
Lee et al. Journal of Inequalities and Applications (2017) 2017:34
DOI 10.1186/s13660-017-1309-z

R E S E A R C H Open Access

Accurate and efficient numerical solutions
for elliptic obstacle problems
Philku Lee1*, Tai Wan Kim2 and Seongjai Kim3

*Correspondence:
leepk@sogang.ac.kr
1Department of Mathematics,
Sogang University, Ricci Building
R1416, 35 Baekbeom-ro, Mapo-gu,
Seoul, 04107, South Korea
Full list of author information is
available at the end of the article

Abstract
Elliptic obstacle problems are formulated to find either superharmonic solutions or
minimal surfaces that lie on or over the obstacles, by incorporating inequality
constraints. In order to solve such problems effectively using finite difference (FD)
methods, the article investigates simple iterative algorithms based on the successive
over-relaxation (SOR) method. It introduces subgrid FD methods to reduce the
accuracy deterioration occurring near the free boundary when the mesh grid does
not match with the free boundary. For nonlinear obstacle problems, a method of
gradient-weighting is introduced to solve the problem more conveniently and
efficiently. The iterative algorithm is analyzed for convergence for both linear and
nonlinear obstacle problems. An effective strategy is also suggested to find the
optimal relaxation parameter. It has been numerically verified that the resulting
obstacle SOR iteration with the optimal parameter converges about one order faster
than state-of-the-art methods and the subgrid FD methods reduce numerical errors
by one order of magnitude, for most cases. Various numerical examples are given to
verify the claim.

Keywords: elliptic obstacle problem; successive over-relaxation (SOR) method;
gradient-weighting method; obstacle relaxation; subgrid finite difference (FD)

1 Introduction
Variational inequalities have been extensively studied as one of key issues in calculus of
variations and in the applied sciences. The basic prototype of such inequalities is repre-
sented by the so-called obstacle problem, in which a minimization problem is often solved.
The obstacle problem is, for example, to find the equilibrium position u of an elastic mem-
brane whose boundary is held fixed, with an added constraint that the membrane lies
above a given obstacle ϕ in the interior of the domain Ω ⊂ R

d :

min
u

∫
Ω

√
 + |∇u| dx, s.t. u ≥ ϕ in Ω , u = f on Γ , (.)

where Γ = ∂Ω denotes the boundary of Ω and f is the fixed value of u on the boundary.
The problem is deeply related to the study of minimal surfaces and the capacity of a set in
potential theory as well. Other classical applications of the obstacle problem include the
study of fluid filtration in porous media, constrained heating, elasto-plasticity, optimal
control, financial mathematics, and surface reconstruction [–].

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13660-017-1309-z
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-017-1309-z&domain=pdf
mailto:leepk@sogang.ac.kr

Lee et al. Journal of Inequalities and Applications (2017) 2017:34 Page 2 of 25

The problem in (.) can be linearized in the case of small perturbations by expanding
the energy functional in terms of its Taylor series and taking the first term, in which case
the energy to be minimized is the standard Dirichlet energy

min
u

∫
Ω

|∇u| dx, s.t. u ≥ ϕ in Ω , u = f on Γ . (.)

A variational argument [] shows that, away from the contact set {x|u(x) = ϕ(x)}, the solu-
tion to the obstacle problem (.) is harmonic. A similar argument (which restricts itself to
variations that are positive) shows that the solution is superharmonic on the contact set.
Thus both arguments imply that the solution is a superharmonic function. As a matter of
fact, it follows from an application of the maximum principle that the solution to the ob-
stacle problem (.) is the least superharmonic function in the set of admissible functions.
The Euler-Lagrange equation for (.) reads

–�u ≥ ,
u ≥ ϕ,
(–�u) · (u – ϕ) = ,

⎫⎪⎬
⎪⎭ in Ω ,

u = f , on Γ .

(.)

In modern computational mathematics and engineering, the obstacle problems are not
extremely difficult to solve numerically any more, as shown in numerous publications; see
[–], for example. However, most of those known methods are either computationally
expensive or yet to be improved for higher accuracy and efficiency of the numerical so-
lution. In this article, we consider accuracy-efficiency issues and their remedies for the
numerical solution of elliptic obstacle problems. This article makes the following contri-
butions.

– Accuracy improvement through subgrid finite differencing of the free boundary: It can
be verified either numerically or theoretically that the numerical solution easily
involve a large error near the free boundary (the edges of obstacles), particularly when
the grid mesh does not match with the obstacle edges. We suggest a post-processing
algorithm which can reduce the error (by about a digit) by detecting accurate free
boundary in subgrid level and introducing nonuniform finite difference (FD) method.
The main goal of the subgrid FD algorithm is to produce a numerical solution of a
higher accuracy uh, which guarantees uh(x) ≥ ϕ(x) for all points x ∈ Ω .

– Obstacle SOR: The iterative algorithm for solving the linear system of the obstacle
problem is implemented based on one of simplest iterative algorithms, the successive
over-relaxation (SOR) method. Convergence of the obstacle SOR method is analyzed
and compared with modern sophisticated methods. We also suggest an effective way
to set the optimal relaxation parameter ω. Our simple obstacle SOR method with the
optimal parameter performs better than state-of-the-art methods in both accuracy
and efficiency.

– Effective numerical methods for nonlinear problems: For the nonlinear obstacle
problem (.), a method of gradient-weighting is introduced to solve the problem more
conveniently and efficiently. In particular, the suggested numerical schemes for the
gradient-weighting problem produce an algebraic system of a symmetric and
diagonally dominant M-matrix of which the main diagonal entries are all the same

Lee et al. Journal of Inequalities and Applications (2017) 2017:34 Page 3 of 25

positive constant. Thus the resulting system is easy to implement and presumably
converges fast; as one can see from Section , the obstacle SOR algorithm for
nonlinear problems converges in a similar number of iterations as for linear problems.

The article is organized as follows. The next section presents a brief review for state-
of-the-art methods for elliptic obstacle problems focusing the one in []. Also, accuracy
deterioration of the numerical solution (underestimation) is discussed by exemplifying an
obstacle problem in D where the mesh grid does not match with edges of the free bound-
ary. In Section , the SOR is applied for both linear and nonlinear problems and analyzed
for convergence; the limits of iterates are proved to satisfy discrete obstacle problems.
A method of gradient-weighting and second-order FD schemes are introduced for nonlin-
ear problems. An effective strategy is suggested to find the optimal relaxation parameter.
Section  introduces subgrid FD schemes near the free boundary in order to reduce accu-
racy deterioration of the numerical solution. In Section , various numerical examples are
included to verify the claims we just made. Section  concludes the article summarizing
our experiments and findings.

2 Preliminaries
As preliminaries, we first present a brief review for state-of-the-art methods for elliptic
obstacle problems and certain accuracy issues related to the free boundary.

2.1 State-of-the-art methods for elliptic obstacle problems
This subsection summarizes state-of-the-art methods for elliptic obstacle problems fo-
cusing on the primal-dual method incorporating L-like penalty term (PDLP) studied by
Zosso et al. []. Primal-dual splitting methods have a great deal of attention, particu-
larly in the context of total variation (TV) minimization and L-type problems in image
processing [–].

