,t
, i = 1, . . . , N , (3)

where

HN ,s,t =
N∑

k=1

1
(k + t)s (4)

is a generalization of a harmonic number and N ∈ {1, 2, . . .}, s > 0 and t ∈ [0,∞) are pa-
rameters.

For finite N and for t = 0 the Zipf–Mandelbrot law is simply called the Zipf law. (In
particular, if we observe the infinite N and t = 0 we actually have the Zeta distribution.)

According to the expressions above, the probability mass function referring to the Zipf
law is

f (i; N , s) =
1

is · HN ,s
where HN ,s =

N∑
k=1

1
ks . (5)

The rest of the paper is organized as follows. In Section 1 we define the Csiszár functional
and various f -divergences for which we give in Section 3 the results based on relation (2).
These are further examined in Section 4 in the light of the Zipf–Mandelbrot law and the
Zipf law. For the latter we give in Section 5 a specific application in linguistics, concerning
the Kullback–Leibler divergence.

2 Preliminaries
The previously mentioned f -divergences were studied independently by several matem-
aticians. Here we focus on the Csiszár f -divergences. Csiszár [1, 2] introduced the f -
divergence functional as

Df (p, q) =
n∑

i=1

qif
(

pi

qi

)
, (6)

where p = (p1, . . . , pn) and q = (q1, . . . , qn) are probability distributions, that is, pi, qi ∈ [0, 1],
for i = 1, . . . , n with

∑n
i=1 pi =

∑n
i=1 qi = 1 and f : [0,∞) → [0,∞) is a convex function, the

so-called ‘distance function’ on the set of all probability distributions.
As in [1], we interpret the undefined expressions by

f (0) := lim
t→0+

f (t); 0f
(

0
0

)
:= 0; 0f

(
a
0

)
:= lim

t→0+
tf

(
a
t

)
, a > 0.

The definition of the f -divergence functional (6) can be generalized for a function f : I →
R, I ⊆ R, where pi

qi
∈ I , for every i = 1, . . . , n. Since we are going to observe this wider

class of functions as well, the corresponding functional (6) will be denoted by D̃f (p, q)
(see also [21]).
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The general aspect of the Csiszár divergence functional (6) can be interpreted as a series
of well-known entropies, divergencies and distances, for special choices of the kernel f . In
the sequel we present some of the most frequent among them.

Entropies quantify the diversity, uncertainty and randomness of a system. The concept
of the Rényi entropy was introduced by [22] and has been of a great importance in statis-
tics, ecology, theoretical computer science etc.

The Rényi entropy of order α of p is defined as

Hα(p) :=
1

1 – α
log

( n∑
i=1

pα
i

)
, (7)

where α ≥ 0, α 	= 1 and p = (p1, . . . , pn) is a probability distribution. Among special cases
of the Rényi entropy (e.g. the Hartley or max-entropy, min-entropy, and the collision en-
tropy), the Rényi entropy tends to the Shannon entropy (see [23]) for the limiting value of
α → 1. The Shannon entropy (which is sometimes called information divergence) is thus
defined as

H(p) := –
n∑

i=1

pi log pi. (8)

Besides the absolute entropies, one can also observe the relative entropies, as did Rényi
when he introduced a special form of f -divergence. The Rényi divergence of order α, α ≥ 0,
α 	= 1 for the probability distributions p = (p1, . . . , pn) and q = (q1, . . . , qn) is defined as

Dα(p, q) :=
1

α – 1
log

( n∑
i=1

qi

(
pi

qi

)α
)

. (9)

A relation similar to the one between the Rényi entropy and the Shannon entropy holds
in the case of the Rényi divergence and the Kullback–Leibler divergence (see [24]) for the
probability distributions p = (p1, . . . , pn) and q = (q1, . . . , qn). As α → 1, the Rényi diver-
gence tends to the Kullback–Leibler divergence. The latter is sometimes called the relative
entropy and is defined by

KL(p, q) :=
n∑

i=1

pi log

(
pi

qi

)
. (10)

Remark 1 Although it is common to take the logarithm function with the base 2, it will
not be essential in the sequel. Moreover, we are going to analyze the results including the
logarithm function for different (positive) bases, namely, for those greater than 1 as well
as for those that are less than 1.

Among various divergences and considering the properties of symmetry and triangular
inequality which some of them possess, we can also define certain distances between two
probability distributions.
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Thus the Hellinger distance between the probability distributions p = (p1, . . . , pn) and
q = (q1, . . . , qn) is defined by

h(p, q) :=
1√
2

√√√√ n∑
i=1

(
√

pi –
√

qi)2. (11)

The Hellinger distance is a metric and is often used in its squared form, i.e. as h2(p, q) :=
1
2
∑n

i=1(√pi – √qi)2.
Among the values of the order α for the Rényi divergence, some have wider application

than others. The value 1 is already determined by continuity in α since it cannot be cal-
culated directly by (9) and another interesting example is the order 1/2. This order makes
the Rényi divergence symmetric in its arguments. In this context, it is interesting to see
how the Rényi divergence, although not itself a metric, relates to the Hellinger distance:

D1/2(p, q) = –2 log

(
1 –

h2(p, q)
2

)
. (12)

Furthermore, the Bhattacharyya coefficient is an approximate measure of the amount of
overlapping between two distributions and as such can be used to determine their relative
closeness. It is defined as

B(p, q) :=
n∑

i=1

√
piqi, (13)

whereas the Bhattacharyya distance is defined as DB(p, q) := – log B(p, q). The relation be-
tween the Bhattacharyya coefficient and the Hellinger distance is

h2(p, q) = 1 – B(p, q).

