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e Abstract

e Wemanns In this paper, we study the degenerate parabolic variational inequality problem in a

bounded domain. First, the weak solutions of the variational inequality are defined.
Second, the existence and uniqueness of the solutions in the weak sense are proved
by using the penalty method and the reduction method.
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1 Introduction

This article concerned with initial-boundary problem whose model is

min{Lu, u(x,0) —up(x)} =0, (x,t) € Qr,
u(x,t) =0, (x,t) ey, (1)

u(x, 0) = uo(x), x € Q,
with
Lu=u,— div(u(u)lvmp(’“’”_zVu) —fx,0), a(u)=u’ +d,
where © C R* is a bounded simply connected domain, Qr = 2 x (0, T'], and I'r denotes
the lateral boundary of the cylinder Q7.

This type of variational inequality was studied initially by Chen and Yi [1], who proposed
the equation

2y 122y _(r-1o) LV +rV 20 in Qr,

V= gx), in Qr,
(%V—%02$V—(r—%02)%V+rV)(V—g(x))=0 in Qr, (2)
V(t,x)=0 on dQ7,

V(x,0) = g(x) in £
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for modeling the American option. When r and o are positive constant, the existence and
uniqueness of solutions to problem (4) were also studied in [2—-4].
In 2014, the authors in [5] discussed the problem

u; — Lu—F(x,t,u,Vu) >0 in Qr,
u(x,t) = uo(x) in Qr,
(uy — Lu — F(x,t,u, Vi) (u — up(x)) =0 in Qr,
u(x,0) = uo(x) on ,
u(x,t) = g(x) on a2 x (0,T)

with second-order elliptic operator

9 3 ? 3
Lix,t)=) —(d't)— | =) b'(xt)— —cx0).
(x,2) ;axj <a (x,2) 8x,-> ; (x,2) o c(x,2)

They proved the existence and uniqueness of a solution to this problem with some con-
ditions on ug, F, and L. Later, the authors in [6, 7] extended the relative conclusions with
the assumption that a(u) and p(x) are two positive constants. The author discussed the
existence and uniqueness of a solution by the penalty method.

The existence and uniqueness of such a problem with the assumption that p(x) and a(u)
are variables were less studied.

The aim of this paper is to study the existence and uniqueness of solutions for a degen-
erate parabolic variational inequality problem. Throughout the paper, we assume that the
exponent p(x, t) is continuous in Q = Q7 with logarithmic module of continuity:

1<p = inf p(xt) <pxt)<p" = sup p(xt)<oo, @)
(x1)eQ x0)eQ

Vz=(x1)€Q,  E=(,9)€Qr,  |z-§l<1,  |ple)-p)| <w(lz-£l), 4)
where

. 1
limsupw(t)In— = C < +o0.
T

T—>0"

The outline of this paper is as follows. In Section 2, we introduce the function spaces of
Orlicz-Sobolev type, give the definition of a weak solution to the problem, and prove the
existence and uniqueness. Section 3 is devoted to the proof of the existence and unique-
ness of the solution obtained in Section 2.

2 Basic spaces and the main results
To study our problems, let us introduce the Banach spaces:

IP%D(Qyp) = {u(x, t)’u is measurable in Qr, A, (1) = f / [P0 dx dt < oo},
Qr

lleell o) = inf{k > 0,A,0)(u/)) < 1},

Vi(Q) = {ulu € LX(Q) N Wy (Q), [Vul e P*NQ)),  Nlullvie) = lulage + [ Vilpoe
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W(Qy) = {u:[0,T] — Vi(Q)lu € L*(Q),|Vu| € I’*)(Qr),u=00nTr},

lullwia) = lull2or + IVitlpwn,or

and denote by W’(Qr) the dual of W(Qr) with respect to the inner product in L2(Qr).

In spirit of [3] and [4], we introduce the following maximal monotone graph:

0, A>0,
[0,+00), A=0.

G(L) =

In addition, we define the following function class for the solution:
B={uecW(Qr)NL*(0,T;L¥(Q))}.

