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Abstract
In this paper, we study the degenerate parabolic variational inequality problem in a
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1 Introduction
This article concerned with initial-boundary problem whose model is

⎧
⎪⎪⎨

⎪⎪⎩

min{Lu, u(x, 0) – u0(x)} = 0, (x, t) ∈ QT ,

u(x, t) = 0, (x, t) ∈ �T ,

u(x, 0) = u0(x), x ∈ �,

(1)

with

Lu = ut – div
(
a(u)|∇u|p(x,t)–2∇u

)
– f (x, t), a(u) = uσ + do,

where � ⊂ R
+ is a bounded simply connected domain, QT = � × (0, T], and �T denotes

the lateral boundary of the cylinder QT .
This type of variational inequality was studied initially by Chen and Yi [1], who proposed

the equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂τ

V – 1
2σ 2 ∂2

∂x2 V – (r – 1
2σ 2) ∂

∂x V + rV ≥ 0 in �T ,

V ≥ g(x), in �T ,

( ∂
∂τ

V – 1
2σ 2 ∂2

∂x2 V – (r – 1
2σ 2) ∂

∂x V + rV )(V – g(x)) = 0 in �T ,

V (t, x) = 0 on ∂�T ,

V (x, 0) = g(x) in �

(2)
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for modeling the American option. When r and σ are positive constant, the existence and
uniqueness of solutions to problem (4) were also studied in [2–4].

In 2014, the authors in [5] discussed the problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut – Lu – F(x, t, u,∇u) ≥ 0 in QT ,

u(x, t) ≥ u0(x) in QT ,

(ut – Lu – F(x, t, u,∇u))(u – u0(x)) = 0 in QT ,

u(x, 0) = u0(x) on �,

u(x, t) = g(x) on ∂� × (0, T)

with second-order elliptic operator

L(x, t) =
d∑

i,j=1

∂

∂xj

(

aij(x, t)
∂

∂xi

)

–
d∑

i,j=1

bi(x, t)
∂

∂xi
– c(x, t).

They proved the existence and uniqueness of a solution to this problem with some con-
ditions on u0, F , and L. Later, the authors in [6, 7] extended the relative conclusions with
the assumption that a(u) and p(x) are two positive constants. The author discussed the
existence and uniqueness of a solution by the penalty method.

The existence and uniqueness of such a problem with the assumption that p(x) and a(u)
are variables were less studied.

The aim of this paper is to study the existence and uniqueness of solutions for a degen-
erate parabolic variational inequality problem. Throughout the paper, we assume that the
exponent p(x, t) is continuous in Q = QT with logarithmic module of continuity:

1 < p– = inf
(x,t)∈Q

p(x, t) ≤ p(x, t) ≤ p+ = sup
(x,t)∈Q

p(x, t) < ∞, (3)

∀z = (x, t) ∈ Q, ξ = (y, s) ∈ QT , |z – ξ | < 1,
∣
∣p(z) – p(ξ )

∣
∣ ≤ ω

(|z – ξ |), (4)

where

lim sup
τ→0+

ω(τ ) ln
1
τ

= C < +∞.

The outline of this paper is as follows. In Section 2, we introduce the function spaces of
Orlicz-Sobolev type, give the definition of a weak solution to the problem, and prove the
existence and uniqueness. Section 3 is devoted to the proof of the existence and unique-
ness of the solution obtained in Section 2.

2 Basic spaces and the main results
To study our problems, let us introduce the Banach spaces:

Lp(x,t)(QT ) =
{

u(x, t)
∣
∣
∣u is measurable in QT , Ap(·)(u) =

∫ ∫

QT

|u|p(x,t) dx dt < ∞
}

,

‖u‖p(·) = inf
{
λ > 0, Ap(·)(u/λ) ≤ 1

}
,

Vt(�) =
{

u|u ∈ L2(�) ∩ W 1,1
0 (�), |∇u| ∈ Lp(x,t)(�)

}
, ‖u‖Vt (�) = ‖u‖2,� + |∇u|p(·)�,
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W (Qt) =
{

u : [0, T] �→ Vt(�)|u ∈ L2(Qt), |∇u| ∈ Lp(x,t)(QT ), u = 0 on �T
}

,

‖u‖W (Qt ) = ‖u‖2,QT + |∇u|p(x,t),QT

and denote by W ′(QT ) the dual of W (QT ) with respect to the inner product in L2(QT ).
In spirit of [3] and [4], we introduce the following maximal monotone graph:

G(λ) =

⎧
⎨

⎩

0, λ > 0,

[0, +∞), λ = 0.