In the literature of optimization problems, one of common practices is to reformulate
a constrained optimization problem for a unconstrained problem by incorporating the
constraint as a penalty term. Recently, Tran et al. [] proposed the following minimization
problem of a L-like penalty term:

min
u

∫
Ω

|∇u| + μ(ϕ – u)+, s.t. u|Γ = f , (.)

where μ is a Lagrange multiplier and (·)+ = max(·, ). It is shown that, for sufficiently large
but finite μ, the minimizer of the unconstrained problem (.) is also the minimizer of the
original, constrained problem (.).

The PDLP [] is a hybrid method which combines primal-dual splitting algorithm and
the L-like penalty method in (.); it can be summarized as follows.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Initialize u, u, p ← .
Repeat

(a) pn+ = (pn + r∇hun)/( + r),
(b) u∗ = un + r∇h · pn+,
(c) un+ = Pϕ(u∗),
(d) un+ = un+ – un,

until ‖un+ – un‖∞ < ε,

(PDLP []) (.)

Lee et al. Journal of Inequalities and Applications (2017) 2017:34 Page 4 of 25

where ∇h denotes the numerical approximation of the gradient ∇ , associated with the
mesh size h, r and r are constants to be determined, pn is the dual variable representing
the gradient of the primal variable (un), and u∗ is an intermediate solution. Here Pϕ is an
obstacle projection defined by

Pϕ

(
u∗)(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (x) if x ∈ Γ ,
u∗(x) + rμ if x /∈ Γ and u∗(x) < ϕ(x) – rμ,
ϕ(x) if x /∈ Γ and ϕ(x) – rμ ≤ u∗(x) ≤ ϕ(x),
u∗(x) otherwise.

(.)

The above algorithm can be implemented effectively. It follows from (.)(a) that

∇h · pn+ =
∇h · pn + r�hun

 + r
, (.)

where �h is the discrete Laplacian. Thus Sn+ ≡ ∇h · pn+ can be considered as a variable
and updated in each iteration, averaging its previous iterate Sn and �hun as in (.). As
analyzed in [], PDLP (away from the obstacle) can be compared to either the forward
Euler (explicit) scheme for discrete heat equation or a three-level time stepping method for
a damped acoustic wave equation, where rr plays the role of the time-step size. PDLP
converges when

rr‖�h‖ ≤ , (.)

where ‖�h‖ is the operator/induced norm of the discrete Laplacian �h (= , when the
mesh size h = ). The authors in [] claimed that ‘[Their] results achieve state-of-the-art
precision in much shorter time; the speed up is one-two orders of magnitude with respect
to the method in [], and even larger compared to older methods [–].’ Thus, in this
article our suggested method would be compared mainly with PDLP (the best-known
method), in order to show its superiority.

2.2 Accuracy issues
The solution of obstacle problems must lie on or over the obstacle (u ≥ ϕ), which is also
one of requirements for numerical solutions. For FD methods and finite element (FE)
methods for the obstacle problem (.), for example, this requirement can easily be vi-
olated when edges of the free boundary does not match with mesh grids. See Figure ,
where the shaded rectangle indicates the obstacle defined on one-dimensional (D) inter-
val [x, x]:

ϕ(x) =

{
 if x ≤ x < p,
 if p ≤ x ≤ x,

(.)

Figure 1 A non-matching grid: The true solution u (red solid
curve) and the numerical solution on the non-matching grid
uh (blue dashed curve). Here the obstacle is the shaded region,
u(x0) = uh(x0) = ϕ(x0) = 0, and u(x5) = uh(x5) = ϕ(x5) = 1.

Lee et al. Journal of Inequalities and Applications (2017) 2017:34 Page 5 of 25

which is not matching with the mesh grids {xi : xi = i · hx, i = , . . . , }. The figure shows the
true solution u (red solid curve) and a numerical solution uh (blue dashed curve) of the
linear obstacle problem (.) in D. The numerical solution is clearly underestimated and
the magnitude of the error |uh – u| is maximized at x = p:

max
x

∣∣uh(x) – u(x)
∣∣ =

∣∣uh(p
)

– u(p)
∣∣ =

x – p
x – x

, (.)

which is O(hx).
Let Ch denote the numerical contact set:

Ch ≡ {
x ∈ Ω

h : uh(x) = ϕ(x)
}

, (.)

where Ω
h is the set of interior grid points. Define an interior grid point is a neighboring

point if it is not in the contact set but one of its adjacent grid points is in the contact set.
Let the set of neighboring points be called the neighboring set Nh. Then, for the example
in Figure , Ch = {x, x} and Nh = {x}.

The accuracy of the numerical solution uh can be improved by applying a post-
processing in which a subgrid FD method is applied at grid points in the neighboring set.
For example, at x = x, –uxx can be approximated by employing nonuniform FD schemes
over the grid points [x, x, p], given as

–uxx(x) ≈ 
h

x

(
–

u

 + r
+

u

r
–

ϕ(p)
r( + r)

)
, (.)

where r = (p – x)/hx ∈ (, ], and therefore numerical solution of –uxx =  at x = x must
satisfy

u =
ru + ϕ(p)

 + r
. (.)

As r is approaching  (i.e., (p – x) becomes smaller proportionally), the obstacle value
ϕ(p) is more weighted. On the other hand, when r = , ϕ(p) = u and the scheme in (.)
becomes the standard second-order FD scheme. Let the numerical solution ũ be obtained
from

ϕ(xj) ≤ ũj =

{
(r̃uj– + ϕ(p))/( + r) if j = ,
(̃uj– + ũj+)/ if j = , , ,

(.)

where ũ =  and ũ = . Then it is not difficult to prove that ũ is exactly the same as the
true solution u at all grid points (except numerical rounding error), regardless of the grid
size hx.

The above example has motivated the authors to develop an effective numerical algo-
rithm for elliptic obstacle problems in D which detects the neighboring set of the free
boundary, determines the subgrid proportions (r’s), and updates the solution for an im-
proved accuracy using subgrid FD schemes. Here the main goal is to try to guarantee
u(x) ≥ ϕ(x) for all x ∈ Ω (whether x is a grid point or not). Since it is often the case that
the free boundary is determined only after solving the problem, the algorithm must be a
post-process. Details are presented in Section .

Lee et al. Journal of Inequalities and Applications (2017) 2017:34 Page 6 of 25

3 Obstacle relaxation methods
This section introduces and analyzes effective relaxation methods for solving (.) and its
nonlinear problem as shown in (.) below.

3.1 The linear obstacle problem
We will begin with second-order approximation schemes for –�u. For simplicity, we con-
sider a rectangular domain in R

, Ω = (ax, bx) × (ay, by). Then the following second-order
FD scheme can be formulated on the grid points:

xpq := (xp, yq), p = , , . . . , nx, q = , , . . . , ny, (.)

where, for some positive integers nx and ny,

xp = ax + p · hx, yq = ay + q · hy; hx =
bx – ax

nx
, hy =

by – ay

ny
.