In order to conclude this overview, let us remind the reader that the χ2 divergence is
defined as

χ2(p, q) :=
n∑

i=1

(pi – qi)2

qi
, (14)

the total variation distance or statistical distance is given by

V (p, q) :=
n∑

i=1

|pi – qi| (15)

and the definition of the triangular discrimination reads as follows:

�(p, q) :=
n∑

i=1

(pi – qi)2

pi + qi
. (16)

More detailed analyses of the mentioned divergences as well as their wider spectrum
one can find e.g. in [5, 6, 24].
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3 Basic relations for f -divergences
In order to deduce the relations from relation (2) for the f -divergences described in the
introductory part, we start with the general result for bounds obtained for the Csiszár
functional (6) observed under more general conditions as D̃f (p, q).

Theorem 1 Let I ⊆R be an interval. Suppose p = (p1, . . . , pn) is an n-tuple of real numbers
with Pn =

∑n
i=1 pi and q = (q1, . . . , qn) is an n-tuple of nonnegative real numbers with Qn =∑n

i=1 qi, such that pi
qi

∈ I , i = 1, . . . , n.
If f : I →R is a convex function, then

min{qi}
[ n∑

i=1

f
(

pi

qi

)
– nf

(
1
n

n∑
i=1

pi

qi

)]
+ Qnf

(
Pn

Qn

)

≤ D̃f (p, q) ≤ max{qi}
[ n∑

i=1

f
(

pi

qi

)
– nf

(
1
n

n∑
i=1

pi

qi

)]
+ Qnf

(
Pn

Qn

)
. (17)

If f is a concave function, then the inequality signs are reversed.
If t �→ tf (t) is a convex function, then

min{qi}
[ n∑

i=1

pi

qi
f
(

pi

qi

)
–

n∑
i=1

pi

qi
f

(
1
n

n∑
i=1

pi

qi

)]
+ Pnf

(
Pn

Qn

)

≤ D̃id·f (p, q) ≤ max{qi}
[ n∑

i=1

pi

qi
f
(

pi

qi

)
–

n∑
i=1

pi

qi
f

(
1
n

n∑
i=1

pi

qi

)]
+ Pnf

(
Pn

Qn

)
, (18)

where D̃id·f (p, q) :=
∑n

i=1 pif ( pi
qi

).
If t �→ tf (t) is a concave function, then the inequality signs are reversed.

Proof If we observe a convex function f and replace pi by qi as well as xi by pi
qi

in relation
(2), we get (17).

If we then observe the function t �→ tf (t) as a convex function and replace pi by qi and
xi by pi

qi
we get (18). �

The following corollary precedes the related result for the Kullback–Leibler diver-
gence (10). Recall that (10) can be interpreted as a special case of the functional (6).

Corollary 1 Let p = (p1, . . . , pn) and q = (q1, . . . , qn) be n-tuples of nonnegative real num-
bers with Pn =

∑n
i=1 pi and Qn =

∑n
i=1 qi. Then

min{qi}
[ n∑

i=1

pi

qi
log

pi

qi
–

n∑
i=1

pi

qi
log

(
1
n

n∑
i=1

pi

qi

)]
+ Pn log

Pn

Qn

≤
n∑

i=1

pi log
pi

qi

≤ max{qi}
[ n∑

i=1

pi

qi
log

pi

qi
–

n∑
i=1

pi

qi
log

(
1
n

n∑
i=1

pi

qi

)]
+ Pn log

Pn

Qn
, (19)

where the logarithm base is greater than 1.
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If the logarithm base is less than 1, then the inequality signs are reversed.

Proof It follows from Theorem 1 as a special case of inequalities (18), for the function
t �→ t log t, which is convex when the logarithm base is greater than 1 (and concave when
the base is less than 1). �

If we additionally specify the n-tuples p and q as in the sequel, we provide the bounds
for the Kullback–Leibler divergence.

Remark 2 If we observe p = (p1, . . . , pn) and q = (q1, . . . , qn) as probability distributions, we
may write

min{qi}
[ n∑

i=1

pi

qi
log

pi

qi
–

n∑
i=1

pi

qi
log

(
1
n

n∑
i=1

pi

qi

)]

≤ KL(p, q) ≤ max{qi}
[ n∑

i=1

pi

qi
log

pi

qi
–

n∑
i=1

pi

qi
log

(
1
n

n∑
i=1

pi

qi

)]
, (20)

where the logarithm base is greater than 1.
If the logarithm base is less than 1, then the inequality signs are reversed.
In other words, we obtained the corresponding bounds for the Kullback–Leibler diver-

gence (10).

Remark 3 The Kullback–Leibler divergence is sometimes used in its reversed form
KL(q, p). A similar type of bounds can be obtained when observing the reversed Kullback–
Leibler divergence making use of the kernel function f (t) = – log t, its convexity and con-
cavity related to the observed logarithm base (greater than 1 or less than 1, respectively),
and following the analogous procedure described in Corollary 1 and Remark 2.

It is natural to observe in a similar fashion the other divergences (distances) described in
Section 1: the Hellinger distance, the Bhattacharyya coefficient, the chi-square divergence,
the total variation distance and the triangular discrimination.