In addition, we define the following function class for the solution:

B =
{

u ∈ W (QT ) ∩ L∞(
0, T ; L∞(�)

)}
.

Definition 2.1 A pair (u, ξ ) ∈ B × L∞(�T ) is called a weak solution of problem (1) if
(a) u(x, t) ≤ u0(x), (b) u(x, 0) = u0(x), (c) ξ ∈ G(u – u0), (d) for all t1, t2 ∈ [0, T], the following
identity holds:

∫ t2

t1

∫

�

[
uϕt –

(
uσ + d0

)|∇u|p(x,t)–2∇u∇ϕ + f (x, t)ϕ – ξϕ
]

dx dt =
∫

�

uϕ dx
∣
∣
∣
∣

t2

t1

.

The main theorem in this section is the following:

Theorem 2.1 Let p(x, t) satisfy conditions (3)–(4). Suppose also that the following condi-
tions hold:

(H1) max{1, 2N
N+2 } < p– < N , 2 ≤ σ < 2p+

p+–1 ,
(H2) u0 ≥ 0, f ≥ 0, ‖u0‖∞,� +

∫ T
0 ‖f (x, t)‖∞,� dt = K(T) < ∞.

Then problem (1) has at least one weak solution in the sense of Definition 2.1.

Theorem 2.2 Suppose that the conditions in Theorem 2.1 are fulfilled and p+ ≥ 2. Then
problem (1) admits a unique solution in the sense of Definition 2.1.

3 Proof of the main results
In this section, we consider the family of auxiliary parabolic problems

⎧
⎪⎪⎨

⎪⎪⎩

Lεuε + βε(uε – u0) = 0, (x, t) ∈ QT ,

u(x, t) = ε, (x, t) ∈ �T ,

u(x, 0) = u0(x) + ε, x ∈ �.

(5)

Here, M is a positive parameter to be chosen later. Moreover,

Lεuε = ∂tuε – div
(
aε,M(uε)|∇uε|p(x,t)–2∇uε

)
– f (x, t),

0 < d0 ≤ aε,M(u) =
(
min

(|u|2, M2) + ε2) σ
2 + d0 ≤ (

M2 + 1
)

+ d0, 0 < ε < 1,
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and βε(·) is the penalty function satisfying

0 < ε ≤ 1, βε(x) ∈ C2(R), βε(x) ≤ 0, βε(0) = –1,

β ′
ε(x) ≥ 0, β ′′

ε (x) ≤ 0, lim
ε→0

βε(x) =

⎧
⎨

⎩

0, x > 0,

–∞, x < 0.

(6)

Following a similar method as in [6], we can prove that the regularized problem has a
unique weak solution uε(x, t) ∈ W (QT ) ∩ L2(QT ), ∂tuε(x, t) ∈ W ′(QT ) satisfying the fol-
lowing integral identities:

∫ t2

t1

∫

�

[
uεϕt – aε , M(uε)|∇uε|p(x,t)–2∇uε∇ϕ + f (x, t)ϕ

]
dx dt

=
∫ t2

t1

∫

�

βε(uε – u0)ϕ dx dt +
∫

�

uεϕ dx
∣
∣
∣
∣

t2

t1

(7)

and

∫ t2

t1

∫

�

[
(∂tuε)ϕ + aε,M(uε)|∇u|p(x,t)–2∇uε∇ϕ – f (x, t)ϕ + βε(uε – u0)ϕ

]
dx dt = 0. (8)

We start with two preliminary results that will be used several times.