Let upq = u(xp, yq). Then, at each of the interior points xpq, the five-point FD approximation
of –�u reads

–�hupq =
–up–,q + upq – up+,q

h
x

+
–up,q– + upq – up,q+

h
y

. (.)

Multiply both sides of (.) by h
x to have

(–�hupq)h
x =

(
 + r

xy
)
upq – up–,q – up+,q – r

xyup,q– – r
xyup,q+, (.)

where rxy = hx/hy and ust = fst at boundary grid points (xs, yt).
Now, consider the following Jacobi iteration for simplicity. Given an initialization u,

find un iteratively as follows.

Algorithm LJ

For n = , , . . .
For q =  : ny – 
For p =  : nx – 

(a) uJ ,pq = 
+r

xy
(un–

p–,q + un–
p+,q + r

xyun–
p,q– + r

xyun–
p,q+);

(b) un
pq = max(uJ ,pq,ϕpq);

end
end

end

(.)

where un–
st = fst at boundary grid points (xs, yt).

Note that Algorithm LJ produces a solution u of which the function value at a point is a
simple average of four neighboring values, satisfying the constraint u ≥ ϕ.

Lee et al. Journal of Inequalities and Applications (2017) 2017:34 Page 7 of 25

Theorem  Let û be the limit of the iterates un of Algorithm LJ . Then û satisfies the FD
discretization of (.). That is,

–�hûpq ≥ ,
ûpq ≥ ϕpq,
(–�hûpq) · (̂upq – ϕpq) = ,

⎫⎪⎬
⎪⎭ (xp, yq) ∈ Ω

h ,

ûst = fst , (xs, yt) ∈ Γh,

(.)

where Ω
h denotes the set of interior grid points and Γh is the set of boundary grid points.

Proof It is clear to see from Algorithm LJ that

ûpq ≥ ϕpq for (xp, yq) ∈ Ω
h and ûst = fst for (xs, yt) ∈ Γh.

Let ûpq = ϕpq at an interior point (xp, yq). Then it follows from (.)(b) that

ûJ ,pq =


 + r
xy

(̂
up–,q + ûp+,q + r

xyûp,q– + r
xyûp,q+

)≤ ϕpq = ûpq, (.)

which implies that

 ≤ (
 + r

xy
)̂
upq – ûp–,q – ûp+,q – r

xyûp,q– – r
xyûp,q+ = (–�hûpq) · h

x . (.)

On the other hand, let ûpq > ϕpq at (xp, yq). Then, since ûpq = max(̂uJ ,pq,ϕpq), we must have

ûpq = ûJ ,pq, (.)

which implies that –�hûpq = . This completes the proof. �

One can easily prove that the algebraic system obtained from (.) is irreducibly di-
agonally dominant and symmetric positive definite. Since its off-diagonal entries are all
nonpositive, the matrix must be a Stieltjes matrix and therefore an M-matrix []. Thus
relaxation methods of regular splittings (such as the Jacobi, the Gauss-Seidel (GS), and
the successive over-relaxation (SOR) iterations) are all convergent and their limits are the
same as û and therefore satisfy (.). In this article, variants of Algorithm LJ for the GS
and the SOR would be denoted, respectively, by LGS and LSOR(ω), where ω is an over-
relaxation parameter for the SOR,  < ω < . For example, LSOR(ω) is formulated as

Algorithm LSOR(ω)

For n = , , . . .
For q =  : ny – 
For p =  : nx – 

(a) uGS,pq = 
+r

xy
(un

p–,q + un–
p+,q + r

xyun
p,q– + r

xyun–
p,q+);

(b) uSOR,pq = ω · uGS,pq + ( – ω) · un–
pq ;

(c) un
pq = max(uSOR,pq,ϕpq);

end
end

end

(.)

where un–
st = un

st = fst at boundary grid points (xs, yt).

Lee et al. Journal of Inequalities and Applications (2017) 2017:34 Page 8 of 25

Note that the right side of (.)(a) involves updated values wherever available. When
ω = , Algorithm LSOR(ω) becomes Algorithm LGS; that is, LSOR() = LGS.

3.2 The nonlinear obstacle problem
Applying the same arguments for the linear problem (.), the Euler-Lagrange equation
for the nonlinear minimization problem (.) can be formulated as

N (u) ≥ ,
u ≥ ϕ,
N (u) · (u – ϕ) = ,

⎫⎪⎬
⎪⎭ in Ω ,

u = f , on Γ ,

(.)

where

N (u) = –∇ ·
(∇u√

 + |∇u|
)

. (.)

Thus the solution to the nonlinear problem (.) can be considered as a minimal surface
satisfying the constraint given by the obstacle function ϕ.

Since
√

 + |∇u| ≥ , the nonlinear obstacle problem (.) can equivalently be formu-
lated as

M(u) ≥ ,
u ≥ ϕ,
M(u) · (u – ϕ) = ,

⎫⎪⎬
⎪⎭ in Ω ,

u = f , on Γ ,

(.)

where

M(u) = –
√

 + |∇u|∇ ·
(∇u√

 + |∇u|
)

. (.)

Such a method of gradient-weighting will make algebraic systems simpler and better
conditioned, as to be seen below. In order to introduce effective FD schemes for M(u), we
first rewrite M(u) as

M(u) = –
(√

 + |∇u|)

(
ux√

 + |∇u|
)

x
–
(√

 + |∇u|)

(
uy√

 + |∇u|
)

y
, (.)

where both (
√

 + |∇u|) and (
√

 + |∇u|) are the same as
√

 + |∇u|; however, they
will be approximated in a slightly different way. The following numerical schemes are of
second-order accuracy and specifically designed for the resulting algebraic system to be
simpler and better conditioned.

Lee et al. Journal of Inequalities and Applications (2017) 2017:34 Page 9 of 25

For the FD scheme at the (p, q)th pixel, we first compute second-order FD approxima-
tions of

√
 + |∇u| at xp–/,q(W), xp+/,q(E), xp,q–/(S), and xp,q+/(N):

dpq,W =
[
 + (upq – up–,q)/h

x

+ (up–,q+ + up,q+ – up–,q– – up,q–)/
(
h

y
)]/,

dpq,E = dp+,q,W ,

dpq,S =
[
 + (upq – up,q–)/h

y

+ (up+,q + up+,q– – up–,q – up–,q–)/
(
h

x
)]/,

dpq,N = dp,q+,S.

(.)

Then the directional-derivative terms at the pixel point xpq can be approximated by

(
ux√

 + |∇u|
)

x
(xpq) ≈ 

h
x

[


dpq,W
up–,q +


dpq,E

up+,q –
(


dpq,W

+


dpq,E

)
upq

]
,

(
uy√

 + |∇u|
)

y
(xpq) ≈ 

h
y

[


dpq,S
up,q– +


dpq,N

up,q+ –
(


dpq,S

+


dpq,N

)
upq

]
.

(.)

