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Abstract

In the present paper, we introduce a new modification of Szasz-Mirakyan operators
based on (p, g)-integers and investigate their approximation properties. We obtain
weighted approximation and Voronovskaya-type theorem for new operators.
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1 Introduction and preliminaries

In the last two decades, there has been intensive research on the approximation of func-
tions by positive linear operators introduced by using g-calculus. Lupas [1] was the
first who used g-calculus to define g-Bernstein polynomials, and later Phillips [2] pro-
posed a generalization of Bernstein polynomials based on g-integers. Very recently, Mur-
saleen et al. applied (p, g)-calculus in approximation theory and introduced the first (p, q)-
analogue of Bernstein operators [3]. They investigated the uniform convergence and con-
vergence rate of the operators and also obtained a Voronovskaya-type theorem. Also,
(p, g)-analogues of Bernstein-Stancu operators [4], Bleimann-Butzer-Hahn operators [5],
and Bernstein-Schurer operarors [6] were defined and their approximation properties
were investigated. Most recently, the (p,g)-analogues of some more operators were de-
fined and their approximation properties were studied in [7-17], and [18]. In this paper,
we introduce a (p, g)-analogue of Szasz-Mirakyan operators. Let us recall some notation
and definitions of (p, g)-calculus. Let 0 < g < p < 1. For nonnegative integers k and #n such
that n > k > 0, the (p, q)-integer, (p, q)-factorial, and (p, g)-binomial are respectively de-
fined by

17 q
[klp,q =
1761 p- q
[k]pq[k l]pq k>1,
’ k = 0)

and

|:nj| _ (1]p,4!
k va (k]p,q'ln = Klpq!
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In the case of p = 1, these notations reduce to g-analogues, and we can easily see that
[nlp,q = P"*[nlyp. Further, the (p, q)-power basis is defined by

@ a), = x+a)px+qa)(p’x+q'a) - (P 'x+q""a)
and
(x©a),, = (x—a)(px - qa)(pzx - q2a) e (p’Hx _ qnfl,l)‘
Also the (p, q)-derivative of a function f, denoted by D, ,f, is defined by

f(px) - f(gx)
p-ax '

provided that f is differentiable at 0. The formula for the (p, g)-derivative of a product is

(Dpaf x40, (Dpgf)N0):=

qu(u(x)v(x)) M(u(x))v(qx) + qu(v(x)) (gx).

For more details on (p, g)-calculus, we refer the readers to [19, 20] and the references
therein. There are two (p, g)-analogues of the exponential function:

n(n-1)

1

7 X
() = Z’” o (1)
pa
and
%) qn(nz l)xn
(%)
'Pq e [n]p,q

which satisfy the equality e, ,(x)E, ,(—x) = 1. For p = 1, e, 4(x) and E, ,(x) reduce to the
g-exponential functions. Here we note that the interval of convergence of e, () is |¥| <
1/(p — q) for |p| <1 and |q| < 1, and series (1.1) converges for all x € R, |p| <1, and |g| < 1.

2 Construction of operators and auxiliary results
We first define the analogue of Szdsz-Mirakyan operators via (p, g)-calculus as follows.

Definition 2.1 Let 0 < g <p <1 and n € N. For f : [0,00) — R, we define the (p,q)-
analogue of Szdsz-Mirakyan operators by

k(k-1)
p 7 ([ . (K],
Snpalfix) = kX(; q# [kTq epq(~[Mpgd k")f(m)‘ 2.1

Operators (2.1) are linear and positive. For p = 1, they turn out to be the g-Szész-
Mirakyan operators defined in [21].

