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Abstract

Our purpose is to introduce a two-parametric (p, g)-analogue of the Stancu-Beta
operators. We study approximating properties of these operators using the Korovkin
approximation theorem and also study a direct theorem. We also obtain the
Voronovskaya-type estimate for these operators. Furthermore, we study the weighted
approximation results and pointwise estimates for these operators.

MSC: 40A30;41A10; 41A25; 41A36

Keywords: Stancu-Beta operators; linear positive operators; Lipschitz function;
modulus of continuity; rate of convergence; Voronovskaya-type theorem

1 Introduction

The g-calculus has attracted attention of many researchers because of its applications in
various fields such as numerical analysis, computer-aided geometric design, differential
equations, and so on. In the field of approximation theory, the application of g-calculus
has been the area of many recent researches.

Lupas [1] presented the first g-analogue of the classical Bernstein operators in 1987.
He studied the approximation and shape-preserving properties of these operators. An-
other g-companion of the classical Bernstein polynomials is due to Phillips [2]. Inspired
by this, several authors produced generalizations of well-known positive linear opera-
tors based on g-integers and studied them extensively. For instance, the approximation
properties of the Kantorovich-type g-Bernstein operators [3], g-BBH operators [4], g-
analogue of generalized Bernstein-Schurer operators [5], weighted statistical approxima-
tion by Kantorovich-type g-Szdsz-Mirakjan operators [6], g-Szdsz-Durrmeyer operators
[7], operators constructed by means of g-Lagrange polynomials and A-statistical approx-
imation [8], statistical approximation properties of modified g-Stancu-Beta operators [9],
and g-Bernstein-Schurer-Kantorovich operators [10].

The g-calculus has led to the discovery of the (p, g)-calculus. Recently, Mursaleen et al.
have used the (p, g)-calculus in approximation theory. They have applied it to construct a
(p, g)-analogue of the classical Bernstein operators [11], a (p, g)-analogue of the Bernstein-
Stancu operators [12], and a (p, g)-analogue of the Bernstein-Schurer operators [13] and
have studied their approximation properties. Most recently, (p, g)-analogues of some other
operators have been studied in [14-18], and [19].

We now give some basic notions of the (p, g)-calculus.
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The (p, q)-integer is defined by

n_qn
[1lpq = , n=012,...,0<g<p=<1
pb—-q

The (p, g)-companion of the binomial expansion is

n

n kk=1)  (=K)n=k=1) , po kK k
(ax + by);,q = Z (k) q 2 p 2 a" K pk 55,
k=0 pq

(x +y)Z»q = (x+y)(px+ qy)(pzx + qzy) . (p”—lx n qn—ly)'

The (p, g)-analogues of the binomial coefficients are defined by

(n) _ [1]pq!
k) g [Klpg!ln—klpg!

The (p, g)-analogues of definite integrals of a function f are defined by

“ — P (P P
/ fdyax=1(q —p)az k+1f(ﬁa> when |=| <1
0 g \ q q
and
“ — ¢ (4 q
/o f&X)dpgx=(p—qla Z pk+1f <p’<+1 a) when I; <L

k=0
For m,n € N, the (p,q)-gamma and the (p, g)-beta functions are defined by

o n(n-1)
[pqn) = / P 7 Epy(-qx)dygx, Tpq(n+1) = [n]yg!
0

and

00 xm—l
B ,H) = ——d, X, 1.1
p.q (111, 11) /0 (1L +x)m p.a¥ (L1)

respectively. These two are related by

2-m(m-1) —m(m-1) r y (VI)F y (m)
Bp'q(m, n) = q 2 p 2 M

S (1.2)

For p = 1, all the concepts of the (p, q)-calculus reduce to those of g-calculus. The details
on (p, q)-calculus can be found in [20-22].
Stancu [23] introduced the beta operators to approximate the Lebesgue-integrable func-

tions on [0, 00) as follows:

nx

Lo(f, ) 1 /Oo t
yX) =
" Bnx,n+1) Jo (1 +¢t)m+nel

£(t) dt.
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The g-companion of the Stancu-Beta operators was given by Aral and Gupta [24] as fol-
lows:

K(A, [n],x) 0o/A ulMgx-1 o
Lu(f,x) = 1 £ (g™ u) dyu.

B([nlgx, [nlg+1) Jo (1 + w)lla®+lg+!