Now, we discretize the surface element as follows:

(√
 + |∇u|)(xpq) ≈

[



(


dpq,W
+


dpq,E

)]–

=
dpq,W dpq,E

dpq,W + dpq,E
,

(√
 + |∇u|)(xpq) ≈

[



(


dpq,S
+


dpq,N

)]–

=
dpq,Sdpq,N

dpq,S + dpq,N
,

(.)

where the right-hand sides are harmonic averages of FD approximations of
√

 + |∇u| in
x- and y-coordinate directions, respectively. Then it follows from (.), (.), and (.)
that

M(u)(xpq) · h
x ≈ (

 + r
xy
)
upq – apq,W up–,q – apq,Eup+,q

– r
xyapq,Sup,q– – r

xyapq,N up,q+, (.)

where

apq,W =
dpq,E

dpq,W + dpq,E
, apq,E =

dpq,W

dpq,W + dpq,E
,

apq,S =
dpq,N

dpq,S + dpq,N
, apq,N =

dpq,S

dpq,S + dpq,N
.

(.)

Note that apq,W + apq,E = apq,S + apq,N = . As for the linear problem, it is easy to prove that
the algebraic system obtained from (.) is an M-matrix.

Given FD schemes for M(u) as in (.), the nonlinear obstacle problem (.) can be
solved iteratively by the Jacobi iteration.

Lee et al. Journal of Inequalities and Applications (2017) 2017:34 Page 10 of 25

Algorithm NJ

For n = , , . . .
For q =  : ny – 
For p =  : nx – 

(a) uJ ,pq = 
+r

xy
(an–

pq,W un–
p–,q + an–

pq,Eun–
p+,q + r

xyan–
pq,Sun–

p,q– + r
xyan–

pq,N un–
p,q+);

(b) un
pq = max(uJ ,pq,ϕpq);

end
end

end

(.)

where un–
st = fst at boundary grid points (xs, yt).

The superscript (n – ) on the coefficients apq,D, D = W , E, S, N , indicate that they are ob-
tained using the last iterate un–. Algorithm NJ produces a solution u of which the function
value at a point is a weighted average of four neighboring values, satisfying the constraint
u ≥ ϕ. One can prove the following corollary, using the same arguments introduced in the
proof of Theorem .

Corollary  Let û be the limit of the iterates un of Algorithm NJ . Then û satisfies the FD
discretization of (.). That is,

Mh (̂u)pq ≥ ,
ûpq ≥ ϕpq,
Mh (̂u)pq · (̂upq – ϕpq) = ,

⎫⎪⎬
⎪⎭ (xp, yq) ∈ Ω

h ,

ûst = fst , (xs, yt) ∈ Γh,

(.)

where Mh (̂u)pq denotes the FD scheme of M(u)(xpq) as defined in (.) with u = û.

Variants of Algorithm NJ for the GS and the SOR can be formulated similarly as for the
linear obstacle problem; they would be denoted respectively by NGS and NSOR(ω). In prac-
tice, such symmetric coercive optimization problems, the SOR methods are much more
efficient than the Jacobi and Gauss-Seidel methods. We will exploit LSOR(ω) and NSOR(ω)
for numerical comparisons with state-of-the-art methods, by setting the relaxation pa-
rameter ω optimal.

3.3 The optimal relaxation parameter ω̂

Consider the standard Poisson equation with a Dirichlet boundary condition

–�u = g in Ω ,

u = f on Γ = ∂Ω ,
(.)

for prescribed functions f and g . Let Ω = [, ], for simplicity, and apply the second-order
FD method for the second derivatives on a uniform grid: h = hx = hy = /(m + ), for some
positive integer. The its algebraic system can be written as

Au = b ∈ R
m

. (.)

Lee et al. Journal of Inequalities and Applications (2017) 2017:34 Page 11 of 25

Then the theoretically optimal relaxation parameter for the SOR method can be deter-
mined as [], Section .,

ω̂ =


 +
√

 – ρ(TJ)
, (.)

where ρ(TJ) is the spectral radius of the iteration matrix of the Jacobi method TJ . The
iteration matrix TJ can be explicitly presented as a block tridiagonal matrix

TJ =



tridiag(Im, Bm, Im), (.)

where Im is the m-dimensional identity matrix and

B = tridiag(, , ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

 
  

.
  

 

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈R
m×m.

For such a matrix TJ , it is well known that

ρ(TJ) =  – ch, for some c > . (.)

Thus it follows from (.) and (.) that the optimal SOR parameter corresponding to
the mesh size h, ω̂h, can be expressed as

ω̂h =


 +
√

 – ( – ch)
=


 +

√
ch – ch

≈ 
 + ch

, (.)

where c =
√

c. Hence, for general mesh size h, the corresponding optimal SOR parame-
ter ω̂h can be found as follows.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a) Determine ω̂h for a prescribed mesh size h = h, heuristically.
(b) Find c by solving (.) for c:

c = (/ω̂h – )/h.
(c) Use (.) with the above c to determine ω̂h for general h.

(.)

It is often the case that the calibration (.)(a)-(.)(b) can be carried out with a small
problem, i.e., with h of a very low resolution.

4 Subgrid FD schemes for the free boundary: a post-process
This section describes subgrid FD schemes for the free boundary, focusing on the linear
obstacle problem; the arguments to be presented can be applied the same way for nonlin-
ear problems. Again, we assume for simplicity that h = hx = hy.

Let û be the numerical solution of an obstacle problem. Then it would satisfy the dis-
crete obstacle problem (.), particularly ûpq ≥ ϕpq at all (interior) grid points xpq ∈ Ω

h .

Lee et al. Journal of Inequalities and Applications (2017) 2017:34 Page 12 of 25

However, when the mesh grid is not matching with the free boundary, the obstacle con-
straint û ≥ ϕ may not be satisfied at all points x ∈ Ω . This implies that when the mesh is
not fine enough, the numerical solution can be underestimated near the free boundary, as
shown in Figure  in Section .. Note that the error introduced by non-matching grids is
in O(h), while the numerical truncation error is in O(h) for second-order FD schemes.
That is, the underestimation is in O(h), which can be much larger than the truncation
error. The strategy below can be considered as a post-processing algorithm designed in
order to reduce the underestimation without introducing a mesh refinement. The post-
processing algorithm consists of three steps: (a) finding the numerical contact set and the
neighboring set, (b) subgrid determination of the free boundary, and (c) nonuniform FD
schemes on the neighboring set.

4.1 The contact set and the neighboring set
Finding the numerical contact set is an easy task. Let û and ϕ be the numerical solution
and the lower obstacle, respectively. Then, for example, the characteristic set of contact
points Ch can be determined as follows.

⎡
⎢⎣

Ch = û – ϕ;
if Ch(xpq) > , then Ch(xpq) = ; for all points xpq;
Ch =  – Ch.

(.)

As defined in Section ., an interior grid point is a neighboring point when it is not in
the contact set but one of its adjacent grid points is in the contact set. Thus the neighboring
points can be found more effectively as follows. Visit each point in the contact set; if any
one of its four adjacent points is not in the contact set, then the non-contacting point is a
neighboring point. The set of all neighboring points is the neighboring set Nh.