Lemma 3.1 Let M(s) = |s|p(x,t)–2s. Then for all ξ ,η ∈ RN ,

(
M(ξ ) – M(η)

)
(ξ – η)

≥
⎧
⎨

⎩

2–p(x,t)|ξ – η|p(x,t), 2 ≤ p(x, t) < ∞,

(p(x, t) – 1)|ξ – η|2(|ξ |p(x,t) + |η|p(x,t))
p(x,t)–2

p(x,t) , 1 < p(x, t) < 2.

Lemma 3.2 (Comparison principle) Assume that 2 < σ < 2p+

p+–1 , p+ ≥ 2, and u and v are in
W (QT ) ∩ L∞(0, T ; L∞(�)). If Lεu ≥ Lεv in QT and if u(x, t) ≤ v(x, t) on ∂QT , then u(x, t) ≤
v(x, t) in QT .

Proof We argue by contradiction. Suppose u(x, t) and v(x, t) satisfy Lεu ≥ Lεv in QT and
there is δ > 0 such that for 0 < τ ≤ T , w = u – v > δ on the set �δ = � ∩ {x : w(x, t) > δ}, and
μ(�δ) > 0. Let

Fε(ξ ) =

⎧
⎨

⎩

1
α–1ε1–α – 1

α–1ξ 1–α if ξ > ε,

0 if ξ ≤ ε,

where δ > 2ε > 0 and α = σ
2 . Let a test-function ξ = Fε(w) ∈ Z in (8). Then

0 ≥
∫ ∫

QT

[
wtFε(w) +

(
vσ + d0

)(|∇u|p(x,t)–2∇u – |∇v|p(x,t)–2∇v
)∇Fε(w)

]
dx dt

+
∫ ∫

QT

(
uσ – vσ

)|∇u|p(x,t)–2∇u∇Fε(w) dx dt = J1 + J2 + J3, (9)



Dong Journal of Inequalities and Applications  (2018) 2018:35 Page 5 of 13

where Qε,τ = Qτ ∩ {(x, t) ∈ Qτ |w > ε},

J1 =
∫ ∫

QT

wtFε(w) dx dt, J2 =
∫ ∫

QT

(
uσ – vσ

)
w–α|∇u|p(x,t)–2∇u∇w dx dt,

J3 =
∫ ∫

QT

(
vσ + d0

)
w–α

(|∇u|p(x,t)–2∇u – |∇v|p(x,t)–2∇v
)∇w dx dt.

Now, let t0 = inf{t ∈ (0, τ ] : w > ε}. Then we estimate J1, J2, and J3 as follows:

J1 =
∫ ∫

Qε,τ

wtFε(w) dx dt =
∫

�

(∫ t0

0
wtFε(w) dt +

∫ τ

t0

wtFε(w) dt
)

dx

≥
∫

�

∫ w(x,τ )

ε

Fε(s) ds dx ≥
∫

�δ

∫ w(x,τ )

ε

Fε(s) ds dx

≥
∫

�δ

(w – 2ε)Fε(2ε) dx ≥ (δ – 2ε)Fε(2ε)μ(�δ). (10)

Let us first consider the case p– ≥ 2. By the first inequality of Lemma 3.1 we get

J2 =
∫ ∫

Qε,τ

(
vσ + d0

)
w–α

(|∇u|p(x,t)–2∇u – |∇v|p(x,t)–2∇v
)∇w dx dt

≥
∫ ∫

Qε,τ

(
vσ + d0

)
w–α2–p(x,t)|∇w|p(x,t) dx dt

≥ 2–p+
∫ ∫

Qε,τ

(
vσ + d0

)
w–α|∇w|p(x,t) dx dt ≥ 0. (11)

Noting that p(x,t)
p(x,t)–1 ≥ p+

p+–1 ≥ σ
2 = α > 1 and applying Young’s inequality, we can estimate

the integrand of J3 in the following way:

∣
∣
(
uσ – vσ

)
w–α|∇w|p(x,t)–2∇u∇w

∣
∣

=
∣
∣
∣
∣σw

∫ 1

0

(
θu + (1 – θ )v

)σ–1 dθw–α|∇w|p(x,t)–2∇u∇w
∣
∣
∣
∣

≤ C
wα

[
vσ + d0

C

]

|∇w|p(x,t) + C1
(
σ , d0, K(T), p±)|w|p′(x,t)|∇u|p(x,t)]