Definition 2.1 A pair (1,&) € B x L*(Q7) is called a weak solution of problem (1) if
(@) ulx, t) < uo(x), (b) ulx,0) = up(x), (c) & € G(u—uy), (d) for all t, £, € [0, T], the following
identity holds:

t2

5]
/ / [uwt - (u‘r + d0)|Vu|p(x’t)_2VuV<p +f(x,)p — S(p] dxdt = / up dx
t Q Q

51

The main theorem in this section is the following:

Theorem 2.1 Let p(x,t) satisfy conditions (3)—(4). Suppose also that the following condi-
tions hold:

(H1) max({1, %} <p <N,2<o0< pzf’:l,

(o) 1> 0,f =0, luglloog + fy If (%80 dt = K(T) < c0.
Then problem (1) has at least one weak solution in the sense of Definition 2.1.

Theorem 2.2 Suppose that the conditions in Theorem 2.1 are fulfilled and p* > 2. Then

problem (1) admits a unique solution in the sense of Definition 2.1.

3 Proof of the main results

In this section, we consider the family of auxiliary parabolic problems

Lous + Be(ue —up) =0, (x,£) € Qr,
u(x,t) =&, (x,8) e T, (5)

u(x,0) = up(x) + ¢, x € Q.
Here, M is a positive parameter to be chosen later. Moreover,

Leu, = dtty — div(aen(ue) | Vite P72V, ) — f(x, ),

a

0 <dy < asp(u) = (min(|ul*, M?) + &*)? +do < (M* +1) +dy, 0<e<l,
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and f(-) is the penalty function satisfying

0<e<1, B (%) € C*(R), Be(x) <0, B:(0) = -1,

, " ) 0, x>0, ©)
B.(x) >0, B.(x) <0, lim B (x) =
e—>0 —00, x<0.

Following a similar method as in [6], we can prove that the regularized problem has a
unique weak solution u,(x,£) € W(Qr) N L*(Qr), dsu.(x,t) € W'(Qr) satisfying the fol-
lowing integral identities:

2
/ / [4:00 — e, M(ute) |Vt P¥ 2V, Vo + f(x, £)p]| dx de
t Q

12}
=/ /ﬁg(ug—uo)wdxdt+/ u.pdx
t Q Q

9]

7)

t1

and
5]
/ / [@ctte)p + Aot (e) [ VulP 2V UV - f (3, 0)¢ + e (e — to)p] dxdt =0.  (8)
t Q

We start with two preliminary results that will be used several times.

Lemma 3.1 Let M(s) = |s|?*)~2s. Then for all €, € RN,

(M(E) - M) & - n)

2P| g _ p|ple), 2 < plx,t) < o0,
pxt)-2
(p(x,£) = 1) = nP(EPED + |n|p=D) pe, 1< p(x, 1) < 2.
Lemma 3.2 (Comparison principle) Assume that2 <o < p{pjl ,p" =2, and u and v are in
W(Qr) NL>®(0, T;L>(2)). If Leu > Lev in Qr and if u(x, t) < v(x,t) on dQr, then u(x, t) <
v(x,t) in Q.

Proof We argue by contradiction. Suppose u(x, t) and v(x, t) satisfy L,u > L.v in Q7 and
there is § > 0 such that forO<t < T, w=u—v > § on the set Q5 = Q N {x: w(x, t) > 5}, and
w(2s) > 0. Let

1 1 1 &1 :
Tlg a_mg o 1f§>8,

F(§)=1"° )
0 if€ <e,

where § >2¢ >0 and « = 7. Let a test-function & = F.(w) € Z in (8). Then

0> / / [WeFe(w) + (v +do) (IVulP™D 2V — |VvPSD2Vy) VE, ()] dx dt
Qr

+ f / (u” = V") IVulP 2V UV (w) dxde = J1 + )2+ Js, ©
Qr
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where Q,; = Q; N{(x,£) € Q;[w> ¢},