4.2 Subgrid determination of the free boundary
Let xpq be a neighboring point with two of its adjacent points are contact points
(Ch(p + , q) = Ch(p, q – ) = ), as in Figure . Then we may assume that the real free
boundary passes somewhere between the contact points and the neighboring points. We
will suggest an effective strategy for the determination of the free boundary in subgrid
level.

We first focus on the horizontal line segment connecting xpq and xp+,q in the east (E)
direction. Define

xE(r) = ( – r)xpq + rxp+,q, r ∈ [, ]. (.)

Figure 2 Contact points (red solid circle) and neighboring points
(blue open circle). The red dashed curve indicates a possible free
boundary.

Lee et al. Journal of Inequalities and Applications (2017) 2017:34 Page 13 of 25

Then the corresponding linear interpolation between upq and up+,q over the line segment
is formulated as

LE(r) = ( – r)upq + rup+,q, r ∈ [, ]. (.)

Let

FE(r) = ϕ
(
xE(r)

)
– LE(r), r ∈ [, ]. (.)

Since xpq and xp+,q are a neighboring point and a contact point, respectively, we have

FE() <  and FE() = . (.)

If the free boundary passes between xpq and xp+,q, then there must exist r ∈ (, ) such that
FE(r) > . Let rE be such that xE(rE) represents the intersection between the line segment
xE(·) and the free boundary. Then it can be approximated as follows.

rE = max
r∈(,]

FE(r). (.)

The maximization problem in (.) can be solved easily (using the Newton method, for
example), when the obstacle is defined as a smooth function. A more robust method can
be formulated as a combination of a line search algorithm and the bisection method.

set k, k;
rE = ; Fmax = ;
for k =  : k –  % line search

if FE(k/k) > Fmax

rE = k/k; Fmax = FE(k/k);
end

end
if rE <  % refine it through bisection

rb = /k;
for k =  : k

rb = rb/;
if FE(rE – rb) > Fmax

rE = rE – rb; Fmax = FE(rE – rb);
end
if FE(rE + rb) > Fmax

rE = rE + rb; Fmax = FE(rE + rb);
end

end
BE = ϕ(xE(rE));

end

(.)

Remarks
– The last evaluation of ϕ (and saving) is necessary for the nonuniform FD schemes on

the neighboring set, which will be discussed in Section .. The quantity BE will be
used as the Dirichlet value on the free boundary.

Lee et al. Journal of Inequalities and Applications (2017) 2017:34 Page 14 of 25

– For other directions D (= W , S, or N), one can define corresponding difference
functions FD as shown in (.)-(.) for D = E. Then rD can be obtained by applying
(.) with FE being replaced with FD. When the adjacent point xD() is not a contact
point, you may simply set rD = . Thus each neighboring point produces an array of
four values [rW , rE , rS, rN] and free boundary values for the directions D where rD < .

– Assuming that (.) has a unique solution and the obstacle is given as a smooth
function, the maximum error for the detection of the free boundary using (.) is

(


k
· 

k

)
h, (.)

where h is mesh size. It has been numerically verified that the choice (k, k) = (, )
is enough for an accurate detection of the free boundary, for which the upper bound
of the error becomes h/ = .h.

4.3 Nonuniform FD schemes on the neighboring set
Let xpq = (xp, yq) be a neighboring point. Then rpq,D ∈ (, ] would be available for each
D ∈ {W , E, S, N}; Bpq,D is also available for rD < . Thus the FD scheme for –uxx(xpq) can be
formulated over three points {(xp – rpq,W hx, yq), (xp, yq), (xp + rpq,Ehx, yq)} as follows.

–uxx(xpq) ≈ 
h

x

(
–

upq,W

rpq,W (rpq,W + rpq,E)
+

upq

rpq,W · rpq,E
–

upq,E

rpq,E(rpq,W + rpq,E)

)
, (.)

where

upq,W =

{
up–,q if rpq,W = ,
Bpq,W if rpq,W < ,

upq,E =

{
up+,q if rpq,E = ,
Bpq,E if rpq,E < .

Similarly, the FD scheme for –uyy(xpq) can be formulated over three points in the y-
direction {(xp, yq – rpp,Shy), (xp, yq), (xp, yq + rpp,N hy)}:

–uyy(xpq) ≈ 
h

y

(
–

upq,S

rpq,S(rpq,S + rpq,N)
+

upq

rpq,S · rpq,N
–

upq,N

rpq,N (rpq,S + rpq,N)

)
, (.)

where

upq,S =

{
up,q– if rpq,S = ,
Bpq,S if rpq,S < ,

upq,N =

{
up,q+ if rpq,N = ,
Bpq,N if rpq,N < .

Thus, the post-processing algorithm of the obstacle SOR (.), LSOR(ω), can be formu-
lated by replacing the two terms in the right side of (.) with the right sides of (.) and
(.), and computing uGS,pq in (..a) correspondingly at all neighboring points.

5 Numerical experiments
In this section, we apply the obstacle SOR method and the post-processing schemes to
various obstacles to verify their effectiveness and accuracy. We mainly concern -D ob-
stacle problems of Dirichlet boundary conditions. The algorithms are implemented, for
both one and double obstacles, in Matlab and carried out on a Desktop computer of an

Lee et al. Journal of Inequalities and Applications (2017) 2017:34 Page 15 of 25

Intel i-S . GHz processor. The optimal relaxation parameter is calibrated with
the lowest resolution to find a constant c (.) and the constant is used for all other
cases. For a comparison purpose, we implemented a state-of-the-art method, PDLP [],
and its parameters (r and r in (.)) are found heuristically for cases where the param-
eters are not suggested in []. The iterations are stopped when the maximum difference
of consecutive iterates becomes smaller than the tolerance ε:

∥∥un – un–∥∥∞ < ε, (.)

where ε = – mostly; Section . uses ε = – for an accurate estimation of the error.
For all examples, the numerical solution is initialized from ϕ (the lower obstacle) and the
boundary condition f .

u(x) =

{
ϕ(x) if x ∈ Ω

h ,
f (x) if x ∈ Γh.

(.)

5.1 Linear obstacle problems
We first consider a non-smooth obstacle ϕ : Ω → R with Ω = [, ], defined by

ϕ(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

 if |x – .| + |y – .| < .,
. if (x – .) + (y – .) < .,
. if y = . and . < x < .,
 otherwise.

(.)

We solve the linear obstacle problem varying resolutions. The tolerance is set ε = –

hereafter except for examples in Section .. Table  presents the number of iterations and
CPU (the elapsed time, measured in second) for the linear problem of the non-smooth ob-
stacle (.). One can see from the table that our suggested method requires less iterations
and converges about one order faster in the computation time than the PDLP, a state-
of-the-art method. We have also implemented the primal-dual hybrid gradient (PDHD)
algorithm in [, , ] for obstacle problems. The PDLP turns out to be a simple adap-
tation of the PDHD and their performances are about the same, particularly when μ is set
large. For the resolution  × , Figure  depicts the numerical solutions of the PDLP
and the obstacle SOR and their contour lines. For this example, both the PDLP and the
obstacle SOR resulted in almost identical solutions.