Lemma 2.1 Let 0 <q<p <1landneN. We have

m J
Snpa ("% Z( ) D Supa(t3a7%). (2.2)

j=0 p][n]p
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Proof Using the identity

(k +1]p4 = P* + qlklpg

we can write

oo kk-1) m+1
m+l, _ V2K ([n][’,qx)k [k][’vq ' —k
Sn,p,q(t ,x) = Z qk(k—l Klpg! \ P nlp, ep,q(_[”]p,qq x)

2 ([l g) Tk 10 o
) n
I@Zoq g5 Klpgt Py, epaq(~1lpqq )

P T () k10 o
Z kD [Klpg! PRl epq(~nlpaq )

_ 3 (g (o gl

—(k+1))
g Koy Py,

€pq ( (Mlpqaq

) i (M> .q"xmﬂ'

J p][n]p,q

00 ; k(k=1)
KLy P 7 ()

x ———— - ——epq(=[nlpqq
2:0:10’”(‘”[%];4 qkq@ [k]p,q! Pq( )24

- Z('”) T —Supq(tiq %),
p/

‘T \J ) Plnlyy

—(k+1)x)

as desired. O

Lemma 2.2 Let 0 <g<p <1andneN. We have
(i) SupqLix) =1,
(i) Sppq(t:x)=x,
(i) Supa(t32) = 2 +

P [Vl]pq
: 3 x 2p+q 2, _x
iv) S t’x) =5+ X5+ —5—
W) Snpa(552) = o3 + 5ar, 0+ Ty
3p? +2pq+q 3, 3p%43pg+a® 2 . _x
v) S t4x) = oy x° + x° + .
(V) Snpg(ts) = »° Plrlpg Pk, 1134

Proof Since the proof of each equality uses the same method, we give the proof for only

last three equalities. Using (2.2), we get
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(iii)
oo klk= 1) 2
Tz x)k [k,
S t x Pa P () P
Pq ZO % [kpq pzk 2[ ]pq Pq( pq )
k(k-1)
_ pp T ([n]pqx) [k"'l]pqx ( [n] (k+1) )
- k(k-1) [k] [I’l] €pq qu
o q'q * Kpd! pa
00 k(k=1)
~ pkp T ([l pra (=[] pga™ )
- o K TR K[, P\ e
im0 4*q * pat pa
o ¥ qlk]
p qx q pqx (k+1)
+ (nlpqq”
gq q k21) k] q pk[n]pq ( P )
()t
p ([n]pq2)* &> —(k+2)
= —epq(~[nlpaq ")
[n]pq ngqu(kzl Kl P P pq
s x
g
(iv)
oo klk-1) 3
V2K ([n]p,qx)k [k] _k
Snpyq(ﬁ;x) = Z KD [k, p3e 3[ ] epa(~Ilpad ")
k=0 4 2 P pq
5 P () 0 + 204 qKpg + PR,
k=0 qkq@ [k]p,q! ka[n]Izg,q
Xxepq(_[”]pqq UM)’“)
= L (ot
Pz ([nlpgx X —(k+1)
= epq(—[nlypaq x
g qqu(kz 1) k]p,q~ [n]lzj,q 17‘1( pq )
o KD
p 7 x)* 2q[k] ks
+Z Y KD q, Aln ]Izjq xepq (- (1]pgq ')
k=0 4°9 2 qa° pa

(L ]Mx) q [k];'q xe (_[Vl]pqq

—(k+1)x)
k(k=1) k] [ ]2 20
k=0 4°9 2 pat pq

Z P P 2 [n]pqx) qxz(pk +q k]pq) (k+2) )
2%k , K&

[K]p.q! P*2[nl,, epvq( (nlpqq”

2

2, pllpe Pl

(k-1)
+ Z P 2 [n]p,qx)k qzxz [k]pq
k=0 qquk<l<2 L kgt P [”]p.q

( [”]pqq_(k+2 )

®® 2p+q , «x

P PPy, R,
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v)
o kik-1) X 4
p 7 ([npe%) (Kl i
Sppq(thx) = epq(=11pqq " x
Pq( ) kgo qk(kz—l) [k]p,q! p4k_4[”1]2,q 1”1( pq )
_ip%ﬁw%mwﬂﬁwwmw@“wgwm@)
k=0 qkq@ [k]p,q! 193k[ ]pq
Xxep,q( (n)pqq ey )
x 3x? 3gx> 343
= + + +
(3, pln2, pnl2, PPl
Lo P () CR W 2 K + KT
k=0 q* q¥ klpq! p2k+3[n]127,q
X epq(~[1lpqaq” (r x)
x 3x? 3gx> 343 qx? 243
= + + + + +
(n3, plnl;, Py, Pl PP, pnp,
K(k-1)
p 7 (1) % 0" + qlklpg) | (s3)
+ Z k(k=1) [k] 1 k+5 [}’l] ( [n]P qq )
o q*q 7 Kpa pa
4 2 2 2
_x 342’ 5 3PP 43pqtq 5 X .
r° P°lnlpg pinlz, (13,