Corollary 2 Let p = (p1, . . . , pn) and q = (q1, . . . , qn) be n-tuples of nonnegative real num-
bers with Pn =

∑n
i=1 pi and Qn =

∑n
i=1 qi. Then

1
2

min{qi}
[ n∑

i=1

(
1 –

√
pi

qi

)2

– n

(
1 –

√√√√ 1
n

n∑
i=1

pi

qi

)2]
+ Qn

(
1 –

√
Pn

Qn

)2

≤ 1
2

n∑
i=1

(
√

pi –
√

qi)2

≤ 1
2

max{qi}
[ n∑

i=1

(
1 –

√
pi

qi

)2

– n

(
1 –

√√√√ 1
n

n∑
i=1

pi

qi

)2]
+ Qn

(
1 –

√
Pn

Qn

)2

. (21)

Proof It follows from Theorem 1 as a special case of inequalities (17), for the convex func-
tion t → 1

2 (
√

t – 1)2. �
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Remark 4 If we observe p = (p1, . . . , pn) and q = (q1, . . . , qn) as probability distributions, we
may write

1
2

min{qi}
[ n∑

i=1

(
1 –

√
pi

qi

)2

– n

(
1 –

√√√√ 1
n

n∑
i=1

pi

qi

)2]

≤ h2(p, q)

≤ 1
2

max{qi}
[ n∑

i=1

(
1 –

√
pi

qi

)2

– n

(
1 –

√√√√ 1
n

n∑
i=1

pi

qi

)2]
. (22)

In other words, we obtained the corresponding bounds for the (squared) Hellinger dis-
tance h2(p, q).

Corollary 3 Let p = (p1, . . . , pn) and q = (q1, . . . , qn) be n-tuples of nonnegative real num-
bers with Pn =

∑n
i=1 pi and Qn =

∑n
i=1 qi. Then

min{qi}
[√√√√n

n∑
i=1

pi

qi
–

n∑
i=1

√
pi

qi

]
–

√
PnQn

≤ –
n∑

i=1

√
piqi

≤ max{qi}
[√√√√n

n∑
i=1

pi

qi
–

n∑
i=1

√
pi

qi

]
–

√
PnQn. (23)

Proof It follows from Theorem 1 as a special case of inequalities (17), for the convex func-
tion f (t) = –

√
t. �

Remark 5 If we observe p = (p1, . . . , pn) and q = (q1, . . . , qn) as probability distributions and
adopt by the definition (13) that B(p, q) = √piqi, we may write

min{qi}
[√√√√n

n∑
i=1

pi

qi
–

n∑
i=1

√
pi

qi

]
– 1

≤ –B(p, q)

≤ max{qi} ≤
[√√√√n

n∑
i=1

pi

qi
–

n∑
i=1

√
pi

qi

]
– 1, (24)

or

1 – min{qi}
[√√√√n

n∑
i=1

pi

qi
–

n∑
i=1

√
pi

qi

]

≥ B(p, q) ≥ 1 – max{qi}
[√√√√n

n∑
i=1

pi

qi
–

n∑
i=1

√
pi

qi

]
. (25)
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In other words, we obtained the corresponding bounds for the Bhattacharyya coefficient
B(p, q).

Corollary 4 Let p = (p1, . . . , pn) be an n-tuple of real numbers and q = (q1, . . . , qn) an n-
tuple of nonnegative real numbers with Pn =

∑n
i=1 pi and Qn =

∑n
i=1 qi. Then

min{qi}
[ n∑

i=1

(
pi

qi
– 1

)2

– n

(
1
n

n∑
i=1

pi

qi
– 1

)2]
+

(Pn – Qn)2

Qn

≤
n∑

i=1

(pi – qi)2

qi

≤ max{qi}
[ n∑

i=1

(
pi

qi
– 1

)2

– n

(
1
n

n∑
i=1

pi

qi
– 1

)2]
+

(Pn – Qn)2

Qn
. (26)

Proof It follows from Theorem 1 as a special case of inequalities (17), for the convex func-
tion f (t) = (t – 1)2. �

Remark 6 If we observe p = (p1, . . . , pn) and q = (q1, . . . , qn) as probability distributions, we
may write

min{qi}
[ n∑

i=1

(
pi

qi
– 1

)2

– n

(
1
n

n∑
i=1

pi

qi
– 1

)2]

≤ χ2(p, q)

≤ max{qi}
[ n∑

i=1

(
pi

qi
– 1

)2

– n

(
1
n

n∑
i=1

pi

qi
– 1

)2]
. (27)

In other words, we obtained the corresponding bounds for the chi-square divergence
χ2(p, q).

Corollary 5 Let p = (p1, . . . , pn) be an n-tuple of real numbers and q = (q1, . . . , qn) an n-
tuple of nonnegative real numbers with Pn =

∑n
i=1 pi and Qn =

∑n
i=1 qi. Then

min{qi}
[ n∑

i=1

∣∣∣∣pi

qi
– 1

∣∣∣∣ – n

∣∣∣∣∣ 1
n

n∑
i=1

pi

qi
– 1

∣∣∣∣∣
]

+ |Pn – Qn|

≤
n∑

i=1

|pi – qi|

≤ max{qi}
[ n∑

i=1

∣∣∣∣pi

qi
– 1

∣∣∣∣ – n

∣∣∣∣∣ 1
n

n∑
i=1

pi

qi
– 1

∣∣∣∣∣
]

+ |Pn – Qn|. (28)

Proof It follows from Theorem 1 as a special case of inequalities (17), for the convex func-
tion f (t) = |t – 1|. �
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Remark 7 If we observe p = (p1, . . . , pn) and q = (q1, . . . , qn) as probability distributions, we
may write

min{qi}
[ n∑

i=1

∣∣∣∣pi

qi
– 1

∣∣∣∣ – n

∣∣∣∣∣ 1
n

n∑
i=1

pi

qi
– 1

∣∣∣∣∣
]

≤ V (p, q)

≤ max{qi}
[ n∑

i=1

∣∣∣∣pi

qi
– 1

∣∣∣∣ – n

∣∣∣∣∣ 1
n

n∑
i=1

pi

qi
– 1

∣∣∣∣∣
]

. (29)

In other words, we obtained the corresponding bounds for the total variation distance
V (p, q).