=
(vσ + d0)
2p++1wα

|∇w|p(x,t) + C1
(
σ , d0, K(T), p±)|w|p′(x,t)–α|∇u|p(x,t)

≤ (vσ + d0)
2p++1wα

|∇w|p(x,t) + C1
(
σ , d0, K(T), p±)|∇u|p(x,t). (12)

Substituting (12) into J3, we get

J3 ≤ 1
2

J2 + C
∫ ∫

Qε,τ

|∇u|
p(x,t)

dx dt. (13)
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Second, we consider the case 1 < p– ≤ p(x, t) < 2, p+ ≥ 2. According to the second inequal-
ity of Lemma 3.1, it is easily seen that the following inequalities hold:

J2 =
∫ ∫

Qε,τ

(
vσ + d0

)
w–α

(|∇w|p(x,t)–2∇u – |∇v|p(x,t)–2∇v
)∇w dx dt

≥ (
p– – 1

)
∫ ∫

Qε,τ

(
vσ + d0

)
w–α

(|∇w| + |∇v|)p(x,t)–2|∇w|2 dx dt. (14)

Using the conditions 1 < α ≤ p+

p+–1 ≤ 2 and Young’s inequality, we can evaluate the inte-
grand of J3 as follows:

∣
∣
(
uσ – vσ

)
w–α|∇w|p(x,t)–2∇u∇w

∣
∣

=
∣
∣
∣
∣σw

∫ 1

0

(
θu + (1 – θ )v

)σ–1 dθw–α|∇w|p(x,t)–2∇u∇w
∣
∣
∣
∣

≤ (vσ + d0)(p– – 1)
2wα

(|∇w| + |∇v|)p(x,t)–2|∇w|2

+ C1
(
σ , d0, K(T), p±)|w|2–α|∇w| + |∇v|)p(x,t). (15)

Plugging (15) into J3, we get

J3 ≤ 1
2

J2 + C
∫ ∫

Qε,τ

|∇w| + |∇v|)p(x,t) dx dt. (16)

Plugging estimates (10), (11), (13) and (10), (14), (16) into (9) and dropping the nonnegative
terms, we arrive at the inequality

(δ – 2ε)
(
1 – 21–α

)
ε1–αμ(�δ) ≤ C̃ (17)

with a constant C̃ independent of ε.
Notice that limε→0(δ – 2ε)(1 – 21–α)ε1–αμ(�δ) = +∞, a contradiction. This means that

μ(�δ) = 0 and w ≤ 0 a.e. in Qτ . �

Lemma 3.3 Let uε be weak solutions of (5). Then

u0ε ≤ uε ≤ |u0|∞ + ε, (18)

uε1 ≤ uε2 for ε1 ≤ ε2. (19)

Proof First, we prove uε ≥ u0ε by contradiction. Assume that uε ≤ u0ε in Q0
T , Q0

T ⊂ QT .
Noting that uε ≥ u0ε on ∂QT , we may assume that uε = u0ε on ∂Q0

T . With (5) and letting
t = 0, we deduce that

Lu0ε = βε(u0ε – u0ε) = –1, (20)

Luε = βε(uε – u0ε) ≤ –1. (21)
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From Lemma 3.2 we conclude that

u(x, t) ≤ u0ε(x) for any (x, t) ∈ �T , (22)

obtaining a contradiction.
Second, we pay attention to uε(t, x) ≤ |u0|∞ + ε. Applying the definition of βε(·), we

have

L
(|u0|∞ + ε

)
= 0, Luε ≤ 0. (23)

From (5) it is easy to prove that uε(x, t) ≥ ε on ∂� × (0, T) and u0ε(x) ≥ ε in �. Thus,
combining (21) and (23) and repeating Lemma 3.3, we have

uε(x, t) ≥ ε in � × (0, T). (24)

Third, we aim to prove (19). Since

Luε1 – βε1 (u0ε1 – uε1 ) = 0, (25)

