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1 Introduction
Suppose that p > , 

p + 
q = , f (x), g(y) ≥ , f ∈ Lp(R+), g ∈ Lq(R+), ‖f ‖p = (

∫ ∞
 f p(x) dx)


p >

, ‖g‖q > , and we have the following Hardy-Hilbert integral inequality (cf. []):

∫ ∞



∫ ∞



f (x)g(y)
x + y

dx dy <
π

sin(π/p)
‖f ‖p‖g‖q, ()

where the constant factor π
sin(π/p) is the best possible. If am, bn ≥ , a = {am}∞m= ∈ lp, b =

{bn}∞n= ∈ lq, ‖a‖p = (
∑∞

m= ap
m)


p > , ‖b‖q > , then we have the following discrete analogy

of () with the same best possible constant π
sin(π/p) (cf. []):

∞∑

m=

∞∑

n=

ambn

m + n
<

π

sin(π/p)
‖a‖p‖b‖q. ()

Inequalities () and () are important in analysis and its applications (cf. [–]).
If μi,υj >  (i, j ∈ N = {, , . . .}),

Um :=
m∑

i=

μi, Vn :=
n∑

j=

νj(m, n ∈ N), ()
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then we have the following Hardy-Hilbert-type inequality (cf. [], Theorem , replacing
μ

/q
m am and υ

/p
n bn by am and bn):

∞∑

m=

∞∑

n=

ambn

Um + Vn
<

π

sin( π
p )

( ∞∑

m=

ap
m

μ
p–
m

) 
p
( ∞∑

n=

bq
n

ν
q–
n

) 
q

. ()

For μi = υj =  (i, j ∈ N), inequality () reduces to ().

Note The authors of [] did not prove that () is valid with the best possible constant
factor.

In , by introducing an independent parameter λ ∈ (, ], Yang [] gave an extension
of () with the kernel 

(x+y)λ for p = q = . Following [], Yang [] gave some extensions of
() and () as follows:

If λ,λ ∈ R, λ + λ = λ, kλ(x, y) is a non-negative homogeneous function of degree –λ,
with k(λ) =

∫ ∞
 kλ(t, )tλ– dt ∈ R+, φ(x) = xp(–λ)–, ψ(x) = xq(–λ)–, f (x), g(y) ≥ ,

f ∈ Lp,φ(R+) =
{

f ;‖f ‖p,φ :=
(∫ ∞


φ(x)

∣
∣f (x)

∣
∣p dx

) 
p

< ∞
}

,

g ∈ Lq,ψ (R+), ‖f ‖p,φ ,‖g‖q,ψ > , then we have

∫ ∞



∫ ∞


kλ(x, y)f (x)g(y) dx dy < k(λ)‖f ‖p,φ‖g‖q,ψ , ()

where the constant factor k(λ) is the best possible. Moreover, if kλ(x, y) keeps a finite
value and kλ(x, y)xλ– (kλ(x, y)yλ–) is decreasing with respect to x >  (y > ), then, for
am,bn ≥ ,

a ∈ lp,φ =

{

a;‖a‖p,φ :=

( ∞∑

n=

φ(n)|an|p
) 

p

< ∞
}

,

b = {bn}∞n= ∈ lq,ψ , ‖a‖p,φ ,‖b‖q,ψ > , we have

∞∑

m=

∞∑

n=

kλ(m, n)ambn < k(λ)‖a‖p,φ‖b‖q,ψ , ()

where the constant factor k(λ) is still the best possible.
In , by adding some conditions, Yang [] gave an extension of () as follows:

∞∑

m=

∞∑

n=

ambn

(Um + Vn)λ

< B(λ,λ)

( ∞∑

m=

Up(–λ)–
m ap

m

μ
p–
m

) 
p
( ∞∑

n=

V q(–λ)–
n bq

n

ν
q–
n

) 
q

, ()

where the constant B(λ,λ) is still the best possible.
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Some other results including multidimensional Hilbert-type inequalities are provided
by [–].