Table 1 The number of iterations and CPU for the linear problem of the non-smooth obstacle
ϕ1 (5.3)

(ε = 10–6) PDL1P Obstacle SOR

Resolution Iter CPU Iter CPU

32× 32 1,284 0.13 84 0.005
64× 64 1,744 0.71 148 0.03
128× 128 2,111 3.58 268 0.22
256× 256 2,097 14.09 525 1.70

For PDL1P [14], set μ = 108 , r1 = 0.01, and r2 = 12.5.

Lee et al. Journal of Inequalities and Applications (2017) 2017:34 Page 16 of 25

Figure 3 Solutions to the linear problem for the obstacle ϕ1 (5.3) at resolution 64 × 64. (a) The
numerical solution by the PDL1P, (b) its contour plot, (c) the numerical solution by the obstacle SOR, and
(d) its contour plot.

As the second example, we consider the radially symmetric obstacle ϕ : Ω → R with
Ω = [–, ] defined by

ϕ(r) =
{√

 – r if r ≤ r∗,
– otherwise, (.)

where r∗ = . . . . , the solution of
(
r∗)( – log

(
r∗/

))
= . (.)

For the obstacle ϕ, the analytic solution to the linear obstacle problem can be defined as

u∗(r) =
{√

 – r if r ≤ r∗,
–(r∗) ln(r/)/

√
 – (r∗) otherwise, (.)

when the boundary condition is set appropriately using u∗. See Figure , in which we give
plots of ϕ and the true solution u∗.

In Table , we compare performances of the PDLP and the obstacle SOR applied for
the linear obstacle problem with (.). The PDLP uses the parameters suggested in []
(μ = ., r = ., r = .). As one can see from the table, our suggested method
takes about one order less CPU time than the PDLP for the computation of the numerical
solution. In Figure , we show the numerical solutions uh and the errors uh – u∗ produced

Lee et al. Journal of Inequalities and Applications (2017) 2017:34 Page 17 of 25

Figure 4 The true solution to the linear problem for the obstacle ϕ2 (5.4) at resolution 64 × 64. (a) The
obstacle ϕ2 and (b) the true solution u∗ (5.6)

Table 2 L∞-errors, the number of iterations, and the CPU for linear obstacle problem with ϕ2
(5.4)

(ε = 10–6) PDL1P Obstacle SOR

Resolution L∞-error Iter (CPU) L∞-error Iter (CPU)

32× 32 8.91 · 10–3 715 (0.09) 8.69 · 10–3 62 (0.02)
64× 64 3.01 · 10–3 1,340 (0.60) 3.05 · 10–3 122 (0.04)
128× 128 7.66 · 10–4 1,971 (3.51) 7.64 · 10–4 244 (0.22)
256× 256 1.86 · 10–4 2,072 (14.85) 1.88 · 10–4 489 (1.63)

The PDL1P uses the parameters suggested in [14] (μ = 0.1, r1 = 0.008, r2 = 15.625).

by the PDLP and the obstacle SOR at the  ×  resolution. The solutions are almost
identical and the errors are nonpositive. This implies that the numerical solutions of the
obstacle problem are underestimated.

As a more general obstacle problem, we consider the elastic-plastic torsion problem
in []. The problem is to find the equilibrium position of the membrane between two
obstacles ϕ, ψ that a force v is acting on:

min
u

∫
Ω

|∇u| dx –
∫

Ω

uv dx, s.t. ψ ≥ u ≥ ϕ in Ω , u = f on Γ . (.)

Let Ω = [, ] and the problem consist of two obstacles ϕ : Ω →R, ψ : Ω → R and the
force v : Ω →R defined by ϕ(x, y) = – dist(x, ∂Ω), ψ(x, y) = . and

v(x, y) =

⎧⎪⎨
⎪⎩

 if (x, y) ∈ S = {(x, y) : |x – y| ≤ . ∧ x ≤ .},
–eyg(x) if x ≤  – y and (x, y) /∈ S,
eyg(x) if x >  – y and (x, y) /∈ S,

(.)

where

g(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x if  ≤ x ≤ /,
( – x) if / < x ≤ /,
(x – /) if / < x ≤ /,
( – (x – /)) if / < x ≤ /,
(x – /) if / < x ≤ /,
( – (x – /)) if / < x ≤ .

(.)

Lee et al. Journal of Inequalities and Applications (2017) 2017:34 Page 18 of 25

Figure 5 Numerical solutions uh and errors uh – u∗ at the 64 × 64 resolution. (a)-(b) by the PDL1P and
(c)-(d) by the obstacle SOR.

Figure 6 Elastic-plastic torsion problem. (a) The obstacles (ψ3 and ϕ3) and (b) the force v.

See Figure , where the obstacles and the force are depicted.
In Table , we present performances of the PDLP and the obstacle SOR applied for

the elastic-plastic torsion problem (.). For the PDLP, we use the parameters suggested
in [] (μ = ., r = ., r = .). As one can see from the table, our suggested
method again resulted in the numerical solution about one order faster than the PDLP
measured in the CPU time. In Figure , we illustrate the simulated membranes in the
equilibrium satisfying (.) and their contact sets at resolution  × . In Figures (b)

Lee et al. Journal of Inequalities and Applications (2017) 2017:34 Page 19 of 25

Table 3 The number of iterations and the CPU time for the elastic-plastic torsion problem
(5.7)

(ε = 10–6) PDL1P Obstacle SOR

Resolution Iter CPU Iter CPU

32× 32 887 0.13 47 0.02
64× 64 1,287 0.68 98 0.04
128× 128 1,609 3.43 193 0.22
256× 256 1,866 17.27 368 1.58

For the PDL1P, we use the parameters suggested in [14] (μ = 0.1, r1 = 0.008, r2 = 15.625).

Figure 7 The numerical solutions and the contact sets for the elastic-plastic torsion problem at the
64 × 64 resolution. (a)-(b) by the PDL1P and (c)-(d) by the obstacle SOR.

and (d), the upper and lower contact sets are colored in yellow (brightest in gray scale)
and blue (darkest in gray scale), respectively. The results produced by the two methods
are apparently the same.

5.2 Nonlinear obstacle problems
The obstacle SOR is implemented for nonlinear obstacle problems as described in Sec-
tion ..

In Table , we present experiments for which the obstacle SOR is applied for nonlinear
obstacle problems with ϕ = ϕi, i = , , . From a comparison with linear cases presented in
Tables , , and , we can see for each of the obstacles that the obstacle SOR iteration for the
nonlinear problem converges in a similar number of iterations as for the linear problem.

Lee et al. Journal of Inequalities and Applications (2017) 2017:34 Page 20 of 25

Table 4 The performance of the obstacle SOR applied for nonlinear obstacle problems with
ϕ = ϕi , i = 1, 2, 3

(ε = 10–6) ϕ1 ϕ2 ϕ3

Resolution Iter CPU Iter CPU Iter CPU

32× 32 79 0.02 62 0.04 47 0.04
64× 64 133 0.16 121 0.17 98 0.16
128× 128 257 1.25 239 1.16 192 1.09
256× 256 513 10.19 477 9.20 368 8.24

Figure 8 Nonlinear obstacle problem with ϕ = ϕ1 at resolution 64 × 64. (a) The nonlinear numerical
solution and (b) its contour plot.