Let 0 < g < p < 1. Mursaleen et al. [25] constructed the (p,g)-Stancu-Beta operators as
follows:

1 [n]p gx-1

pq([ ]pqx;[n]pq-l-l) (1+u)[n]pqx+[n q+1

LPA(f,x) = f (PP q"ra 1) dy, yu. (1.3)

They investigated the approximating properties and estimated the rate of convergence of
these operators. Motivated by this work, we introduce the following sequence of operators:

1
S2P (fix) =
e Bp,q([n]p,qx) [n]p,q +1)
00 [n]p,qx-1 n [n]p,qx [n]P'qut +a
» / u 1f<[ lpab q ) dy it (1.4)
o (L+u)lpaxlrpgr (Mlpq + B

where 0 < o < B. We call them two-parametric (p, g)-Stancu-Beta operators. For « =0 =
B, the operators (1.4) coincide with the operators (1.3). So the latter is a generalization of

the former.

2 Main results
We shall investigate approximation results for the operators (1.4). We calculate the mo-
ments of the operators Sﬁﬁ 4(f;x) in the following lemma.

Lemma 2.1 Let S, :15 4(f;%) be given by (1.4). Then we have the following equalities:
i S ,pq(l x) =1, .
Pq o
(i) Sipa(ti®) = G, 25% + Gy

i B (2. (1134 9 (Hlpg [l o
(i) Snpa(t5%) = S iy 87 ® + Wlpg B Py D + 200% + G

Proof Using (1.1), (i) is immediate. Further,

1
Sy B (%) =
P Byq([n)p.q% [Mlpg +1)

00 u[n]p_qx—l n [n]p,qx [n]p,qxu +o
% /(; ([ ]p,qp q dp,qu

(1 + u)[n]p,qx-*-[l’l]p,q*l ([Yl]p,q + ﬁ)
(nlpq plpaglnlpax *© ulloar d
= ([n)pg + B) Bpg([n)pg, [mlpg +1) Jo (1 + u)pa*+Ulg+1 pqlt
w 1 [”]p q%-1
. dp gt
([Mlpg + B) Bpg([M]p g%, [n]pq +1) Jo (1 + w)rleartlilpg+l
[ ]}7 q P q
_ Wipg (t x) + vaq(l;x)
([Vl]pq+ﬁ) ([n ]pq +p)
[n]p,q o

T g+ B) " (lpg + B)
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and (ii) is proved;

1
Spa(35%) =
”’p‘q( ) By ([n]pg: [Mlpg +1)

X > ulmlpa-1 [1]p,gp"Po* g + a0\ dy
0 (1 + Ixt)[W]P"IJH[’?]P"ZJr1 ([n]p,q + /3) -

[n]fa,q pZ[n]p,qqu [nlp,gx 0 u['l]p,qx*'l

= d,qu
([n]pg + B)? Byg([nlpg [nlpg +1) Jo (1 + u)paxtlrlpg+1 7P

20 2 q[n]p,qx oo u[n]p,qx
+ —([”]p,q+/3) /
D Jo
00

d,qu
[n]p,q Bp,q([”]p,qxr [n]p,q + (1 + u)[n]p,qx+[n]p,q+1 v
o 1 ulrlpgx-1
+ / Ay qtt
([”l]p,q + /3)2 Bp,q([n]p,qx¢ [”l]p,q + 1) 0 (1 + u)[n]p,qx+[n]p,q+1

2
g L29(85x) +

T (g + B

2a[n]p,q 0{2
———— = LP(t; Y peag
((nlpg + B> " (t;x) + TR (1;x)

_ [, Mlpg o 1 )
" (lpg + PP <pq([n1,,,q 0" " panl,, -1

N 2a(nlp, . o?
([n]p,q +B)? ([n]p,q + B)?
[n]z q 2 n ( [1].q )
= - 2
paUlpg - D(Ulpg + B2 ([l + B2 \pa(llpg -1 )"
o2
T g+ B
which proves (iii).
Hence, the lemma is proved. d

We readily obtain the following lemma.