About the topic of half-discrete Hilbert-type inequalities with the non-homogeneous
kernels, Hardy et al. provided a few results in Theorem  of []. But they did not prove
that the constant factors are the best possible. However, Yang [] gave a result with the
kernel 

(+nx)λ by introducing a variable and proved that the constant factor is the best
possible. In  Yang [] gave the following half-discrete Hardy-Hilbert inequality with
the best possible constant factor B(λ,λ):

∫ ∞


f (x)

[ ∞∑

n=

an

(x + n)λ

]

dx < B(λ,λ)‖f ‖p,φ‖a‖q,ψ , ()

where λ > ,  < λ ≤ , λ + λ = λ. Zhong et al. ([, , ]) investigated several half-
discrete Hilbert-type inequalities with particular kernels. Applying weight functions, a
half-discrete Hilbert-type inequality with a general homogeneous kernel of degree –λ ∈ R
and a best constant factor k(λ) are obtained as follows:

∫ ∞


f (x)

∞∑

n=

kλ(x, n)an dx < k(λ)‖f ‖p,φ‖a‖q,ψ , ()

which is an extension of () (cf. []). At the same time, a half-discrete Hilbert-type in-
equality with a general non-homogeneous kernel and a best constant factor are given by
Yang []. In -, Yang et al. published three books [, ] and [] concerned
with building the theory of half-discrete Hilbert-type inequalities.

In this paper, by applying weight functions, the technique of real analysis, and Hermite-
Hadamard’s inequality, a half-discrete Hardy-Hilbert-type inequality related to the ker-
nel of exponential function with a best possible constant factor expressed by the gamma
function is given, which is similar to () and an extension of () in the following particular
kernel:

k(x, n) =


eα( n
x )γ

(α > ,  < γ ≤ ).

Furthermore, the more accurate equivalent forms, the operator expressions with the
norm, the reverses, and some particular cases are considered.

2 An example and some lemmas
In the following, we agree that νn > ,  ≤ τn ≤ νn

 (n ∈ N), Vn =
∑n

i= νi, μ(t) is a positive
continuous function in R+ = (,∞),

U() := ; U(x) :=
∫ x


μ(t) dt < ∞ (

x ∈ (,∞)
)
,

ν(t) := νn, t ∈ (n – 
 , n + 

 ] (n ∈ N), and

V
(




)

:= ; V (y) :=
∫ y




ν(t) dt
(

y ∈
(




,∞
))

,



Liao and Yang Journal of Inequalities and Applications  (2016) 2016:162 Page 4 of 21

p �= , , 
p + 

q = , δ ∈ {–, }, f (x), an ≥  (x ∈ R+, n ∈ N), ‖f ‖p,�δ
= (

∫ ∞
 �δ(x)f p(x) dx)


p ,

‖a‖q,̂ = (
∑∞

n= ̂(n)bq
n)


q , where

�δ(x) :=
Up(–δσ )–(x)

μp–(x)
(x ∈ R+), ̂(n) :=

(Vn – τn)q(–σ )–

ν
q–
n

(n ∈ N).

Example  For α > ,  < γ , σ ≤ , we set h(t) = 
eαtγ (t ∈ R+).

(i) Setting u = αtγ , we find

k(σ ) :=
∫ ∞



tσ–

eαtγ dt =


γασ /γ

∫ ∞


e–uu

σ
γ – du =

�(σ /γ )
γασ /γ ∈ R+, ()

where

�(y) :=
∫ ∞


e–vvy– dv (y > )

is called the gamma function (cf. []).
(ii) We obtain, for t > , α > ,  < γ ≤ , h(t) = 

eαtγ > , h′(t) = –αγ tγ – 
eαtγ <  and

h′′(t) = –αγ (γ – )tγ – 
eαtγ +

(
αγ tγ –) 

eαtγ > .

(iii) If g(u) > , g ′(u) < , g ′′(u) > , then we find that, for y ∈ (n – 
 , n + 

 ), g(V (y)) > ,
d
dy g(V (y)) = g ′(V (y))νn < , and

d

dy g
(
V (y)

)
= g ′′(V (y)

)
ν

n >  (n ∈ N);

For g(u) > , g ′
(u) < , g ′′

 (u) > , g(u) > , g ′
(u) ≤ , g ′′

 (u) ≥  (u > ), we obtain
g(u)g(u) > , (g(u)g(u))′ = g ′

(u)g(u) + g(u)g ′
(u) < , and

(
g(u)g(u)

)′′ = g ′′
 (u)g(u) + g ′

(u)g ′
(u) + g(u)g ′′

 (u) >  (u > ).

(iv) For α > ,  < γ , σ ≤ , c > , we have h(cV (y))V σ–(y) > , d
dy (h(cV (y))V σ–(y)) < ,

and

d

dy

(
h
(
cV (y)

)
V σ–(y)

)
> 

(

y ∈
(

n –



, n +



)

, n ∈ N
)

.