Figure 9 The difference between the linear solution and the nonlinear solution, at the 64 × 64
resolution, for the obstacle problem with ϕ = ϕ1. (a) (uh,linear – uh,nonlinear) and (b) its density plot.

Only the apparent difference is the CPU time; an iteration of the nonlinear solver is about
as six time expensive as that of the linear solver, due to the computation of coefficients as
in (.). For ϕ = ϕ, the nonlinear solution is plotted in Figure . Compared with the linear
solutions in Figure , the nonlinear solution shows slightly lower function values, which
is expected. As the grid point approaches the obstacles, the solution shows an increasing
gradient magnitude. This may enlarge weights for far-away grid values as shown in (.),
which in return acts as a force to reduce function values. The difference between the linear
solution and the nonlinear solution, at the  ×  resolution, is depicted in Figure .

Lee et al. Journal of Inequalities and Applications (2017) 2017:34 Page 21 of 25

5.3 Post-processing algorithm
In Figure , one have seen that the error, the difference between the numerical solution
and the analytic solution, shows its highest values near the free boundary. The larger error
is due to the result of mismatch between the mesh grid and the obstacle edges. In order
to eliminate the error effectively, we apply the subgrid FD schemes in Section  as a post-
processing (PP) algorithm. For the examples presented in this subsection, the numerical
solutions are solved as follows: (a) the problem is solved with ε = – (pre-processing),
(b) the free boundary is estimated with (k, k) = (, ) and subgrid FD schemes are ap-
plied at neighboring grid points as in Section , and (c) another round of iterations is
applied to satisfy the tolerance ε = –.

First, we consider a step function for an one-dimensional (D) obstacle, as in Section ..
Let Ω = [, ] and ϕ : Ω →R defined by

ϕ(x) =

{
 if  ≤ x < π/,
 if π/ ≤ x ≤ .

(.)

The analytic solution to the linear problem is given as

u,true(x) =

{
x/π if  ≤ x < π/,
 if π/ ≤ x ≤ .

(.)

Figure  shows the numerical solutions to the linear problem associated to (.) with
and without the post-process, and their errors. The numerical solutions without and with
the post-process are obtained iteratively satisfying the tolerance ε = –. Notice that
the solution without post-process is underestimated and shows a relatively high error:
‖u – u,true‖∞ = .. The error is reduced to ‖upp – u,true‖∞ = . × – after the
post-process.

The post-processing algorithm is applied to the linear obstacle problem in -D involv-
ing ϕ = ϕ. Table  contains efficiency results that compare performances of the PDLP,
the obstacle SOR (without post-process), and the obstacle SOR with the post-process

Figure 10 The post-processing algorithm applied for an obstacle problem in 1D at resolution 16.
(a) The computed solutions without the post-process (blue solid curve) and with the post-process (red
dotted curve with × marks) and (b) their errors. Here the subscript pp indicates the post-process.

Lee et al. Journal of Inequalities and Applications (2017) 2017:34 Page 22 of 25

Table 5 CPU time and iteration comparisons for the suggested post-process, applied to the
linear problem with ϕ = ϕ2

(ε = 10–7) PDL1P Obstacle SOR Obstacle SOR+PP

Resolution Iter CPU Iter CPU Iter CPU

25× 25 814 0.07 56 0.02 92 0.07
50× 50 1,486 0.40 108 0.03 147 0.10
100× 100 2,092 2.26 213 0.13 299 0.26
200× 200 2482 10.47 416 0.84 570 1.34

Table 6 L∞ and L2 error comparisons for the suggested post-process, applied to the linear
problem with ϕ = ϕ2

(ε = 10–7) PDL1P Obstacle SOR Obstacle SOR+PP

Resolution L∞ error L2 error L∞ error L2 error L∞ error L2 error

25× 25 1.94 · 10–2 4.35 · 10–3 1.94 · 10–2 4.38 · 10–3 8.44 · 10–4 2.80 · 10–4
50× 50 4.38 · 10–3 8.10 · 10–4 4.39 · 10–3 8.41 · 10–4 2.01 · 10–4 6.93 · 10–5
100× 100 1.25 · 10–3 2.73 · 10–4 1.25 · 10–3 2.87 · 10–4 5.16 · 10–5 1.79 · 10–5
200× 200 5.45 · 10–4 7.29 · 10–5 5.46 · 10–4 7.76 · 10–5 1.40 · 10–5 4.74 · 10–6

Figure 11 Plots of the error (uh – u∗) at the 50 × 50 resolution for the linear obstacle problem with
ϕ = ϕ2. (a) by the PDL1P, (b) by the obstacle SOR, and (c) by the obstacle SOR+PP.

(Obstacle SOR+PP) at various resolutions; while Table  presents an accuracy compar-
ison for those methods. According to Table , the post-processed solution requires about
% more iterations than the non-post-processed one; the incorporation of the post-
process makes the iterative algorithm as twice expensive measured in CPU time as the
original iteration. However, one can see from Table  that the post-process makes the
error reduced by a factor of ∼. Thus in order to achieve a three-digit accuracy in
the maximum-norm, for example, the PDLP requires . seconds and the obstacle
SOR completes the task in . seconds; when the obstacle SOR+PP takes only . sec-
ond.

Figure  includes plots of the error (uh – u∗) at the  ×  resolution for the linear
obstacle problem with ϕ = ϕ, produced by the PDLP, the obstacle SOR, and the obstacle
SOR+PP. The numerical solutions of the PDLP and the obstacle SOR are almost identi-
cal to each other and clearly underestimated, with the maximum discrepancy occurring
around the free boundary due to the misfit between the mesh grid and the free boundary.
It can be seen from Figure (c) that the post-process can eliminate the misfit error very
effectively; the remaining error is the truncation error introduced by the second-order FD
schemes.

Lee et al. Journal of Inequalities and Applications (2017) 2017:34 Page 23 of 25

5.4 Parameter choices
Finally, we present experimental results for parameter choices, when the obstacle SOR
is applied for the linear problem with ϕ = ϕ. For an effective calibration of the optimal
relaxation parameter as suggested in (.), we first select h = /. Then by using a trial-
by-error method, we found the calibrated optimal relaxation parameter ω̂h = ., which
results in the following calibrated constant:

c ≈ .. (.)

Thus it follows from (.) that the calibrated optimal relaxation parameter reads

ω̂cal,h ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

. when h = /,
. when h = /,
. when h = /,
. when h = /,

(.)

which is used for the results of the obstacle SOR included in Table .
In order to verify effectiveness of the calibration, we implement a line search algorithm

to find a relaxation parameter ω̂ that converges in the smallest number of iterations with
ε = –, the same tolerance as for the results in Table . For h = / and h = /, the
line search algorithm returned the curves as shown in Figure  with

[ω̂, iter] ≈

⎧⎪⎨
⎪⎩

[., ] when h = /,
[., ] when h = /,
[., ] when h = /.