Corollary 6 Let p = (p1, . . . , pn) be an n-tuple of real numbers and q = (q1, . . . , qn) an n-
tuple of nonnegative real numbers with Pn =

∑n
i=1 pi and Qn =

∑n
i=1 qi. Then

min{qi}
[ n∑

i=1

(pi – qi)2

qi(pi + qi)
– n

( 1
n
∑n

i=1
pi
qi

– 1)2

1
n
∑n

i=1
pi
qi

+ 1

]
+

(Pn – Qn)2

Pn + Qn

≤
n∑

i=1

(pi – qi)2

pi + qi

≤ max{qi}
[ n∑

i=1

(pi – qi)2

qi(pi + qi)
– n

( 1
n
∑n

i=1
pi
qi

– 1)2

1
n
∑n

i=1
pi
qi

+ 1

]
+

(Pn – Qn)2

Pn + Qn
. (30)

Proof It follows from Theorem 1 as a special case of inequalities (17), for the convex func-
tion f (t) = (t–1)2

t+1 . �

Remark 8 If we observe p = (p1, . . . , pn) and q = (q1, . . . , qn) as probability distributions, we
may write

min{qi}
[ n∑

i=1

(pi – qi)2

qi(pi + qi)
– n

( 1
n
∑n

i=1
pi
qi

– 1)2

1
n
∑n

i=1
pi
qi

+ 1

]

≤ �(p, q)

≤ max{qi}
[ n∑

i=1

(pi – qi)2

qi(pi + qi)
– n

( 1
n
∑n

i=1
pi
qi

– 1)2

1
n
∑n

i=1
pi
qi

+ 1

]
. (31)

In other words, we obtained the corresponding bounds for the triangular discrimination
�(p, q).

4 On f -divergences for the Zipf–Mandelbrot law
In this section we are going to derive the results from the previous section for the Zipf–
Mandelbrot law (3). Namely, if we put qi = f (i; N , s, t) in (3) as its probability mass function,
we can observe obtained results in the light of the Zipf–Mandelbrot law.

For this purpose we present the general results concerning the Csiszár functional
D̃f (p, q) for the Zipf–Mandelbrot law. If we define q via (3) as a Zipf–Mandelbrot law
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N-tuple, the definition (6) of the Csiszár functional becomes

D̃f (i, N , s2, t2, p) =
N∑

i=1

1
(i + t2)s2 HN ,s2,t2

f
(
pi(i + t2)s2 HN ,s2,t2

)
, (32)

where f : I → R, I ⊆ R, and the parameters N ∈ N, s2 > 0, t2 ≥ 0 are such that pi(i +
t2)s2 HN ,s2,t2 ∈ I , i = 1, . . . , N .

The Csiszár functional (6) assumes the following form when p and q are both defined
as Zipf–Mandelbrot law N-tuples:

D̃f (i, N , s1, s2, t1, t2) =
N∑

i=1

1
(i + t2)s2 HN ,s2,t2

f
(

(i + t2)s2 HN ,s2,t2

(i + t1)s1 HN ,s1,t1

)
, (33)

where f : I → R, I ⊆ R, and N ∈ N, s1, s2 > 0, t1, t2 ≥ 0 are such that (i+t2)s2 HN ,s2,t2
(i+t1)s1 HN ,s1,t1

∈ I , i =
1, . . . , N .

Finally, both p and q N-tuples may be defined via the Zipf law (5) and thus the Csiszár
functional (6) assumes the form

D̃f (i, N , s1, s2) =
N∑

i=1

1
is2 HN ,s2

f
(

is2–s1
HN ,s2

HN ,s1

)
. (34)

Our next step is providing the corresponding forms of Theorem 1 which are suitable for
further applications. Thus we start with the Csiszár functional D̃f (i, N , s2, t2, p), which im-
plies single Zipf–Mandelbrot laws qi, for i = 1, . . . , N .

Corollary 7 Let p = (p1, . . . , pN ) be an N-tuple of real numbers with PN =
∑N

i=1 pi. Suppose
I ⊆R is an interval, N ∈N and s2 > 0, t2 ≥ 0 are such that pi(i+ t2)s2 HN ,s2,t2 ∈ I , i = 1, . . . , N .

If f : I →R is a convex function, then

1
(N + t2)s2 HN ,s2,t2

�1 + PN f (PN ) ≤ D̃f (i, N , s2, t2, p)

≤ 1
(1 + t2)s2 HN ,s2,t2

�1 + PN f (PN ), (35)

where

�1 =
N∑

i=1

f
(
pi(i + t2)s2 HN ,s2,t2

)
– Nf

(
1
N

N∑
i=1

pi(i + t2)s2 HN ,s2,t2

)
.

If f is a concave function, then the inequality signs are reversed.
If t �→ tf (t) is a convex function, then

1
(N + t2)s2 HN ,s2,t2

�̄1 + PN f (PN ) ≤ D̃id·f (i, N , s2, t2, p)

≤ 1
(1 + t2)s2 HN ,s2,t2

�̄1 + PN f (PN ), (36)
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where D̃id·f (i, N , s2, t2, p) :=
∑N

i=1 pif (pi(i + t2)s2 HN ,s2,t2 ) and

�̄1 =
N∑

i=1

pi(i + t2)s2 HN ,s2,t2 f
(
pi(i + t2)s2 HN ,s2,t2

)

–
N∑

i=1

pi(i + t2)s2 HN ,s2,t2 f

(
1
N

N∑
i=1

pi(i + t2)s2 HN ,s2,t2

)
.