]1=// wF, (w) dx dt, ]2=// (u"—v")w_“|Vu|"(x’t)_2Vqudxdt,
Qr Qr

Js = // (v + do)w™ (IVulP®02Vy — |[VyP@I2Vy) Vi dx de.
Qr

Now, let tg = inf{t € (0, t] : w > £}. Then we estimate /1, J5, and J3 as follows:

to T
i :// W,Fg(w)dxdt:f (/ thS(w)dt+/ thE(w)dt>dx
et Q 0 to
w(x,T) w(x,7)
2// Fg(s)dsdxz/ / F.(s)dsdx
QJe Qs Je

> | (w—2e)F.(2¢) dx > (6 — 26)Fo(26) u(S25). (10)
Qs

Let us first consider the case p~ > 2. By the first inequality of Lemma 3.1 we get

Jy = // (VU n do)w—a(|vu|p(x,t)—zvu_ |Vv|p(x’t)_2Vv)dexdt
> // (v +dg)W‘“Z“’“"”leW(x’t) dxde

>27" // (v + do)w_“|Vw|p(x’t) dxdt > 0. (11)

+

Noting that pﬁf’;ﬁl > plj—l > ¢ =« > 1 and applying Young’s inequality, we can estimate

the integrand of /3 in the following way:

|(u” =" )w™| Vw|p("'t)_2Vqu‘

1
ow/ (bu+(1 —9)1;)"‘1 dow ™ |[Vw[P@)-2v
0

C [V +dy
—W[ C
(V7 +dy)
v +d
= ;p++lwi)

]IVWI”<’“”) + Ci(0,do, K(T), p*) [ © | Vau P 9)]
[VwlP®) + Ci (0, do, K(T), p*) [P 07 | VP9

[VwiP®D + Cy (o, do, K(T), p*) [Vu P, (12)

Substituting (12) into J3, we get

1 pxt)
J3 < 5]2 + C// [Vu| dxdt. (13)
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Second, we consider the case 1 < p~ < p(x,t) < 2, p* > 2. According to the second inequal-

ity of Lemma 3.1, it is easily seen that the following inequalities hold:
Jy = / / (Va n do)w—ot(|vw|p(x,t)—2vu _ |Vv|p(x’t)‘2Vv)dexdt

= =1) [ [0 s o (9t 19 o, 19

Using the conditions 1 <« < p{’il < 2 and Young’s inequality, we can evaluate the inte-

grand of /3 as follows:

|(u” = v ) w e Vw2V V|

1
aw/ (Ou+ (- 9)1/)6_1 dOw | VwlP* -2V Vw
0

_ ) - 1)
- 2we

+ C1(0,do, K(T), p=) Iw|*™|Vw| + |Vy] )P0 (15)

(V] + |90 |V w)?

Plugging (15) into /3, we get
1
J3 < 5]2 + C// [Vwl| + |V dx dz. (16)

Plugging estimates (10), (11), (13) and (10), (14), (16) into (9) and dropping the nonnegative

terms, we arrive at the inequality
(6—2e)(1-2"")e ™ u(Q;) < C (17)
with a constant C independent of &.
Notice that lim,_, (8 — 2¢)(1 — 217*)e™=% u(R;) = +00, a contradiction. This means that

w(2s)=0and w <0a.e.in Q. O

Lemma 3.3 Let u, be weak solutions of (5). Then

Upe = Us = |u0|oo+£: (18)

Ug) < U, fore <ey. (19)

Proof First, we prove u, > ug, by contradiction. Assume that u, < u, in QOT, QOT C Qr.
Noting that u, > ug, on 0Qr, we may assume that u, = up, on 8Q°T. With (5) and letting
t = 0, we deduce that

Luge = Be (s — uoe) = -1, (20)

Lu, = Be(ue — uge) < -1. (21)
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From Lemma 3.2 we conclude that
u(x,t) < up:(x) forany (x,¢) € Qr, (22)
obtaining a contradiction.
Second, we pay attention to u.(f,x) < |up|e + €. Applying the definition of S.(-), we
have