Luε2 – βε2 (u0ε2 – uε2 ) = 0. (26)

It follows by ε1 ≤ ε2 and the definition of βε(·) that

∂tuε2 – Luε2 – βε1 (u0ε1 – uε2 )

= βε2 (u0ε2 – uε2 ) – βε1 (u0ε1 – uε2 ) ≥ βε2 (u0ε2 – uε2 ) – βε1 (u0ε2 – uε2 ) ≥ 0. (27)

Thus, Lemma 3.3 can be proved by combining initial and boundary conditions in (5). �

Moreover, with (18), we assert that there exists a subsequence ε (still denoted by ε) such
that

uε → u ∈ Lp(0, T ; W 1,p
0 (�T )

)
as ε → 0, (28)

uε ≥ u ≥ 0 for any ε > 0. (29)

Lemma 3.4 Let uε be a solution of problem (5). For any ε > 0, we have

‖uε‖∞,QT ≤ ‖u0‖∞,� +
∫ T

0

∥
∥f (x, t)

∥
∥∞,� dt = K(T) < ∞. (30)

Proof Define

uεM =

⎧
⎪⎪⎨

⎪⎪⎩

M if uε > M,

uε if |uε| ≤ M,

–M if uε < –M.
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Choosing u2k–1
εM as a test-function in (8) and letting t1 = t and t2 = t + h, we conclude that

1
2k

∫ t+h

t

d
dt

(∫

�

u2k
εM dx

)

dt +
∫ t+h

t

∫

�

(2k – 1)aε,M(uεM)u2(k–1)
εM |∇uεM|p(x,t) dx dt

=
∫ t+h

t

∫

�

fu2k–1
εM dx dt –

∫ t+h

t

∫

�

βεu2k–1
εM dx. (31)

Letting h → 0 and applying Lebesgue’s dominated convergence theorem, we have that, for
all t ∈ (0, T),

1
2k

d
dt

∫

�

u2k
εM dx +

∫

�

(2k – 1)aε,M(uεM)u2(k–1)
εM |∇uεM|p(x,t) dx

=
∫

�

fu2k–1
εM dx –

∫

�

βεu2k–1
εM dx. (32)

Using Holder’s inequality, we obtain

∣
∣
∣
∣

∫

�

fu2k–1
εM dx

∣
∣
∣
∣ ≤ ∥

∥uεM(·, t)
∥
∥2k–1

2k,� · ∥∥f (·, t)
∥
∥

2k,�, k = 1, 2, . . . ,
∣
∣
∣
∣

∫

�

βεu2k–1
εM dx

∣
∣
∣
∣ ≤

∫

�

u2k–1
εM dx ≤ ∥

∥uεM(·, t)
∥
∥2k–1

2k,� ,

whence

‖uεM‖2k–1
2k,�

d
dt

(‖uεM‖2k,�
)

+ (2k – 1)
∫

�

aε,M(uεM)u2(k–1)
εM |∇uε,M|p(x,t) dx

≤ ‖uεM‖2k–1
2k,� · ∥∥f (·, t)

∥
∥

2k,� + C(T)‖uεM‖2k–1
2k,� , k = 1, 2, . . . . (33)

By integration over (0, t), for all t, we have

∥
∥uεM(·, t)

∥
∥

2k,� ≤ ∥
∥uεM(·, 0)

∥
∥

2k,� +
∫ T

0
‖f ‖2k,� dt + C(T), ∀k ∈N.

Then, as k → ∞,

∥
∥uεM(·, t)

∥
∥∞,� ≤ ∥

∥uεM(·, 0)
∥
∥∞,� +

∫ T

0
‖f ‖∞,� dt

≤ ‖u0‖∞,� +
∫ T

0
‖f ‖∞,� dt + C(T) = K(T). �

If we chose M > K(T) then uεM(·, t) ≤ sup |uεM(·, t)| ≤ K(T) < M, and therefore uεM(·, t) =
uε(·, t).

Corollary 3.1 Choosing M large enough, we have

min
{

u2
ε , M2} = u2

ε and aε,M
(
uεM

)
= aε,M(aε) =

(
ε2 + u2

ε

)σ /2 + d0.