If t �→ tf (t) is a concave function, then the inequality signs are reversed.

Proof It leans on the proof of Theorem 1 with its described substitutions, where we insert
for qi the expression 1

(i+t2)s2 HN ,s2,t2
, i = 1, . . . , N , which defines the Zipf–Mandelbrot law (3),

with QN = 1. Since the minimal value for qi is min{qi} = 1
(N+t2)s2 HN ,s2,t2

and its maximal value
is max{qi} = 1

(1+t2)s2 HN ,s2,t2
, inequalities (35) and (36) follow for the convex functions f and

t �→ tf (t), respectively. They change their signs in the case of concavity as a consequence
of the Jensen inequality implicitly included. �

If we have both p and q defined via the Zipf–Mandelbrot law, then the following corol-
lary plays a role.

Corollary 8 Let I ⊆R be an interval and suppose N ∈N, s1, s2 > 0, t1, t2 ≥ 0 are such that
(i+t2)s2 HN ,s2,t2
(i+t1)s1 HN ,s1,t1

∈ I , i = 1, . . . , N .
If f : I →R is a convex function, then

1
(N + t2)s2 HN ,s2,t2

�2 + f (1) ≤ D̃f (i, N , s1, s2, t1, t2) ≤ 1
(1 + t2)s2 HN ,s2,t2

�2 + f (1), (37)

where

�2 =
N∑

i=1

f
(

(i + t2)s2 HN ,s2,t2

(i + t1)s1 HN ,s1,t1

)
– Nf

(
1
N

N∑
i=1

(i + t2)s2 HN ,s2,t2

(i + t1)s1 HN ,s1,t1

)
.

If f is a concave function, then the inequality signs are reversed.
If t �→ tf (t) is a convex function, then

1
(N + t2)s2 HN ,s2,t2

�̄2 + f (1) ≤ D̃id·f (i, N , s1, s2, t1, t2) ≤ 1
(1 + t2)s2 HN ,s2,t2

�̄2 + f (1), (38)

where D̃id·f (i, N , s1, s2, t1, t2) :=
∑N

i=1
1

(i+t1)s1 HN ,s1,t1
f ( (i+t2)s2 HN ,s2,t2

(i+t1)s1 HN ,s1,t1
) and

�̄2 =
N∑

i=1

(i + t2)s2 HN ,s2,t2

(i + t1)s1 HN ,s1,t1
f
(

(i + t2)s2 HN ,s2,t2

(i + t1)s1 HN ,s1,t1

)

–
N∑

i=1

(i + t2)s2 HN ,s2,t2

(i + t1)s1 HN ,s1,t1
f

(
1
N

N∑
i=1

(i + t2)s2 HN ,s2,t2

(i + t1)s1 HN ,s1,t1

)
.

If t �→ tf (t) is a concave function, then the inequality signs are reversed.
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Proof Since the corollary is a special case of the previous one, its proof is provided by
inserting equation (3), which defines the Zipf–Mandelbrot law instead of pi, i = 1, . . . , N ,
as was already done for qi. That is, pi = 1

(i+t1)s1 HN ,s1,t1
, i = 1, . . . , N , where PN = 1. The rest of

the proof follows along the same lines as in Corollary 7, so inequalities (37) and (38) follow
for convex functions f and t �→ tf (t), respectively. They change their signs in the case of
concavity as a consequence of the Jensen inequality implicitly included. �

Finally, if both p and q are defined via the Zipf law (5), then the following statements
hold.

Corollary 9 Let I ⊆ R be an interval and suppose N ∈ N, s1, s2 > 0 are such that
is2–s1 HN ,s2

HN ,s1
∈ I , i = 1, . . . , N .

If f : I →R is a convex function, then

1
Ns2 HN ,s2

�3 + f (1) ≤ D̃f (i, N , s1, s2) ≤ 1
HN ,s2

�3 + f (1), (39)

where

�3 =
N∑

i=1

f
(

is2–s1
HN ,s2

HN ,s1

)
– Nf

(
1
N

N∑
i=1

is2–s1
HN ,s2

HN ,s1

)
.

If f is a concave function, then the inequality signs are reversed.
If t �→ tf (t) is a convex function, then

1
Ns2 HN ,s2

�̄3 + f (1) ≤ D̃id·f (i, N , s1, s2) ≤ 1
HN ,s2

�̄3 + f (1), (40)

where D̃id·f (i, N , s1, s2) :=
∑N

i=1
1

is2 HN ,s2
f (is2–s1 HN ,s2

HN ,s1
) and

�̄3 =
N∑

i=1

is2–s1
HN ,s2

HN ,s1
f
(

is2–s1
HN ,s2

HN ,s1

)
–

N∑
i=1

is2–s1
HN ,s2

HN ,s1
f

(
1
N

N∑
i=1

is2–s1
HN ,s2

HN ,s1

)
.

If t �→ tf (t) is a concave function, then the inequality signs are reversed.

Proof Inequalities (39) and (40) are proved analogously to Corollary 8 if we observe the
probability mass functions pi and qi as Zipf laws defined by (5). �

Let us provide the accompanied results of this type for some special cases of f -
divergences, starting with the Kullback–Leibler divergence (10). Again, we firstly observe
the more general case in which only one of two N-tuples p and q is defined via the Zipf–
Mandelbrot law (3).