Corollary 2.1 Using Lemma 2.2, we immediately have the following explicit formulas for

the central moments:

X 1
ol +(__1)x2’ (23)
ol ) (nlpq \p
2p +q - 3p* 1-3p2 +24°
Supal(t=2%2) = o+ LA ZF T (24)
[n]p,q p [n]p,q P
3p*+3 2 _ 43
P eI 1Y SV
(1] plnl;,
3p° +2pq + ¢~ 8p* —4p’q + 6p°
* x
P°lnlpy
1—4p3 + 6p° — 3p°
e 2.5)

p6

Remark 2.1 For g € (0,1) and p € (q,1] we easily see that lim,_, oo [#],4 = p%q. Hence, op-
erators (2.1) are not approximation process with above form. To study convergence prop-
erties of the sequence of (p,q)-Szész operators, we assume that g = (g,) and p = (p,) are

such that0<g, <p, <landg, — 1,p, — 1, g% — a, p, - b as n — oo. We also assume
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that

1-3p2 +2p°
lim [n],,4, 2 =y,
nevoon OIS

It is natural to ask whether such sequences (g,,) and (p,) exist. For example, let ¢,d € R*

be such that ¢ > d. If we choose g, = ;- and p, = .=, then g, —> 1, p, > 1, q;; > €™,

pl— e, and limy,— o0 [#] g = 00 as m — 00. Also, we have o = %, y=e4-—e%,

B=0.

Corollary 2.2 According to Remark 2.1, we immediately have
nlirglo[n]pn,ann,pn,qn ((t-%)%%x) =x +ax®, (2.6)
nli)ngo[n]Pn:qn S”:Pnﬂn ((t - x)?’;x) = yxg’ (2’7)
nlingo[n]pn,ann,pn,qn ((t - x)4;x) = Bxt. (2.8)

3 Directresults
In this section, we present a local approximation theorem for the operators S, . By
Cg[0, 00) we denote the space of real-valued continuous and bounded functions f defined

on the interval [0, 00). The norm || - || on the space Cg[0, 00) is given by
Ifll = sup [f@)].
0<x<o0

Further, let us consider the following K-functional:
K(f,8) = inf {IIf =gl +3] "},
gew

where § > 0 and W? = {g € Cp[0,00) : g, g" € Cp[0,00)}. By Theorem 2.4 of [22] there
exists an absolute constant C > 0 such that

K(f,8) < Can(f,V9), (3.1)
where

o(f,v/8)= sup  sup [f (x +2h) = 2f (x + h) + f(%)|

0<h=<+/5 *€[0,00)

is the second-order modulus of smoothness of f € Cg[0, 00). The usual modulus of conti-
nuity of f € Cp[0, 00) is defined by

o(f,8) = sup sup V(x+h)—f(x)|.

0<h<8 x€[0,00)

Page 6 of 12
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Theorem 3.1 Let p,q € (0,1) be such that q < p. Then we have

|Sn,p,q(f;x) _f(x)| <Cuw; (f; Sn(x))

for every x € [0,00) and f € Cp[0, 00), where

55(96) . + (l - l)xz.
[n]p,q p

Proof Let g € W2. Then from the Taylor expansion we get

t
g(t) =glx) + £ x)(t —x) + / (t-u)g"(u)du, tel0,A],A>0.
Now by Corollary 2.1 we have
t
Sn,p,q(g; x) = g(x) + Sn,p,q </ (t- M)g”(u) du;x),

|Sn,p,q(g;x) _g(x)| =< Sn,p,q( / |(t - M)| |g”(u){du;x

)

< Supa((t—2%x) [ &"]-

Hence we get

|5n,p,q(g;x)—g(x)|§IIg”H( > +(l—1)x2>.