Lemma 2.2 Let p,q € (0,1). Then, for x € [0, 00), we have:

. B . _ a-Px
(i) Sg,p,q((t - X);%) = g+’

s B a2, [n]p,q _ ([nlp,g=B)y .2 1 o 2(1+/3)2x2+x+a2
(if) Snpg (¢ = 2)%5%) < Gty D ~ Wilpgi®)* + 5y * + Gl tB2 = palilpg D

Proof We have

S ((t —x)x) = SLP _(t;%0) — xSLE _(1;%)

np,q nmp,q np.q
_ [”l]p,q (o4 _
T g+ B g+ B)
_ (1]pq _ ) o
} (([n]m B S Gl B
-_"P x4+ a
T g + A g + P)
o—Bx

T (g + B)
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which proves (i). Now

Siﬁq((t - x)z;x)

=S2P (%x) + 22 STE (1;x) — 24S%P (£5%)

nmp,q np,q np,.q
[n];,q 2 [”l]p,q ( [n]p,q )
= 2
Palpg = D(lpg + B2 " (g + B \palnlpg -1 )"

0[2 [n]p,q o > 2
-2
g + B "(([rz]m B et p) "

_ ["]137,61 _ 2[n]pq 2+ [”]zzzq
pq([”]p,q - 1)([n]p,q + ﬁ)Z ([n]p,q + ,B) +1 pq([”]p,q - 1)([”]p,q + ,3)2

2a(nly, 20 a?

B )T (Ulpg + B

T lpg + B2 (lpg + B
("]pq _ ([nlpq - /3)> 2 1 o?
= <pq<[n1p,q Y R (T3 A 7 N SR (P )
_ {(P - q)[n]?,,q + ([n]p,q +pq[n]p,q —1%1)52 +(2B +Pq)[n]12,,q}x2 + ([n]p,q + ﬁ)z)x +pq([”]p,q - Do
B Pa([1lpg — D([lg + B)?
(" = gL}, + (g + pqlnlpg — p@ B> + 2B + pg)[n]2 &> + ([npg + B)°)% + pq([n]pq — D
pq([”]p,q - 1)([”]17,;1 + }3)2

2

282+ B+ 1% +x+0a?

rq((nlpg -1)

- 28 +1)%x% +x + a®

pq([nlpq—1)

which gives (ii). Hence, the lemma is proved. d
Next, we present a direct theorem for the operators Sﬁ,’ﬁ 43 %).

We denote By Cz[0, 00), the space of all real-valued continuous bounded functions f on

the interval [0, 00) endowed with the norm

Ifll = sup |[f(x)].

0<x<o0

Let§>0and W? = {h: ¥,k € C(I),I = [0,00)}, then the Peetre K -functional is defined by
Ky(f,8) = inf {IIf -l +5||K"|}.
hew?
The second-order modulus of continuity w;, of f is defined as

wy(f,"/8) = sup sulj)[f(x+ 2p) = 2f (x + p) +f(x)|.

1 x
0<p<d2

By DeVore-Lorentz theorem (see [26], p.177, Theorem 2.4) there exists a constant C > 0
such that

Ky(f,8) < Can(f,/35). 2.1)



Mursaleen et al. Journal of Inequalities and Applications (2016) 2016:190 Page 6 of 15

Also, by w(f, §) we denote the first-order modulus of continuity of f € C(I) defined as

o(f,8) = sup sup[f(x +p) —f(x)|.

O<p<d xel

We shall use the notation v?(x) = x + x2.

Theorem 2.3 Supposethatf € Cg[0,00) and 0 < p,q < 1. Then forallx € [0,00) and n > 2,
there exists a constant C such that

. B )
’S”’p‘q(f’x) S| = Con (f’ rq([nlpq—1) el [lpg + B/

where

2pqa’®

([nlpq + B)

Si(x) =12(x) +
and

ynz(x) = (a - px)* + [n]p,q([n]M + ,3)x2 + afx.
Proof Let us define the auxiliary operators

(n]pqx +a

[n]p,q +B

S0 = Sibatfin) o )+ s 22)

By the Lemma 2.1 it is readily seen that these operators are linear and

SiP (- x);x) = 0. (2.3)

Suppose that g € W2. By the Taylor expansion we can write
t
g(t) =glx) + £ x)(t —x) + / (t—u)g"(u)du, tel0,00).
Operating by Sf,f;;,‘;(.;x) on both sides of the above and using (2.3), we obtain:
B B '
*Q, . _ kO, " .
Snyp,q(g,x) =g(x) + S (/x (t—u)g"(u) du,x),
B B '
Snpa(&x) —gx) =S50 < /x (t —u)g" (u) du;x>,

t
oy " .
Sopa (/x (t—u)g"(u) du,x>

Using (2.2) in the right-hand side, we get

t
Sﬁl’ﬁq </x (t—u)g" (u) du;x)