Then by Hermite-Hadamard’s inequality (cf. []), we have

h
(
cV (n)

)
V σ–(n) <

∫ n+ 


n– 


h
(
cV (y)

)
V σ–(y) dy (n ∈ N). ()

Lemma  If g(t) (> ) is a strictly decreasing continuous function in ( 
 ,∞), which is strictly

convex satisfying
∫ ∞




g(t) dt ∈ R+, then we have

∫ ∞


g(t) dt <

∞∑

n=

g(n) <
∫ ∞




g(t) dt. ()
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Proof By Hermite-Hadamard’s inequality and the decreasing property, we have

∫ n+

n
g(t) dt <

∫ n+

n
g(n) dt = g(n) <

∫ n+ 


n– 


g(t) dt (n ∈ N), ()

and, for n ∈ N, it follows that

∫ n+


g(t) dt <

n∑

n=

g(n) <
n∑

n=

∫ n+ 


n– 


g(t) dt =
∫ n+ 






g(t) dt,

∫ ∞

n+
g(t) dt ≤

∞∑

n=n+

g(n) ≤
∫ ∞

n+ 


g(t) dt < ∞.

Hence, choosing plus for the above two inequalities, we have (). �

Lemma  If α > ,  < γ , σ ≤ , define the following weight coefficients:

ωδ(σ , x) :=
∞∑

n=


eαUδγ (x)(Vn–τn)γ

Uδσ (x)νn

(Vn – τn)–σ
, x ∈ R+, ()

�δ(σ , n) :=
∫ ∞




eαUδγ (x)(Vn–τn)γ

(Vn – τn)σμ(x)
U–δσ (x)

dx, n ∈ N. ()

Then we have the following inequalities:

ωδ(σ , x) < k(σ ) (x ∈ R+), ()

�δ(σ , n) ≤ k(σ ) (n ∈ N), ()

where k(σ ) is indicated by ().

Proof Since Vn – τn ≥ ∫ n+ 





ν(t) dt – νn
 =

∫ n


ν(t) dt = V (n), and, for t ∈ (n – 

 , n + 
 ), νn =

V ′(t), by () (for c = Uδ(x)) and (), we have


eαUδγ (x)(Vn–τn)γ

Uδσ (x)
(Vn – τn)–σ

≤ 
eαUδγ (x)Vγ (n)

Uδσ (x)
V –σ (n)

<
∫ n+ 



n– 



eαUδγ (x)Vγ (t)

Uδσ (x)
V –σ (t)

dt (n ∈ N),

ωδ(σ , x) <
∞∑

n=

νn

∫ n+ 


n– 



eαUδγ (x)Vγ (t)

Uδσ (x)
V –σ (t)

dt

=
∞∑

n=

∫ n+ 


n– 



eαUδγ (x)Vγ (t)

Uδσ (x)V ′(t)
V –σ (t)

dt

=
∫ ∞





eαUδγ (x)Vγ (t)

Uδσ (x)V ′(t)
V –σ (t)

dt.



Liao and Yang Journal of Inequalities and Applications  (2016) 2016:162 Page 6 of 21

Setting u = Uδ(x)V (t), by (), we find

ωδ(σ , x) <
∫ Uδ (x)V (∞)

Uδ (x)V ( 
 )


eαuγ

Uδσ (x)U–δ(x)
(uU–δ(x))–σ

du

≤
∫ ∞




eαuγ uσ– du = k(σ ).

Hence, () follows.
Setting u = (Vn – τn)Uδ(x) in (), we find du = δ(Vn – τn)Uδ–(x)μ(x) dx and

�δ(σ , n) =

δ

∫ (Vn–τn)Uδ (∞)

(Vn–τn)Uδ ()


eαuγ uσ– du.

If δ = , then

�(σ , n) =
∫ (Vn–τn)U(∞)




eαuγ uσ– du ≤

∫ ∞




eαuγ uσ– du;

if δ = –, then

�–(σ , n) = –
∫ (Vn–τn)U–(∞)

∞


eαuγ uσ– du ≤
∫ ∞




eαuγ uσ– du.

Hence, by (), we have (). �

Remark  (i) We do not need the condition of σ ≤  in obtaining (). (ii) If U(∞) = ∞,
then we have

�δ(σ , n) = k(σ ) (n ∈ N). ()

For example, we set μ(t) = 
(+t)a (t > ;  ≤ a ≤ ), then for x ≥ , we find

U(x) =
∫ x



dt
( + t)a =

{
(+x)–a–

–a ,  ≤ a < ,
ln( + x), a = 

< ∞,

U() = , and U(∞) =
∫ ∞


dt

(+t)a = ∞.