L(luoloe +€) =0, Lu, <0. (23)

From (5) it is easy to prove that u.(x,£) > & on 9Q x (0, T) and up(x) > ¢ in Q. Thus,

combining (21) and (23) and repeating Lemma 3.3, we have
u.(x,t) > e inQx(0,7). (24)
Third, we aim to prove (19). Since

Lual - :381 (u051 - usl) =0, (25)

Lu82 - ﬁé‘z (u0€2 - ué‘z) =0. (26)
It follows by &; < &, and the definition of S, (-) that

atusz - Lusz - :381 (14051 - ué‘z)

= ﬂé‘z (MOSZ - Mez) - ﬁel (u081 - uez) = ,352 (UOez - usz) - :361 (MOez - ué‘z) = 0. (27)
Thus, Lemma 3.3 can be proved by combining initial and boundary conditions in (5). O

Moreover, with (18), we assert that there exists a subsequence ¢ (still denoted by ¢) such
that

ue — ucl?(0,T; W&’p(QT)) ase — 0, (28)

u.>u>0 foranye>0. (29)

Lemma 3.4 Let u, be a solution of problem (5). For any ¢ > 0, we have

T
ll2te ll o007 < lltolloog + / |f @, 8)] . o dt = K(T) < 00 (30)
0
Proof Define

M ifu,>M,
Uspt = Y u,  if lug| <M,

-M  ifu, <-M.
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Choosing uzﬁ‘vj ! as a test-function in (8) and letting #; = ¢ and t, = ¢ + &, we conclude that

1 t+h d t+h
— / — (/ u?’j/[ dx) dt + / / (2k — l)as,M(ugM)ugg(f[l)IVusM P& dx dt
2k J,  dt\Jq ' Q

t+h t+h
= /t /Q Sfuk M dade - /t /Q Beu Tt du. (31)

Letting # — 0 and applying Lebesgue’s dominated convergence theorem, we have that, for

allt e (0,7),
1d 2k 2k-1) plt)
2%k dt Jo M e Q (2k = Dac m(uesn)ugy |Vitep [P dx
- [ kit [ gty e o
2 Q

Using Holder’s inequality, we obtain

[t = Pt O W0l k=12
2%k-1 2%-1 2k-1
‘/Qﬂaugm dx SL”eM dx < ””EM("t)“zk,Q’
whence

ad 2k-1
””eM”%l];g;E(”ulelzk,Q) +(2k - 1)/ aa,M(ueM)MSSV[ |Vt pr [P0 dix
Q

< lluemllzg - [ D] g+ CDIMemlizgg, k=1,2,.... (33)
By integration over (0, £), for all ¢, we have
T
|teaa (0| g < [ sema (0] 5 o + / Ifllog.q e + C(T), VkeN.
0

Then, as k — oo,

T
Jssae ] = . O+ [ W

T
fmmmn+/|m@ﬂw+an:Kw» 5
0

If we chose M > K(T') then gy (-, t) < sup |uep(-,£)| < K(T) < M, and therefore w5 (-, t) =
us('v t)

Corollary 3.1 Choosing M large enough, we have
. al2
m1n{u§,M2} = u? and ozs,M(ugM) =agplae) = (82 + uf) + d.

Corollary 3.2 Ifuy > 0 and f > 0, then the solution u.(x,t) is nonnegative in Qr.
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Proof Set u; = min{u,,0}. Then u; (x,0) =0, u_|'7 =0, and

3 316 0130) + [ e V™ e <o.
It follows that, for every ¢ > 0,
|u; (0], < |4, 0)] o =0,
and the required assertion follows. O

Lemma 3.5 The solution of problem (5) satisfies the estimates

1

/ / W7 |V, P50 dede < K(T)IQ (34)
Qr
3
&° / / |V, [P%) de dt < K(T)|| (35)
Qr
3
do / / |V, P9 de dt < K(T)|2| . (36)
Qr