[n]p,qx+a

[ ([[";lfq_x:g _ u)g’%u) d.
% pq

|S58 (g3%) — g(%)] =

|Sreh (g54) —g(%)| =
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So we obtain

|S58 (g3.%) — g()]

¢ [nlp,ga+a
o,p 1 . nlp,q+B [n]p,qx +o Yy
= Sn,p,q(/x (t—u)g (u)du,x) + /x (W—M g (u)du
! [[n]]p’q“/;x [m], 0% +
=< Sg'ﬂ < / (t_u " (u) du ;x> +f e pg” T _u‘ 7" M) du.
va\ | ] )g" () i (1], 1 B ‘g ( ’

Using the linearity of the integral operator and the operator Sﬁf,‘f 4(%) in the second and
first parts of right-hand side, respectively, and using the fact that for all x € [0, 00),

lg)] < ligll,
we obtain
TR | (] +
npg B | [1]p0% + o
S5t -6 < L& I5if (6= o ) [ [P o
x [”]p,q'*‘:B

In the first part, solving the integral fxt |t — u| du and using the linearity of the operators
Sub (5x), we readily see that

t
Szﬁq(/ |t—u|du) §Szﬁq((t—x)2;x),

and after some calculations, for the second part of (2.4), we get

[n]p,qxwt
/ [nlp,q+P [n]p,qx +o
x [n]p,q +B

_ (g + a)? = x([n]pgx + a)([nlpq + B) + 52 ([n]pq + B)?

- ([nlpq + B)?

_ (o - ﬂx)2 + [n]p,qx2([n]p,q +B) +apx

(Mg + P
B o — ,Bx 2 [n]p,q 2 0[13
) ([n]m +ﬂ) Tt B (lpg + P

So by (2.4), we obtain

u|du

1S58 (g;6) — g ()|

2
ey (Sﬁ,’ﬁ,q((t—x)z;x)+< o« px ) s a2 o op ) 2.5)

[Vl]p,q +p [n]p,q + ﬁx pq t ﬁ)zx

Using Lemma 2.2(ii), we obtain

X

2
Sa:ﬂ _ 2; o - ﬁx ) [n]p,q 2 Ol,B
n.p,q((t x)%x) + ([n]p,q y + [l + ﬁ)x + L+ A7

[Vl]p,q _ ([”l]p,q - ﬁ)) 2 1 a?
= (pq([nlp,q D Wl A T pail, -0 W, B2
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(Mlpq+B/)  (In ]pq+,3) " (g + B2
p-q)n, 2. (11}, +4pq( = [nl,g)ep e 2
pq([nlpg+ B (Mg =1 pq(lnlpg + B)*([(nlpg =1 ([nlpg + B)?
(v - q)[nl} &> + [ x + 2pq([n]p, — Da®
pa((nlpg + B ([Mlpg —1)
(" =gl 27+ [n]) x + 2pg((n) g — Dot
B pa((nlpg + B ([Mlpg —1)
[1]2, 2% + (]2, ¢ + 2pqlnl p g0
pa([nlpq + B)*([nlpq — 1)
[1]p,q(1 + x)x + 2pgo®
= pa((nlpq + B ([nlpq —1)

1 ) 2pqa® )
= paUlye =D < AN

)
- I%I([Vl]p,q - 1)’

where
2pqa’®
82(x) =12 .
) = et B
Therefore, by (2.5) we get
kO, 82( ) /7
i) ] = kPl (2.6)
On the other hand, by (2.2) we have
|Sieb(f5x)] < |Sel (F32)| + 20111 < BIII- 2.7)
By (2.2), (2.6), and (2.7), we obtain:
|Se8 (F50) = f ()] < |Sih(f = g50) = (f = @) @) + | Siil (g50) — g ()]
[n]pqx + Ol) ~ ’
’ P( (Mlpq + B S
52(96) "
<4lf =gl ot l¢"|
+ w(f, \/(05 - ﬂx)Z + [Vl]p,q([”]p,q + ,B)xz + oz,Bx)
[n]p,q +pB
82(x) ., ( V(%) >
= 4|f -gll + PP Ig"|| + e f g+ B ) (2.8)

where

Vi = (@ = Bx)* + [n]pq([n]pq + B)x* + apx.
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Taking the infimum over all g € W? on the right-hand side of (2.8), we obtain