Corollary 3.2 If u0 ≥ 0 and f ≥ 0, then the solution uε(x, t) is nonnegative in QT .
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Proof Set u–
ε = min{uε , 0}. Then u–

ε (x, 0) = 0, u–
ε |�T = 0, and

1
2

d
dt

(∥
∥u–

ε (x, t)
∥
∥2

2,�

)
+

∫

�

aε,M(uε)
∣
∣∇u–

ε

∣
∣p(x,t) dx ≤ 0.

It follows that, for every t > 0,

∥
∥u–

ε (x, t)
∥
∥

2,� ≤ ∥
∥u–

ε (·, 0)
∥
∥

2,� = 0,

and the required assertion follows. �

Lemma 3.5 The solution of problem (5) satisfies the estimates

∫ ∫

QT

uσ
ε |∇uε|p(x,t) dx dt ≤ K(T)|�|

1
2

, (34)

εσ

∫ ∫

QT

|∇uε|p(x,t) dx dt ≤ K(T)|�|
1
2

, (35)

d0

∫ ∫

QT

|∇uε|p(x,t) dx dt ≤ K(T)|�|
1
2

. (36)

Proof Similarly as in Lemma 3.4, we take k = 1 in (32) to get

d
dt

∥
∥uε(·, t)

∥
∥

2,� +
∫

�

aε,M(uε)|∇uε|p(x,t) dx ≤ ‖f ‖2,� + C(T), ∀t ∈ (0, T).

Clearly, integrating over (0, t), we have

∥
∥uε(·, t)

∥
∥

2,� +
∫ t

0

∫

�

aε,M(uε)|∇uε|p(x,t) dx dt ≤∥
∥uε(·, t)

∥
∥

2,� +
∫ T

0
‖f ‖2,� dt +C(T). (37)

Note that the first term on the left-hand side is nonnegative. We drop the nonpositive term
in (37) to get

∫ t

0

∫

�

aε,M(uε)|∇uε|p(x,t) dx dt ≤K(T)|�| 1
2 .

If aε,M(uε) ≥ d0, then we have inequality (36), and if aε,M(uε) ≥ εσ , then we have inequal-
ity (35) such that M > K(T), and we have aε,M(uε) ≥ uσ

ε . Furthermore, we get inequality
(34). �

Lemma 3.6 The solution of problem (5) satisfies the estimate

‖uεt‖W ′(QT ) ≤ C
(
σ , p±, K(T), |�|). (38)

Proof From identity (7) we get
∫ ∫

QT

uεtξ dx dt = –
∫ ∫

QT

[(
uσ

ε + ε2)σ /2 + d0
]|∇uε|p(x,t)–2∇uε∇ξ dx dt

+
∫ ∫

QT

f (x, t)ξ (x, t) dx dt –
∫ ∫

QT

βε(x, t)ξ (x, t) dx dt.



Dong Journal of Inequalities and Applications  (2018) 2018:35 Page 10 of 13

Applying the fact that βε(x, t) ∈ (0, 1), we get

∫ ∫

QT

uεtξ dx dt ≤
∫ T

0

∫

�

[(
uσ

ε + ε2)σ /2 + d0
]|∇uε|p(x,t)–1∇uε∇ξ dx dt

+
∫ T

0

∫

�

|f + 1| · |ξ |dx dt.

Using the Hölder inequality repeatedly, we have that
∫ ∫

QT

uεtξ dx dt ≤ 2
∥
∥
[(

uσ
ε + ε2)σ /2 + d0

]|∇uε|p(x,t)–1∥∥
p′(x,t)‖∇ξ‖p(x,t)

+ 2‖f + 1‖p′(x,t) · ‖ξ‖p(x,t)

≤ 2 max{F1, F2}‖∇ξ‖p(x,t) + 2 max{F3, F4}‖ξ‖p(x,t)

≤ (
2
((

K2(T) + 1
)σ /2 + d0

) 1
p±–1 K(T)|�| + 2|f + 1|∞|T |)‖ξ‖W (QT ),

where

F1 =
(∫ T

0

∫

�

{[(
uσ

ε + ε2)σ /2 + d0
]|∇uε|p(x,t)–1}

p(x,t)
p(x,t)–1 dx dt

) 1
p′+

,

F2 =
(∫ T

0

∫

�

{[(
uσ

ε + ε2)σ /2 + d0
]|∇uε|p(x,t)–1}

p(x,t)
p(x,t)–1 dx dt

) 1
p′–

,

F3 =
(∫ T

0

∫

�

|f |p′(x,t) dx dt
) 1

p′+
, F4 =

(∫ T

0

∫

�

|f + 1|p′(x,t) dx dt
) 1

p′–
.