Proof Similarly as in Lemma 3.4, we take k = 1 in (32) to get

d
g lueCDl0+ / e (te) | Vite P dix < |[fllo + C(T), Ve e(0,T).
Q

Clearly, integrating over (0, £), we have

t T
e, 0] + f /Q o1 (1) |V P90 e dt <[|ue ()], o + / Ifll,,q de+C(T). (37)
0 0

Note that the first term on the left-hand side is nonnegative. We drop the nonpositive term
in (37) to get

t
/ / et (1) Vit [P0 de dt <K(T)|Q)2.
0 Q

If a. pr(u:) > do, then we have inequality (36), and if a, 5(u.) > £°, then we have inequal-
ity (35) such that M > K(T), and we have a, 4 (#;) > uZ. Furthermore, we get inequality
(34). d
Lemma 3.6 The solution of problem (5) satisfies the estimate

et | wiop) < Clo,p™, K(T),19I). (38)

Proof From identity (7) we get

/ / e dxdt = - // [0 + %) + do]I Vit P92V, VE dxeds
Qr Qr

+ / QTf(x, B)E(x, t)dxdt — / o Be(x, £)& (x, t) dx dt.



Dong Journal of Inequalities and Applications (2018) 2018:35 Page 10 of 13

Applying the fact that 8. (x,£) € (0, 1), we get

T
/ / ek drdt < / / [(10 + %) + do]| Ve P50 Vi, VE dcdt
Qr 0 JQ

T
+/ /[f+1|-|§|dxdt.
0o Ja

Using the Holder inequality repeatedly, we have that

/ /Q o et < 2] [(u + )" + oIVt PO IV
T

+ 2|lf + lllp’(x,t) . ”E”p(x,t)

< 2max{Fy, F2}|VE [l pees) + 2 max{Fz, Fa}lI§ [l e
/2 L
< 2((KX(T) +1)°7 + do) 7T K(T)|Q] + 2f + 1ol TI)IE [l wir)»

where

T plxt) %
F = (/ / {[(u + 82)”/2 +do|| Ve Ip(x’t)_l}‘”(”’z)_1 dx dt)p ,
0o Ja

|~

px, 7_

T £)
Fy= ( / f ([ +%)7" + do] | Vau 01} 0 dxdt) ;
0 Q

T L T L
F3:< / / lflp’<x¢>dxdr>p ) a:( / / 1f+1|p’<x,t>dxdt>” .
0 Q 0 Q

Then (38) follows from Lemma 3.5. a

S

From [6] we can get the following inclusions:

U €WQD L (O T;WE Q) e € W(Qr) S L% (0, T3V, (),

Wo? (Q) C LX) C V(@) with Vo(Q) = {u(x)lu € L*(Q) N Wy (Q), |Vul € L'},

These conclusions, together with the uniform estimates in ¢, allow us to extract from
the sequence {u.} a subsequence (for simplicity, we assume that it merely coincides with
the whole sequence) such that

Ug —> U a.e.in Qr,

Vu, - Vu weakly in L7*%)(Qr),
ul |V P99-2Diy, — Ay(x,t)  weakly in LZ'®9(Qr),
|V P992Dy, — Wi(x,t)  weakly in LF'®9(Qr)

(39)

for some functions u € W(Qr), A;(x,t) € LZ ®)(Qr), and W;(x,t) € LZ ®)(Qr).

Lemma 3.7 For almost all (x,t) € Qr,

: 2 2
i f [

NQ

—u?) | Vit P92V, VE dxdt =0, VE = W(Qr).
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Proof We first compute

! é/ / (2 + %)% = u?) |V P02 Vir, V5 dedt
Qr

1 0=2
= 292/‘/ (/ (u? +s6%) 2 ds>|Vu8|p(x't)‘2Vu5V§ dxdt
2 Qr \JO

<oe*(KX(T) +1) k& 1V [P0

|1 VE e

< Cg? max{ (f/ |V, P& dxdt)
Qr

By (35) we get

)4 p -1

+_1
Pt R
( f f |wg|”<x’”dxdt> }nvsnp(x,,).
Qr

op*-1)