82(96) (yn)x
o ﬁ _ _nv’ —_—
[Swpalfi) —f )] = CKa (f’ rq([nlpq - 1)) ' w(f, (nlpq + B )

Using relation (2.1), for p,q € (0,1), we get

8n(%) Vn()
SwB (f3x) Con\f) ——= "nlyg+B)
[Srnatfix) =f @] < w2<f pq([n]p,q—l))+w<f [n]p,q+ﬁ>

and this completes the proof. d

3 Rate of approximation
Let B,2[0,00) denote the set of all functions f such that f(x) < M1 + x?), where My is a
constant depending on f. By C,2 [0, 00) we denote the subspace of all continuous functions

in the space B,2[0,00). Also, we denote by C,[0,00), the subspace of all functions f €

f

rw is finite with

C,2[0, 00) for which lim,_,

If )]

xel0, oo) 1+x2

I£1I =
For a > 0, the modulus of continuity of f over [0, a] is defined by

w4(f,8)= sup sup Lf(t)—f(x)|.

|t—x|<é 0=<x,t<a
We have the following proposition.

Proposition 3.1
(i) Forf € C,2[0,00), the modulus of continuity w,(f,8), a > 0, approaches to zero.
(i) Forevery§ >0, we have

lﬂw—fwﬂf< Gl xv wulf,8)

and

2
o) -f )| < <1+ (y;) >wa(f,8).

In the following theorem, we estimate the rate of convergence of the operators Sﬁﬁ 4(f3%).

Theorem 3.2 Letf € C,2[0,00),p,q € (0,1), and let w,.1(f, 8) be the modulus of continuity
on the interval (0,1 + a] C [0,00),a > 0 . Then, for n > 2, we have

4My(1 +a*)(2(1 + B)?a* +a + o?)
PCI([V!]p,q - 1)

2(1+ﬂ)2a2+a+a2)%>
+MWQ( pa([nlpq - 1) '

” Szzfq(f) -f ” C[0,a] =
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Proof Letx € [0,a] and t > a + 1. Since 1 + x < t, we have

[f(t) —f(x)’ < Mf(x2 +2+ 2) <Mp(2+ 3x% +2(t —x)z)

< My (4 +3x%)(t — x)* < 4M (1 +a®)(t - x)>. (3.1)
For § >0, x € [0,a], t —1 < a, by Proposition 3.1 we obtain
1

[f(6) —f®)| < oralf 1t - x]) < a)l+a(f16)<1 + glf—xl) (32)

By (3.1) and (3.2), for x € [0, 4] and nonnegative ¢, we can write
2 2 1

V(t) —f(x)| < 4Mf(1 +a )(t—x) a)lm(f,(S)(l + E't —x|). (3.3)

Therefore,

|SwB (f5x) — £ ()|
<828 ([f(&)—f )

%)

< My (14 @)SEE, (£ 25%) + rsalf ) <1 e (53— 05)

ST

Hence, using the Lemma 2.2(ii) and the Schwarz inequality, for every p,q € (0,1) and x €

[0, a], we obtain

21+ B)%x* +x + a2>
pq([nlpq—1)
1/2(1+ B)*a? +a+a2)%)
+a r8 o
conatf )15 pa(nlpg D)
- 4Ms(1 +a*)(2(1 + B)*a* + a + a?)
N pq([”]p,q - 1)

o <1+1(2(1+ﬂ)2a2+a+a2>%>
TS pa(lnlpg - D) ‘

|8 (F3) = f(x)] < 4M(1+ f)(

2(1+ﬂ)2a2 +a+a

2
By choosing §% = iy~ We get the required result. O

4 Weighted approximation
This section is devoted to the study of weighted approximation theorems for the operators

(2.2).