[”]p,q p

On the other hand, we have

|Sn,p,q(f;x) _f(x)| = |Sn,p,q((f_g);x) - (f_g)(x)‘ + |Sn,p,q(g;x) _g(x)|

Since

|Supa %) < IF1,

we have

1
s (),

Now taking the infimum on the right-hand side over all g € WW?, we get

|Snpalfs2) —f(x)| < CE (£, 62(x).

By the property of a K-functional we get

[Supalfs) = f)] < Con(f, 8,@))-

This completes the proof. g
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4 Weighted approximation by S, ,
Now we give approximation properties of the operators S,, ,; on the interval [0, 00). Since

X

[1]p.q

1
Supq(l+t5x) =1+ (— - 1)x2 +
p
§1+x2+x,
x <1forx € [0,1], and x < x* for x € (1,00), we have

Supq(l+£5x) <2(1+4%),

which says that S, ,; are linear positive operators acting from C,[0,00) to B;[0, 00). For
more details, see [23, 24], and [25].

Theorem 4.1 Let the sequence of linear positive operators (L,) acting from C,[0,00) to
B, [0, 00) satisfy the condition

lim ||L,,e,» - e,-||2 =0, i=0,1,2.
n— 00

Then, for any function f € C;[0,00),
lim || L,f - fll2 = 0.
n—00

Theorem 4.2 Let g = g, € (0,1) and p = p, € (q,1) be such that q, — 1 and p, — 1 as
n — 00. Then, for each function f € C;[0,00), we get

1im 15,4, 112 = 0.
Proof According to Theorem 4.1, it is sufficient to verify the condition
lim ||S,,,pn,qne,» - ei||2 =0, i=0,1,2. (41)
H— 00
By Lemma 2.1(i), (ii) it is clear that

nlinc}o ||S”vpnv% (l;x) -1 ”2 = 0’

nlggo “Sn,pnm (%) - x||2 =0,

and by Lemma 2.1(iii) we have

1 2 x
(pn l)x + [”]pn,qn

i S (53) =1, = sup =5

(5.7
<{—-1)+ .
Pn [n]pn,qn

The last inequality means that (4.1) holds for i = 2. By Theorem 4.1 the proofis complete. [
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The weighted modulus of continuity is given by

Qfis)=  sp JEHA-S@L 42)

0<h<8,x€[0,00) (1 + h2) + (]- + x2)

for f € C,[0, 00). We know that, for every f € C;[0, 00), 2(-;8) has the properties

;LH(I) Q(f;8)=0
and

Qf;28) <2(L+ 1) (1+8%)Q(f38), A>0. (4.3)
For f € C,[0, 00), from (4.2) and (4.3) we can write

V(t) —f(x)| < (1 +(t— x)z) (1 + xz)Q(f; |t —xl)

52(1+ @)(1+52)Q(f;5)(1+(t—x)2)(1 +a%). (4.4)

All concepts mentioned can be found in [26].

Theorem 4.3 Let0<q=gq, <p=p, <lbesuchthatq, — 1andp, — 1asn— oo. Then,
for each function f € C;[0,00), there exists a positive constant A such that

sup =
x€[0,00) 1 +x2)2

a0y, L)
—————— < f ,
v ,Bp,q(n)

where B,4(n) = max{}g -1, m}, and A is a positive constant.

Proof Since S, ,,4(1;%) = 1, using the monotonicity of S, ;, we can write

().

On the other hand, from (4.4) we have that

[Supa(f32) = )| < Supq(|f(6) = (%)

SupalFi) — )] < 2(1+ 82)R2f:8) (1 + #2) [sn,p,,,((l R 't;—"'> 1+t —x)z);x>]

<2(1+8*)Q(f;8)(1+4%) { Supa(Lx) + Supq((t —2)%x)
1 1 )
+ gSn,p,q(lt —x|;x) + gSn,p,q(|t —x|(t - x) ;x) .