Corollary 10 Let p = (p1, . . . , pN ) be an N-tuple of nonnegative real numbers with PN =∑N
i=1 pi, N ∈N and s2 > 0, t2 ≥ 0.
If the logarithm base is greater than 1, then

1
(N + t2)s2 HN ,s2,t2

�1
KL ≤ KL(i, N , s2, t2, p) ≤ 1

(1 + t2)s2 HN ,s2,t2
�1

KL, (41)
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where

�1
KL =

N∑
i=1

pi(i + t2)s2 HN ,s2,t2 log
(
pi(i + t2)s2 HN ,s2,t2

)

–
N∑

i=1

pi(i + t2)s2 HN ,s2,t2 log

(
1
N

N∑
1=1

pi(i + t2)s2 HN ,s2,t2

)
.

If the logarithm base is less than 1, then the inequality signs are reversed.

Proof It follows from Corollary 7 as a special case of inequalities (36), for the function
t �→ t log t, which is convex when the logarithm base is greater than 1. It can also be derived
from Corollary 1 and Remark 2 in the context of the Zipf–Mandelbrot law. �

When both p and q are defined via the Zipf–Mandelbrot law (3) or via the Zipf law (5),
the following statements hold.

Corollary 11 Let N ∈N and s1, s2 > 0, t1, t2 ≥ 0.
If the logarithm base is greater than 1, then

1
(N + t2)s2 HN ,s2,t2

�2
KL ≤ KL(i, N , s1, s2, t1, t2) ≤ 1

(1 + t2)s2 HN ,s2,t2
�2

KL, (42)

where

�2
KL =

N∑
i=1

(i + t2)s2 HN ,s2,t2

(i + t1)s1 HN ,s1,t1
log

(
(i + t2)s2 HN ,s2,t2

(i + t1)s1 HN ,s1,t1

)

–
N∑

i=1

(i + t2)s2 HN ,s2,t2

(i + t1)s1 HN ,s1,t1
log

(
1
N

N∑
1=1

(i + t2)s2 HN ,s2,t2

(i + t1)s1 HN ,s1,t1

)
.

If the parameters t1, t2 = 0, the corresponding inequalities for the Zipf law follow:

1
Ns2 HN ,s2

�̃2
KL ≤ KL(i, N , s1, s2) ≤ 1

HN ,s2
�̃2

KL, (43)

where

�̃2
KL =

N∑
i=1

is2–s1 HN ,s2

HN ,s1
log

(
is2–s1 HN ,s2

HN ,s1

)

–
N∑

i=1

is2–s1 HN ,s2

HN ,s1
log

(
1
N

N∑
1=1

is2–s1 HN ,s2

HN ,s1

)
.

If the logarithm base is less than 1, then the signs in inequalities (42) and (43) are reversed.

Proof Inequalities (42) follow from Corollary 8 as a special case of inequalities (38), for
the function t �→ t log t, which is convex when the logarithm base is greater than 1.

Similarly, inequalities (43) follow from Corollary 9 as a special case of inequalities (40). �
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The following corollaries deal with the Hellinger distance (11) considering one or two
N-tuples defined via the Zipf–Mandelbrot law or the Zipf law, as its special case.

Corollary 12 Let p = (p1, . . . , pN ) be an N-tuple of nonnegative real numbers with PN =∑N
i=1 pi, N ∈N and s2 > 0, t2 ≥ 0.
Then

1
2(N + t2)s2 HN ,s2,t2

�1
h ≤ h2(i, N , s2, t2, p) ≤ 1

2(1 + t2)s2 HN ,s2,t2
�1

h, (44)

where

�1
h =

N∑
i=1

(
1 –

√
pi(i + t2)s2 HN ,s2,t2

)2 – N

(
1 –

√√√√ 1
N

N∑
i=1

pi(i + t2)s2 HN ,s2,t2

)2

.

Proof It follows from Corollary 7 as a special case of inequalities (35), for the convex func-
tion t �→ 1

2 (
√

t – 1)2. It can also be derived from Corollary 2 and Remark 4 in the context
of the Zipf–Mandelbrot law. �

When both p and q are defined via the Zipf–Mandelbrot law (3) or via the Zipf law (5),
the following statements hold.

Corollary 13 Let N ∈N and s1, s2 > 0, t1, t2 ≥ 0.
Then

1
2(N + t2)s2 HN ,s2,t2

�2
h ≤ h2(i, N , s1, s2, t1, t2) ≤ 1

2(1 + t2)s2 HN ,s2,t2
�2

h, (45)

where

�2
h =

N∑
i=1

(
1 –

√
(i + t1)s1 HN ,s1,t1

(i + t2)s2 HN ,s2,t2

)2

– N

(
1 –

√√√√ 1
N

N∑
i=1

(i + t1)s1 HN ,s1,t1

(i + t2)s2 HN ,s2,t2

)2

.

If parameters t1, t2 = 0, the corresponding inequalities for the Zipf law follow:

1
2Ns2 HN ,s2

�̃2
h ≤ h2(i, N , s1, s2) ≤ 1

2HN ,s2
�̃2

h, (46)

where

�̃2
h =

N∑
i=1

(
1 –

√
is1–s2

HN ,s1

HN ,s2

)2

– N

(
1 –

√√√√ 1
N

N∑
i=1

is1–s2 HN ,s1

HN ,s2

)2

.