(.)

Note that when the calibrated parameters are used, the iteration counts of the obstacle
SOR presented in Table  are , , and , respectively, for h = /, h = /, and
h = /. Thus the calibrated optimal parameters in (.) are quite accurate for the op-
timal convergence.

Figure 12 The relaxation parameter ω (horizontal axis) vs. the number of iterations (vertical axis) for
solving the linear obstacle problem with ϕ = ϕ3 by the obstacle SOR. (a) when h = 1/64 and (b) when
h = 1/128.

Lee et al. Journal of Inequalities and Applications (2017) 2017:34 Page 24 of 25

6 Conclusions
Although various numerical algorithms have been suggested for solving elliptic obstacle
problems effectively, most of the algorithms presented in the literature are yet to be im-
proved for both accuracy and efficiency. In this article, the authors have studied obstacle
relaxation methods in order to get second-order finite difference (FD) solutions of obsta-
cle problems more accurately and more efficiently. The suggested iterative algorithm is
based on one of the simplest relaxation methods, the successive over-relaxation (SOR).
The iterative algorithm is incorporated with subgrid FD methods to reduce accuracy de-
terioration occurring near the free boundary when the mesh grid does not match with the
free boundary. For nonlinear obstacle problems, a method of gradient-weighting has been
introduced to solve the problem more conveniently and efficiently. The iterative algorithm
has been analyzed for convergence for both linear and nonlinear obstacle problems. An
effective strategy is also presented to find the optimal relaxation parameter. The resulting
obstacle SOR has converged about one order faster than state-of-the-art methods and the
subgrid FD methods could reduce the numerical errors by one order of magnitude.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors have participated in the research and equally contributed to the writing of this manuscript. All authors read
and approved the final manuscript.

Author details
1Department of Mathematics, Sogang University, Ricci Building R1416, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, South
Korea. 2Centennial Christian School International, 20 Shin Heung Ro 26-Gil, Yongsan Gu, Seoul, 140-833, South Korea.
3Mississippi State University, Mississippi State, MS 39762-5921, USA.

Acknowledgements
S. Kim’s work is supported in part by NSF grant DMS-1228337. Tai Wan (the second author) is a high school student who
has spent many hours working on mathematical analysis and computational algorithms. S. Kim much appreciates his
efforts for the project. Constructive comments by two anonymous reviewers improved the clarity of the paper and are
much appreciated.

Received: 5 November 2016 Accepted: 25 January 2017

References
1. Bartels, S: The obstacle problem. In: Numerical Methods for Nonlinear Partial Differential Equations. Springer Series in

Computational Mathematics, vol. 47, pp. 127-152. Springer, Berlin (2015)
2. Caffarelli, L: The obstacle problem revisited. J. Fourier Anal. Appl. 4(4-5), 383-402 (1998)
3. Cha, Y, Lee, GY, Kim, S: Image zooming by curvature interpolation and iterative refinement. SIAM J. Imaging Sci. 7(2),

1284-1308 (2014)
4. Kim, H, Cha, Y, Kim, S: Curvature interpolation method for image zooming. IEEE Trans. Image Process. 20(7),

1895-1903 (2011)
5. Kim, H, Willers, J, Kim, S: Digital elevation modeling via curvature interpolation for LiDAR data. Electron. J. Differ. Equ.

23, 47-57 (2016)
6. Petrosyan, A, Shahgholian, H, Uraltseva, N: Regularity of Free Boundaries in Obstacle-Type Problems. Graduate Studies

in Mathematics. Am. Math. Soc., Providence (2012)
7. Rodrigues, JF: Obstacle Problems in Mathematical Physics. Notas de Matematica, vol. 114. Elsevier Science,

Amsterdam (1987)
8. Arakelyan, A, Barkhudaryan, R, Poghosyan, M: Numerical solution of the two-phase obstacle problem by finite

difference method. Armen. J. Math. 7(2), 164-182 (2015)
9. Brugnano, L, Casulli, V: Iterative solution of piecewise linear systems. SIAM J. Sci. Comput. 30(1), 463-472 (2008)
10. Brugnano, L, Sestini, A: Iterative solution of piecewise linear systems for the numerical solution of obstacle problems.

arXiv:0912.3222 (2009)
11. Hoppe, RHW, Kornhuber, R: Adaptive multilevel methods for obstacle problems. SIAM J. Numer. Anal. 31(2), 301-323

(1994)
12. Gräser, C, Kornhuber, R: Multigrid methods for obstacle problems. J. Comput. Math. 27(1), 1-44 (2009)
13. Tran, G, Schaeffer, H, Feldman, WM, Osher, SJ: An L1 penalty method for general obstacle problems. SIAM J. Appl.

Math. 75(4), 1424-1444 (2015)
14. Zosso, D, Osting, B, Xia, M, Osher, SJ: A fast primal-dual method for the obstacle problem. CAM Report 15-48,

Department of Mathematics, Computational Applied Mathematics, University of California, Los Angeles, CA (2015, to
appear in J. Sci. Comput.)

http://arxiv.org/abs/arXiv:0912.3222

Lee et al. Journal of Inequalities and Applications (2017) 2017:34 Page 25 of 25

15. Chambolle, A, Pock, T: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math.
Imaging Vis. 40(1), 120-145 (2011)

16. Esser, E, Zhang, X, Chan, TF: A general framework for a class of first order primal-dual algorithms for convex
optimization in imaging science. SIAM J. Imaging Sci. 3(4), 1015-1046 (2010)

17. Sochen, N, Kimmel, R, Malladi, R: A general framework for low level vision. IEEE Trans. Image Process. 7(3), 310-318
(1998)

18. Zhu, M, Chan, T: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. CAM Report
08-34, Department of Mathematics, Computational Applied Mathematics, University of California, Los Angeles, CA
(2008)

19. Zhu, M, Wright, SJ, Chan, TF: Duality-based algorithms for total-variation-regularized image restoration. Comput.
Optim. Appl. 47(3), 377-400 (2010)

20. Lions, PL, Mercier, B: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964-979
(1979)

21. Majava, K, Tai, XC: A level set method for solving free boundary problems associated with obstacles. Int. J. Numer.
Anal. Model. 1(2), 157-171 (2004)

22. Wang, F, Cheng, X: An algorithm for solving the double obstacle problems. Appl. Math. Comput. 201(1-2), 221-228
(2008)

23. Varga, R: Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs (1962)

	Accurate and efﬁcient numerical solutions for elliptic obstacle problems
	Abstract
	Keywords

	Introduction
	Preliminaries
	State-of-the-art methods for elliptic obstacle problems
	Accuracy issues

	Obstacle relaxation methods
	The linear obstacle problem
	The nonlinear obstacle problem
	The optimal relaxation parameter omega

	Subgrid FD schemes for the free boundary: a post-process
	The contact set and the neighboring set
	Subgrid determination of the free boundary
	Nonuniform FD schemes on the neighboring set

	Numerical experiments
	Linear obstacle problems
	Nonlinear obstacle problems
	Post-processing algorithm
	Parameter choices

	Conclusions
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References