Using the Cauchy-Schwarz inequality, we can write

‘S,,,p,q(f;x) —f(x)’ < 2(1 + 82)Q(f; 8)(1 + xz) {S,,,p,q(l;x) + Sn,p,q((t — x)z;x)

1

1
+ g\/Sn,p,q((t - x)Z;x) + g\/Sn,p,q((t - x)4;x)\/Sn,p,q((t — x)z;x) }
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On the other hand, using (2.3), we have

1
< CLO(Bpqg(m) (1 +4%),

where C; > 0 and B,,(n) = max{i -1, m}. Since lim,,_, o pin =1 and lim,_, « m =0,

there exists a positive constant A, such that
Sn,p,q((t - x)z;x) <A, (1 + x2).

Also, using (2.5), we get

[T

Snyp,q((t - x)4;x) <Az (1 + xz)

and

— x)2 % A
sn,p,q<(t5—2x);x> = Z20(Byq()

[T

1
(1+4%)?
for A3 >0 and A4 > 0. So we have

f _ 1 f 1 2 2
[Supalfi) f(x)|§2<1+ﬁp,q(n)>£2<f,\/m)(l+x){1+A2(1+x)

A 1 1
+ fO(ﬁp,q(n)) 2(1+4%)2

[T
[T

A1) 22 0(8,400) (1+7)

Choosing § = ﬁp,q(n)%, we obtain

|Supq(f3%) = f(x)| <2(1+ ﬁp,q(n))ﬁ(f; ;) (1+2){1+As(1 +47)
lgp,q(n)

+ CAs(1+ xz)% + CA3A4(1 + xz) 2 }

For 0 < g < p <1, we have B,,(n) < 1. Hence we can write

Sraalfi) T gy L)

sup

xe[0,00) 1+ xz)% B , VBpq(n)
where A = 4(1 + Ay + CAy + C1A3A,), and the result follows. O

5 Voronovskaya-type theorem for S, ,,
Here we give a Voronovskaya-type theorem for S, 4.

Theorem 5.1 Let O < g, < p, <1 be such that q, — 1, p, — 1, q), — a, and p), — b as
n — 00. Then, for each function f € C;[0,00) such that f',f" € C;[0,00), we have

nlingo[n]pn,qn (Snpman(f3%) —f (%)) = (x + otxz)f”(x)

uniformly on any [0,A], A > 0.
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Proof Letf,f',f" € C5[0,00) and x € [0, 00). By the Taylor formula we can write

f@&) =fx) +f (®)E—x) + %f”(x)(t — %)% + h(t, %) (t — x)%, (5.1)

where h(t,x) is the remainder of the Peano form. Then #h(,x) € C;[0,00) and
lim;_,, h(¢,x) = 0 for n large enough. Applying operators (2.1) to both sides of (5.1), we
get
Pndn (S”vpnﬂn (f; x) _f(x)) = [n]Pn:an/(x)S”’Pn:% ((t - x)’x)
+ [n]Pn:an//(x)Snanﬂn ((t - x)z;x)

+ Sn,pmqn (h(tv x)(t - x)z;x)-

By the Cauchy-Schwarz inequality we have

S (6 2)(E = 2%52) < /S0 (206,20 %)y S (2 — )%53). (5.2)
Observe that #2(x,x) = 0 and #*(-,x) € C;[0,00). Then it follows from Theorem 4.3 that

lim S, ... (hz(t,x);x) = (x,x) =0 (5.3)

n—00

uniformly with respect to x € [0, A]. Hence, from (5.2), (5.3), and (2.8) we obtain
im [#],,.4,Snpan (h(t, x)(t - x)z;x) =0 (5.4)

and

S,,,p,q((t - x);x) =0.
Then using (2.6) and (5.4), we have

nlir&[n]pn,qn (Sn,pn,qn (f§ x) _f(x)) :f/ () nlin;o[n]pn,qn Sn,pn,qn ((t - Xx); x)
+f//(x) n11>1130 [n]anLInS”vpnvqn ((t - x)z; x)

+ 1im [#1],,.4, S pqn (Bt %) (£ - x)z;x)

n—00

= (2 + ox?)f" (%),

as desired. O

6 Conclusion
In this paper, we have constructed a new modification of Szdsz-Mirakyan operators based
on (p,q)-integers and investigated their approximation properties. We have obtained a

weighted approximation and Voronovskaya-type theorem for our new operators.
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