Proof Inequalities (45) follow from Corollary 8 as a special case of inequalities (37), for
the convex function t �→ 1

2 (
√

t – 1)2.
Similarly, inequalities (46) follow from Corollary 9 as a special case of inequalities (39). �

In the sequel we provide the results of this type for the Bhattacharyya coefficient (13),
starting with one N-tuple defined via the Zipf–Mandelbrot law and proceeding with both
such N-tuples, as well as with the Zipf law, as its special case.
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Corollary 14 Let p = (p1, . . . , pN ) be an N-tuple of nonnegative real numbers with PN =∑N
i=1 pi, N ∈N and s2 > 0, t2 ≥ 0.
Then

1 –
1

(N + t2)s2 HN ,s2,t2
�1

B ≥ B(i, N , s2, t2, p, ) ≥ 1 –
1

(1 + t2)s2 HN ,s2,t2
�1

B, (47)

where

�1
B =

√√√√N
N∑

i=1

pi(i + t2)s2 HN ,s2,t2 –
N∑

i=1

√
pi(i + t2)s2 HN ,s2,t2 .

Proof It follows from Corollary 7 as a special case of inequalities (35), for the convex func-
tion t �→ –

√
t. It can also be derived from Corollary 3 and Remark 5 in the context of the

Zipf–Mandelbrot law. �

Corollary 15 Let N ∈N and s1, s2 > 0, t1, t2 ≥ 0.
Then

1 –
1

(N + t2)s2 HN ,s2,t2
�2

B ≥ B(i, N , s1, t1, s2, t2) ≥ 1 –
1

(1 + t2)s2 HN ,s2,t2
�2

B, (48)

where

�2
B =

√√√√N
N∑

i=1

(i + t2)s2 HN ,s2,t2

(i + t1)s1 HN ,s1,t1
–

N∑
i=1

√
(i + t2)s2 HN ,s2,t2

(i + t1)s1 HN ,s1,t1
.

If parameters t1, t2 = 0, the corresponding inequalities for the Zipf law follow:

1 –
1

Ns2 HN ,s2
�̃2

B ≥ B(i, N , s1, s2) ≥ 1 –
1

HN ,s2
�̃2

B, (49)

where

�̃2
B =

√√√√N
N∑

i=1

is2–s1
HN ,s2

HN ,s1
–

N∑
i=1

√
is2–s1

HN ,s2

HN ,s1
.

Proof Inequalities (48) follow from Corollary 8 as a special case of inequalities (37), for
the convex function t �→ –

√
t.

Similarly, inequalities (49) follow from Corollary 9 as a special case of inequalities (39). �

In the same manner we proceed with analogous results for the chi-square divergence
(14) and the total variation distance (15).

Corollary 16 Let p = (p1, . . . , pN ) be an N-tuple of real numbers with PN =
∑N

i=1 pi, N ∈N

and s2 > 0, t2 ≥ 0.
Then

1
(N + t2)s2 HN ,s2,t2

�1
chi ≤ χ2(i, N , s2, t2, p) ≤ 1

(1 + t2)s2 HN ,s2,t2
�1

chi, (50)
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where

�1
chi =

N∑
i=1

(
pi(i + t2)s2 HN ,s2,t2 – 1

)2 – N

(
1
N

N∑
i=1

pi(i + t2)s2 HN ,s2,t2 – 1

)2

.

Proof It follows from Corollary 7 as a special case of inequalities (35), for the convex func-
tion t �→ (t – 1)2. It can also be derived from Corollary 4 and Remark 6 in the context of
the Zipf–Mandelbrot law. �

Corollary 17 Let N ∈N and s1, s2 > 0, t1, t2 ≥ 0.
Then

1
(N + t2)s2 HN ,s2,t2

�2
chi ≤ χ2(i, N , s1, t1, s2, t2) ≤ 1

(1 + t2)s2 HN ,s2,t2
�2

chi, (51)

where

�2
chi =

N∑
i=1

(
(i + t2)s2 HN ,s2,t2

(i + t1)s1 HN ,s1,t1
– 1

)2

– N

(
1
N

N∑
i=1

(i + t2)s2 HN ,s2,t2

(i + t1)s1 HN ,s1,t1
– 1

)2

.

If the parameters t1, t2 = 0, the corresponding inequalities for the Zipf law follow:

1
Ns2 HN ,s2

�̃2
chi ≤ χ2(i, N , s1, s2) ≤ 1

HN ,s2
�̃2

chi, (52)

where

�̃2
chi =

N∑
i=1

(
is2–s1

HN ,s2

HN ,s1
– 1

)2

– N

(
1
N

N∑
i=1

is2–s1
HN ,s2

HN ,s1
– 1

)2

.

Proof Inequalities (51) follow from Corollary 8 as a special case of inequalities (37), for
the convex function t �→ (t – 1)2.