Lemma  If α > ,  < γ , σ ≤ , there exists n ∈ N, such that {νn}∞n=n is decreasing and
V (∞) = ∞, then: (i) for x ∈ R+, we have

k(σ )
(
 – θδ(σ , x)

)
< ωδ(σ , x), ()

where

θδ(σ , x) :=


k(σ )

∫ Uδ (x)V (n+)



uσ–

eαuγ du = O
((

U(x)
)δσ ) ∈ (, );
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(ii) for any b > , we have

∞∑

n=

νn

(Vn – τn)+b =

b

(

νb


+ bO()

)

. ()

Proof Since Vn – τn ≤ Vn ≤ Vn+ – νn+
 = V (n + ), and νn ≥ V ′(t) (t ∈ (n, n + ); n ≥ n), by

(), we find

ωδ(σ , x) ≥
∞∑

n=n


eαUδγ (x)Vγ (n+)

Uδσ (x)νn+

V –σ (n + )

=
∞∑

n=n+


eαUδγ (x)Vγ (n)

Uδσ (x)νn

V –σ (n)

>
∞∑

n=n+

∫ n+

n


eαUδγ (x)Vγ (t)

Uδσ (x)V ′(t)
V –σ (t)

dt

=
∫ ∞

n+


eαUδγ (x)Vγ (t)

Uδσ (x)V ′(t)
V –σ (t)

dt.

Setting u = Uδ(x)V (t), in view of V (∞) = ∞, by (), we find

ωδ(σ , x) >
∫ ∞

Uδ (x)V (n+)

uσ–

eαuγ du = k(σ ) –
∫ Uδ (x)V (n+)



uσ–

eαuγ du = k(σ )
(
 – θδ(σ , x)

)
.

We find

 < θδ(σ , x) ≤ 
k(σ )

∫ Uδ (x)V (n+)


uσ– du =

(Uδ(x)V (n + ))σ

σk(σ )
(x ∈ R+),

and then () follows.
For b > , we find

∞∑

n=

νn

(Vn – τn)+b ≤
∞∑

n=

νn

V +b(n)
=

ν

V +b()
+

∞∑

n=

νn

V +b(n)

<
+b

νb


+
∞∑

n=

∫ n+ 


n– 


V ′(x) dx
V +b(x)

=
+b

νb


+
∫ ∞




V ′(x) dx
V +b(x)

=
+b

νb


+
ν–b


b

=

b

(

νb


+ b

+b

νb


)

,

∞∑

n=

νn

(Vn – τn)+b ≥
∞∑

n=n

νn

(Vn – τn)+b ≥
∞∑

n=n

νn+

V +b(n + )

=
∞∑

n=n+

νn

V +b(n)
>

∞∑

n=n+

∫ n+

n

V ′(x) dx
V +b(x)

=
∫ ∞

n+

V ′(x) dx
V +b(x)

=


bV b(n + )
=


b

(

νb


+ b

V –b(n + ) – ν–b


b

)

.

Since V –b(n+)–ν–b


b → Constant (b → +), we have (). �



Liao and Yang Journal of Inequalities and Applications  (2016) 2016:162 Page 8 of 21

Note For example, νn = 
na (n ∈ N;  ≤ a ≤ ) satisfies the conditions of {νn}∞n= in Lemma 

(for n = ).

3 Main results and operator expressions
Theorem  If α > ,  < γ , σ ≤ , then for p > ,  < ‖f ‖p,�δ

, ‖a‖q,̂ < ∞, we have the
following equivalent inequalities:

I :=
∞∑

n=

∫ ∞



anf (x)
eαUδγ (x)(Vn–τn)γ

dx <
�(σ /γ )
γασ /γ ‖f ‖p,�δ

‖a‖q,̂ , ()

J :=
∞∑

n=

νn

(Vn – τn)–pσ

[∫ ∞



f (x) dx
eαUδγ (x)(Vn–τn)γ

]p

<
�(σ /γ )
γασ /γ ‖f ‖p,�δ

, ()

J :=

{∫ ∞



μ(x)
U–qδσ (x)

[ ∞∑

n=

an

eαUδγ (x)(Vn–τn)γ

]q

dx

} 
q

<
�(σ /γ )
γασ /γ ‖a‖q,̂ . ()

Proof By Hölder’s inequality with weight (cf. []), we have

[∫ ∞



f (x)
eαUδγ (x)(Vn–τn)γ

dx
]p

=
[∫ ∞




eαUδγ (x)(Vn–τn)γ

U
–δσ

q (x)f (x)

(Vn – τn)
–σ

p μ

q (x)

(Vn – τn)
–σ

p μ

q (x)

U
–δσ

q (x)
dx

]p

≤
∫ ∞



(Vn – τn)γ

eαUδγ (x)(Vn–τn)γ

[
U

p(–δσ )
q (x)f p(x)

(Vn – τn)–σ μ
p
q (x)