Then (38) follows from Lemma 3.5. �

From [6] we can get the following inclusions:

uε ∈ W (QT ) ⊆ Lp–(
0, T ; W 1,p–

0 (�)
)
, uεt ∈ W ′(QT ) ⊆ L

p+
p+–1

(
0, T ; V+(�)

)
,

W 1,p–

0 (�) ⊂ L2(�) ⊂ V+
′(�) with V+(�) =

{
u(x)|u ∈ L2(�) ∩ W 1,1

0 (�), |∇u| ∈ Lp+}
.

These conclusions, together with the uniform estimates in ε, allow us to extract from
the sequence {uε} a subsequence (for simplicity, we assume that it merely coincides with
the whole sequence) such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

uε → u a.e. in QT ,

∇uε → ∇u weakly in Lp(x,t)(QT ),

uσ
ε |∇uε|p(x,t)–2Diuε → Ai(x, t) weakly in Lp′(x,t)(QT ),

|∇uε|p(x,t)–2Diuε → Wi(x, t) weakly in Lp′(x,t)(QT )

(39)

for some functions u ∈ W (QT ), Ai(x, t) ∈ Lp′(x,t)(QT ), and Wi(x, t) ∈ Lp′(x,t)(QT ).

Lemma 3.7 For almost all (x, t) ∈ QT ,

lim
ε→0+

∫ ∫

QT

((
u2

ε + ε2) σ
2 – uσ

ε

)|∇uε|p(x,t)–2∇uε∇ξ dx dt = 0, ∀ξ = W (QT ).
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Proof We first compute

I �=
∫ ∫

QT

((
u2

ε + ε2) σ
2 – uσ

ε

)|∇uε|p(x,t)–2∇uε∇ξ dx dt

=
σ

2
ε2

∫ ∫

QT

(∫ 1

0

(
u2

ε + sε2) σ–2
2 ds

)

|∇uε|p(x,t)–2∇uε∇ξ dx dt

≤ σε2(K2(T) + 1
) σ–2

2
∥
∥|∇uε|p(x,t)–1∥∥

p′(x,t)‖∇ξ‖p(x,t)

≤ Cε2 max

{(∫ ∫

QT

|∇uε|p(x,t) dx dt
) p+–1

p+

,
(∫ ∫

QT

|∇uε|p(x,t) dx dt
) p––1

p– }

‖∇ξ‖p(x,t).

By (35) we get

I ≤ Cε
2– σ (p+–1)

p+ ‖∇ξ‖p(x,t).

Passing to the limit as ε → 0, we obtain Lemma 3.7. �

Lemma 3.8 For almost all (x, t) ∈ QT , we have

Ai(x, t) = uσ Wi(x, t), i = 1, 2, . . . , N .

Proof In (39), letting ε → 0, we have

∫ ∫

QT

uσ
ε |∇uε|p(x,t)–2∇uε∇ξ dx dt →

∑∫ ∫

QT

Ai(x, t)Diξ dx dt, (40)

∫ ∫

QT

uσ
ε |∇uε|p(x,t)–2∇uε∇ξ dx dt →

∑∫ ∫

QT

Wi(x, t)Diξ dx dt. (41)

By Lebesgue’s dominated convergence theorem we have

lim
ε→0

N∑

i=1

∫ ∫

QT

(
uσ

ε – uσ
)
Ai(x, t)Diξ dx dt = 0. (42)

So

lim
ε→0

∑∫ ∫

QT

(
uσ

ε |∇uε|p(x,t)–2Diuε – uσ Wi(x, t)
)
Diξ dx dt

= lim
ε→0

∫ ∫

QT

(
uσ

ε – uσ
)|∇uε|p(x,t)–2Diuε + uσ

(|∇uε|p(x,t)–2Diuε – Wi(x, t)
)
Diξ dx dt

= 0.