Theorem 4.1 Suppose that p = p, and q = q, are two sequences satisfying 0 < p,,q, <1
and suppose that p, — 1 and g, — 1 as n — co. Then, for each f € C;,[0,00), we have

nll>nc}o ”S:’lifnxq" (f) _fo2 = 0
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Proof By the theorem in [27] it suffices to prove that

n—oo! MPndn

lim |S3% (¢)-«'| ,=0 fori=0,1,2. (4.1)

By Lemma 2.1(i)-(ii), the conditions of (4.1) are easily verified for i = 0 and 1. For i = 2, we
can write

||SZ:;73ann (t2) - x2 ||JC2

|Snpn qn (tz) - x2|

= sup
x€[0,00) 1+a2
(]} 2
< ( Pndn > _1) sup X >
anH([n]pn,qn -1)([n ]pn,qn + /3) x€[0,00) 1+x
[n]f;n,qn +2Pnqn (1] p,.q, ([Mp.q, — D X o?

Putn s — D[ lpran + B setoioy L+ 22+ ([l + B)?
_(Ph- gl . = P28 -D)nl  —quB(B—=1)[1lp,q, + B>
- ann([ﬂ]pn,qn - 1)([”];7”,6],4 + ﬂ)z

( [n]129n qn + Zp”q” [n]Pn:qn([n]Pn»Qn - 1)0() + Olz
Pndn([(Mp,q, — D1y, q, + B)? (Mpgn + B

which implies that

lim ”Snpnqn( t* )_x2||x2 =0.

n—00

This completes the proof of the theorem. d

Theorem 4.2 Let p = (p,) and q = (q.) be two sequences such that 0 < p,,q, <1, and let
pn— land q, — 1 as n — oo. Then, for each f € C,2[0,00) and all « > 0, we have

lim sup np”q”(fx) —f )l =0.

1= x¢[0,00) 1+ x2)1+a

Proof For xy > 0 fixed, we have:

x€[0,00) (1 + x2)1+°‘ x<xQ (1 + x2)1+°‘ x>x0 (1 + x2)1+“2

Stinan 39 @1 _ (1S5, 50 S 1S 59~ @)

S,,pnqn(l +12%5%)]

”SVan an )_fHC[O,a] + Ifll2 j;g (1+22)l+?

+ sup [f ()

X>X0 (1 + x2)1+"‘

The first term of this inequality goes to zero by Theorem 3.2. Also, for any fixed xo > 0, it
is readily seen from Lemma 2.1 that

S22 (L + 1252

xX>x0 (1 + x2)1+"‘2



Mursaleen et al. Journal of Inequalities and Applications (2016) 2016:190 Page 12 of 15

approaches zero as n — o0o. If we choose x¢ > 0 large enough so that the last part of the
last inequality is arbitrarily small, then our theorem is proved. d

5 Voronovskaya-type theorem
This section presents the Voronovskaya-type theorem for the operators Sﬁﬁ 4(f3%). We
need the following lemma.

Lemma 5.1 Suppose that p,,q, € (0,1) are such that p!, — a,q), - b (0 <a,b<1)asn —
00. Then, for every x € [0, 00), simple computations yield

lim (1,4, 37, 4, (¢ = %)ix) = & = B,
n—>oo[ ]pmqn n,pn,qn(( ) ) o 'B

nllngo[n]pn,anZ,fn,qn ((t - x)z;x) =(1-a)1-b)x*+x.

Theorem 5.2 Assume that p,,q, € (0,1) are such that p, — a,q, — b (0 <a,b<1) as
n — o0. Then, for f € C%, [0, 00) such that f,f;*[0, 00), we have

1-a)(1 ; b)x* + xf”(x)

1 [, (528, 59) £ 0) = = ) () +
uniformly on [0, A] for any A > 0.

Proof Letf,f",f" € C},[0,00) and x € [0, 00). By the Taylor formula we can write

f(&) =f(x) + (& —x)f(x) + %(t —x)%f" (x) + r(t;2)(t — x)%, (5.1)

where r(¢;x) is the remainder term, r(-;x) € Ch [0, 00), and lim,_, , 7(¢; x) = 0. Operating by
Se . on both sides of (5.1), we get

()00 (S F32) = f (%)

= [n]pn,qnsz,fmqn ((t - x);x)f’(x) + [n]l’n"lnszfn,qn ((t - x)z;x)f”(x)