Similarly, inequalities (52) follow from Corollary 9 as a special case of inequali-
ties (39). �

Corollary 18 Let p = (p1, . . . , pN ) be an N-tuple of real numbers with PN =
∑N

i=1 pi, N ∈N

and s2 > 0, t2 ≥ 0.
Then

1
(N + t2)s2 HN ,s2,t2

�1
V ≤ V (i, N , s2, t2, p) ≤ 1

(1 + t2)s2 HN ,s2,t2
�1

V , (53)

where

�1
V =

N∑
i=1

∣∣pi(i + t2)s2 HN ,s2,t2 – 1
∣∣ – N

∣∣∣∣∣ 1
N

N∑
i=1

pi(i + t2)s2 HN ,s2,t2 – 1

∣∣∣∣∣.
Proof It follows from Corollary 7 as a special case of inequalities (35), for the convex func-
tion t �→ |t – 1|. It can also be derived from Corollary 5 and Remark 7 in the context of the
Zipf–Mandelbrot law. �
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Corollary 19 Let N ∈N and s1, s2 > 0, t1, t2 ≥ 0.
Then

1
(N + t2)s2 HN ,s2,t2

�2
V ≤ V (i, N , s1, t1, s2, t2) ≤ 1

(1 + t2)s2 HN ,s2,t2
�2

V , (54)

where

�2
V =

N∑
i=1

∣∣∣∣ (i + t2)s2 HN ,s2,t2

(i + t1)s1 HN ,s1,t1
– 1

∣∣∣∣ – N

∣∣∣∣∣ 1
N

N∑
i=1

(i + t2)s2 HN ,s2,t2

(i + t1)s1 HN ,s1,t1
– 1

∣∣∣∣∣.
If parameters t1, t2 = 0, the corresponding inequalities for the Zipf law follow:

1
Ns2 HN ,s2

�̃2
V ≤ V (i, N , s1, s2) ≤ 1

HN ,s2
�̃2

V , (55)

where

�̃2
V =

N∑
i=1

∣∣∣∣is2–s1
HN ,s2

HN ,s1
– 1

∣∣∣∣ – N

∣∣∣∣∣ 1
N

N∑
i=1

is2–s1
HN ,s2

HN ,s1
– 1

∣∣∣∣∣.
Proof Inequalities (54) follow from Corollary 8 as a special case of inequalities (37), for
the convex function t �→ |t – 1|.

Similarly, inequalities (55) follow from Corollary 9 as a special case of inequali-
ties (39). �

In order to conclude this section providing the Jensen-inequality related results for the
f -divergences based on the Zipf–Mandelbrot law (or the Zipf law), for the triangular dis-
crimination (16) we give only the latter one: the bounds obtained in the case of both N-
tuples observed via the Zipf law.

Corollary 20 Let N ∈N and s1, s2 > 0.
Then

1
Ns2 HN ,s2

�̃2
� ≤ �(i, N , s1, s2) ≤ 1

HN ,s2
�̃2

�, (56)

where

�̃2
� =

N∑
i=1

(is2 HN ,s2 – is1 HN ,s1 )2

is1 HN ,s1 (is1 HN ,s1 + is2 HN ,s2 )
– N

( 1
N

∑N
i=1 is2–s1 HN ,s2

HN ,s1
– 1)2

1
N

∑N
i=1 is2–s1

HN ,s2
HN ,s1

+ 1
.

Proof The inequalities can easily be deduced from Corollary 9 as a special case of inequal-
ities (39), for the convex function t �→ (t–1)2

t+1 . It can also be derived from Corollary 6 and
Remark 8 in the context of the Zipf law. �

5 An application of the Zipf law
In the final section we are going to show how the experimental character of the Zipf law
can be interpreted through the bounds (43) obtained for the Kullback–Leibler divergence.
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Namely, the coefficients s1 and s2 from the Zipf law were analyzed by Gelbukh and
Sidorov in [25] as assigned to the Russian and English languages. They calculated the men-
tioned coefficients and their difference for each of the 39 literature texts in both languages,
with more than 10,000 running words inside of each of them. In the process they obtained
the average of s1 = 0.892869 for the Russian and s2 = 0.973863 for the English language.

In this context, with the described experimental values of s1 and s2 involved, the bounds
for the Kullback–Leibler divergence in (43) assume the following form which thus depends
only on the parameter N .

Example 1 Let p = (p1, . . . , pN ) and q = (q1, . . . , qN ) be distributions associated to the Rus-
sian and English languages, respectively, and let N ∈ N be a parameter. If the logarithm
base is greater than 1, then

1
N0.973863HN ,0.973863

�̃2
KL ≤ KL(i, N) ≤ 1

HN ,0.973863
�̃2

KL, (57)

where

�̃2
KL =

N∑
i=1

i0.080994HN ,0.973863

HN ,0.892869
log

(
i0.080994HN ,0.973863

HN ,0.892869

)

–
N∑

i=1

i0.080994HN ,0.973863

HN ,0.892869
log

(
1
N

N∑
1=1

i0.080994HN ,0.973863

HN ,0.892869

)
.

Proof It follows directly from (43) when inserting the experimental values of s1 and s2. �

6 Conclusions
In this paper we investigated f -divergences that originate from the Csiszár functional and
their link to the Jensen inequality with a specific type of the Jensen-type interpolating
inequalities. By means of these inequalities we derived new bounds for f -divergences in
general via the Csiszár functional and in particular for the Kullback–Leibler divergence,
Hellinger distance, Bhattacharyya distance (coefficient), χ2-divergence, total variation dis-
tance and triangular discrimination. Consequently, we deduced analogous results in the
light of the well-known Zipf–Mandelbrot law, with the adequate probability mass func-
tions and the adjusted form of the Csiszár functional. The Zipf–Mandelbrot law was an-
alyzed as a more general form of the Zipf law, for which we also gave the corresponding
results and an application in linguistics in order to accentuate its experimental charac-
ter. Thus this paper includes three important and widely investigated issues: the Jensen
inequality, the divergences (for probability distributions) and the Zipf–Mandelbrot law
with its less general, but not less important form, the Zipf law. In this way, the paper can
be of an interest for mathematicians who investigate any of these fields with an accent put
on mathematical inequalities, as well as for the interdisciplinary fields (e.g. linguistics was
involved in this case).
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