By (40)–(42) and the previous inequalities, we complete the proof of Lemma 3.8. �

Lemma 3.9 For almost all (x, t) ∈ QT , we have

Wi(x, t) = |∇uε|p(x,t)–2Diu, i = 1, 2, . . . , N .
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Proof In (8), choosing ξ = (uε – u)� with � ∈ W (QT ), � ≥ 0, we have

∫ ∫

QT

[
uεt(uε – u)� + �

(
uσ

ε + d0
)|∇uε|p(x,t)–2∇uε∇(uε – u)

]
dx dt

+
∫ ∫

QT

[
(uε – u)

(
uσ

ε + d0
)|∇uε|p(x,t)–2∇uε∇� – f (x, t)(uε – u)�

]
dx dt

+
∫ ∫

QT

((
uσ

ε – ε2) σ
2 – uσ

ε

)|∇uε|p(x,t)–2∇uε∇ξ dx dt = 0.

It follows that

lim
ε→0

∫ ∫

QT

�
(
uσ

ε + d0
)|∇uε|p(x,t)–2∇uε∇(uε – u) dx dt = 0. (43)

On the other hand, from uε , u ∈ L∞(QT ) and |∇u| ∈ Lp(x,t)(QT ) we get

lim
ε→0

∫ ∫

QT

�
(
uσ + d0

)|∇u|p(x,t)–2∇u∇(uε – u) dx dt = 0, (44)

lim
ε→0

∫ ∫

QT

�
(
uσ

ε + uσ
)|∇uε|p(x,t)–2∇uε∇(uε – u) dx dt = 0. (45)

Note that

0 ≤ (|∇uε|p(x,t)–2∇uε – |∇u|p(x,t)–2∇u
)∇(uε – u)

≤ 1
d0

[(
uσ

ε + d0
)|∇uε|p(x,t)–2∇uε –

(
uσ

ε – uσ
)|∇uε|p(x,t)–2∇u

]∇(uε – u)

–
1
d0

(
uσ

ε + d0
)|∇uε|p(x,t)–2∇u∇(uε – u). (46)

By (44)–(46) we have

lim
ε→0

∫ ∫

QT

�
(|∇uε|p(x,t)–2∇uε–|∇uε|p(x,t)–2∇u

)∇(uε – u) dx dt = 0. (47)
�

Lemma 3.10 As ε → 0,we have

βε(uε – u0) → ξ ∈ G(u – u0). (48)

Proof Using (7) and the definition of βε , we have

βε(uε – u0) → ξ as ε → 0.

Now we prove that ξ ∈ G(u–u0). According to the definition of G(·), we only need to prove
that if u(x0, t0) > u0(x0), then ξ (x0, t0) = 0. In fact, if u(x0, t0) > u0(x), there exist a constant
λ > 0 and a δ neighborhood Bδ(x0, t0) such that if ε is small enough, we have

uε(x, t) ≥ u0(x) + λ, ∀(x, t) ∈ Bδ(x0, t0).
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Thus, if ε is small enough, then we have

0 ≥ βε(uε – u0) ≥ βε(λ) = 0, ∀(x, t) ∈ Bδ(x0, t0).

Furthermore, it follows by ε → 0 that

ξ (x, t) = 0, ∀(x, t) ∈ Bδ(x0, t0).

Hence, (48) holds, and the proof of Lemma 3.10 is completed. �

Applying (28), (29), and Lemma 3.10, it is clear that

u(x, t) ≤ u0(x) in �T , u(x, 0) = u0(x) in �, ξ ∈ G(u – u0),

and thus (a), (b), and (c) hold. The remaining arguments of the existence part are the same
as those of Theorem 2.1 in [8], and we omit the details. Moreover, the uniqueness of so-
lutions can be proved by repeating Lemma 3.1.
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