N =

~—

+ [Mlpgn St o (r(52)(- = 2)%

It follows from the Cauchy-Schwarz inequality that

Sz,fy,,qn (r(,x)( - x)z;x) = \/Sz:lf’;nﬂn (rz(';x);x\/‘gg:]gmqn (V’(( - x)4;x)~ (52)
Note that r*(x;x) = 0 and r*(;x) € C%, [0, 00). Therefore, it follows that

m S¥P (rz(';x);x) =r?(x%;x) =0 (5.3)

nlioo n.pngn

uniformly over [0, A].
By Lemma 5.1 and equations (5.2) and (5.3), we obtain

n&ngo[n]Pn»q;qSZ,,}fn»‘In (r(.;x)(' - x)z;x) =0.
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Thus, we obtain
Tim [n],,,q, (S5, f3%) —f (%)
= Jim, ([”]Mnszfmqn (= x);2)f"(x) + % [M)pgnSet, o (£ = 2)%52)f (%)
+ ) pgn Sy g (F(52)(: —x)z;x)>
(- ) () + a- a)(12— b)x* +x ) _

6 Pointwise estimates

In this section, we study pointwise estimates of rate of convergence of the operators
Supa(f3).
Let 0 < v < and E C [0, 00). We say that a function f € C[0, c0) belongs to Lip(v) if
() -f@)| < Mylt -2, te[0,00)x€E, (6.1)

where M is a constant depending on « and f only.
We have the following theorem.

Theorem 6.1 Letv € (0,1],f € Lip(v), and E C [0, 00). Then, for x € [0,00),

|22 (%)~ f)]|

[n]m ([n]p,q - ﬁ)) ) 1 Ol2 ) %
M —
= f{ ((pq([n]p,q - 1) ([n]p,q + ,3) rr PQ([”]p,q _ l)x + ([n]p,q n 13)2

- 2(d(x,E))”},

where d(x, E) denotes the distance of the point x from the set E, defined by
d(x,E) = inf{lx —y|:y€e E}.
Proof Taking y € E, we can write

If©) —f@] < |f(O) -fB)] +

x € [0, 00).

By (6.1) we have

| S22 (F30) = f )] =[S, (F30) = S8, ( (x);)|

< Sipq([F(O) —f@)];)

<Suha( )+S‘:,’3q(lf(y> —f()];)
= Sipal )+ [ () -6
<M;Seh (1E=y1"5%) + lx—yI°

<MfSnM(|t—x|" +lx—y%x) + lx - y|"

< MySyh (1t —xl"5x) +2)x - y|".
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Using the Holder inequality with p = 2,4 = 7%, we obtain

|SwB (f5x) — £ ()|
< MA{(S28 (It —ap;2))7 (S8 (15)) 7 + 2(d(x E))"))

mp.q np.q

= My{ (528 (1t~ 2%%)) * +2(d(x, E))"))

_ [n]qu _ ([”]p,q - ﬂ)) 5 1 o? )%
i {<<M(["Lw ) g+ ) T panlpg -0 ([l + B?

+ Z(d(x,E))V },

and the theorem is proved. O

We now present a theorem regarding a local direct estimate for the operators Sgﬁq (f;%)
in terms of the Lipschitz-type maximal function of order v as introduced by Lenze [28].
It is defined by

y(f;2) = sup M

y =l , x€[0,00),ve(0,1]. (6.2)
y#%,y€(0,00) -

Theorem 6.2 Let v € (0,1] and f € C[0,00). Then, for each x € [0, 00), we have

S (%) = f ()]

= (f. [1]p.q _ ([n]pq - ,3)> 5 1 o? } 3
= wv(f’x){ <pq([n]p,q -1 ([nlpg+B) e pq([nlpq - l)x * (g + B2

Proof By (6.2) we can write

[F(t) —f@)] < v ()]t - 21"

and

| S (F32) = f )] < Seeh (| (0) —f (%)

%) < @u(f320850, (1t - x|";).

Using the Lemma 2.2 and applying the Holder inequality with p = %, q= Zf—v, we obtain
|Se8  (F50) = £ ()] < @, (f32)Sim, (18— %1"5),
which proves the theorem. O

Remark The further properties of the operators such as convergence properties via
summability methods (see, e.g., [29—-31]) can be studied.

7 Conclusions

In this paper, we have introduced a two-parametric (p, g)-analogue of the Stancu-Beta op-
erators and studied some approximating properties of these operators. We also obtained
the Voronovskaya-type estimate and the weighted approximation results for these opera-
tors. Furthermore, we obtained a pointwise estimate for these operators.
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