2~ -l
I1<Ce 4 V& ||p(x,t)‘
Passing to the limit as ¢ — 0, we obtain Lemma 3.7. O

Lemma 3.8 For almost all (x,t) € Qr, we have
Ai(x,t) =u’ Wilx,t), i=1,2,...,N.
Proof In (39), letting ¢ — 0, we have
/ /Q Ul |Vu P02V Ve dedt — ) / /Q Ay(x,0)Di& dx dt, (40)
T T

/ / Ul |V P2V, VE dxdt — / Wi(x, )D€ dxdt. (41)
QT QT

By Lebesgue’s dominated convergence theorem we have

N
lim Z / / (ug - u")A,-(x, t)D;€ dxdt = 0. (42)
i=1 Qr

e—0

So
: £)-2
;%Z / /(;T (uZ |Vt PED=2D 1 — u” Wix, 1))D;§ dxdt
= lim f /Q (u? = u”) |V PP 2Dy, + u® (| Ve P*D 2Dy, — Wi, £)) Dis daedlt
T
=0.
By (40)—(42) and the previous inequalities, we complete the proof of Lemma 3.8. d

Lemma 3.9 For almost all (x,t) € Qr, we have

Wi(x,t) = |Vu P“) 2D, i=1,2,...,N.
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Proof In (8), choosing & = (4, — u)® with ® € W(Qr), ® > 0, we have
/ / [ser(tte — 1) ® + D (Ul +do) Vit PED-27 1V (4, — u)] dxdt
Qr
+ / / [ — ) (uC +do) | VU P*D2Vu, VO — f(x,8)(u; — u)P] dx dt
Qr

o (e

It follows that

N

—u?) |V PPV, VE daedt = 0.

lim // D (ul +do)|Vu, PE@D-27 3, V (4, — u) dxds = 0. (43)
Qr

e—0

On the other hand, from u,,u € L*(Qr) and |Vu| € L#*)(Qr) we get

lim / f O +do) [ VulP2VuV (u, - u)dxdt = 0, (44)
£— QT
1iII(1)/‘/‘ D (u +u”)|Vu, PED-27 1 V (14, — u) deds = 0. (45)
E—> QT

Note that

0 < (Ve P* 2V, — |VulP*D2Vu) V (4, — u)
1
< = [(ujg7 +do) Ve [Pet-2yy, (uZ —u”)|Vu, Ip(x't)‘ZVu]V(ug —u)
0
1
- (Ul +do) |V PX 2V uV (u, — u). (46)

0

By (44)—(46) we have

lim / f (| Vit P92Vt~ | Vit P2V ) V (11, — 1) diedt = 0. (47)

e—0 Qr D
Lemma 3.10 As ¢ — O,we have

Be(ue —uo) — & € G(u — uo). (48)

Proof Using (7) and the definition of 8., we have

/35(”5 _MO)_)%- ase — 0.
Now we prove that £ € G(u—uy). According to the definition of G(-), we only need to prove
that if u(xg, £y) > to(xg), then & (xo, o) = 0. In fact, if u(xo, g) > uo(x), there exist a constant

A >0 and a § neighborhood Bs(xy, £) such that if ¢ is small enough, we have

Ue (x) t) > MO(x) + )") V(x; t) € BS (x01 tO)'
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Thus, if ¢ is small enough, then we have
0> Be(ue —u0) = Be(2) =0, V(x,t) € Bs(x0, to)-
Furthermore, it follows by ¢ — 0 that
E(x,t)=0, V(x,t) € Bs(xo,to)-
Hence, (48) holds, and the proof of Lemma 3.10 is completed. O

Applying (28), (29), and Lemma 3.10, it is clear that
u(x,t) <uolx) in Qr, u(x,0) = up(x) in Q,& € G(u — up),

and thus (a), (b), and (c) hold. The remaining arguments of the existence part are the same
as those of Theorem 2.1 in [8], and we omit the details. Moreover, the uniqueness of so-

lutions can be proved by repeating Lemma 3.1.
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