]

dx

×
[∫ ∞



(Vn – τn)γ

eαUδγ (x)(Vn–τn)γ
(Vn – τn)(–σ )(p–)μ(x)

U–δσ (x)
dx

]p–

=
(�δ(σ , n))p–

(Vn – τn)pσ–νn

∫ ∞




eαUδγ (x)(Vn–τn)γ

U (–δσ )(p–)(x)νnf p(x)
(Vn – τn)–σμp–(x)

dx. ()

In view of () and the Lebesgue term by term integration theorem (cf. []), we find

J ≤ (
k(σ )

) 
q

[ ∞∑

n=

∫ ∞




eαUδγ (x)(Vn–τn)γ

U (–δσ )(p–)(x)νn

(Vn – τn)–σμp–(x)
f p(x) dx

] 
p

=
(
k(σ )

) 
q

[∫ ∞



∞∑

n=


eαUδγ (x)(Vn–τn)γ

U (–δσ )(p–)(x)νn

(Vn – τn)–σμp–(x)
f p(x) dx

] 
p

=
(
k(σ )

) 
q

[∫ ∞


ωδ(σ , x)

Up(–δσ )–(x)
μp–(x)

f p(x) dx
] 

p
. ()

Then by (), we have ().
By Hölder’s inequality (cf. []), we have

I =
∞∑

n=

[
ν


p

n

(Vn – τn)

p –σ

∫ ∞



f (x)
eαUδγ (x)(Vn–τn)γ

dx
][

(Vn – τn)

p –σ an

ν
/p
n

]

≤ J‖a‖q,̂ . ()
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Then by (), we have (). On the other hand, assuming that () is valid, we set

an :=
νn

(Vn – τn)–pσ

[∫ ∞




eαUδγ (x)(Vn–τn)γ

f (x) dx
]p–

, n ∈ N.

Then we find Jp
 = ‖a‖q

q,̂ . If J = , then () is trivially valid; if J = ∞, then () remains
impossible. Suppose that  < J < ∞. By (), we have

‖a‖q
q,̂ = Jp

 = I < k(σ )‖f ‖p,�δ
‖a‖q,̂ ,

‖a‖q–
q,̂ = J < k(σ )‖f ‖p,�δ

,

and then () follows, which is equivalent to ().
Still by Hölder’s inequality with weight (cf. []), we have

[ ∞∑

n=

an

eαUδγ (x)(Vn–τn)γ

]q

=

[ ∞∑

n=


eαUδγ (x)(Vn–τn)γ

· U
–δσ

q (x)ν

p

n

(Vn – τn)
–σ

p
· (Vn – τn)

–σ
p an

U
–δσ

q (x)ν/p
n

]q

≤
[ ∞∑

n=


eαUδγ (x)(Vn–τn)γ

U (–δσ )(p–)(x)νn

(Vn – τn)–σ

]q–

×
∞∑

n=


eαUδγ (x)(Vn–τn)γ

(Vn – τn)
q(–σ )

p

U–δσ (x)νq–
n

aq
n

=
(ωδ(σ , x))q–

Uqδσ–(x)μ(x)

∞∑

n=


eαUδγ (x)(Vn–τn)γ

(Vn – τn)(–σ )(q–)μ(x)
U–δσ (x)νq–

n
aq

n. ()

Then by () and the Lebesgue term by term integration theorem (cf. []), it follows that

J <
(
k(σ )

) 
p

[∫ ∞



∞∑

n=


eαUδγ (x)(Vn–τn)γ

(Vn – τn)(–σ )(q–)μ(x)
U–δσ (x)νq–

n
aq

n dx

] 
q

=
(
k(σ )

) 
p

[ ∞∑

n=

∫ ∞




eαUδγ (x)(Vn–τn)γ

(Vn – τn)(–σ )(q–)μ(x)
U–δσ (x)νq–

n
aq

n dx

] 
q

=
(
k(σ )

) 
p

[ ∞∑

n=

�δ(σ , n)
(Vn – τn)q(–σ )–

ν
q–
n

aq
n

] 
q

. ()

Then by (), we have ().
By Hölder’s inequality (cf. []), we have

I =
∫ ∞



(
U


q –δσ (x)

μ

q (x)

f (x)
)[

μ

q (x)

U

q –δσ (x)

∞∑

n=


eαUδγ (x)(Vn–τn)γ

an

]

dx

≤ ‖f ‖p,�δ
J. ()
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Then by (), we have (). On the other hand, assuming that () is valid, we set

f (x) :=
μ(x)

U–qδσ (x)

[ ∞∑

n=


eαUδγ (x)(Vn–τn)γ

an

]q–

, x ∈ R+.

Then we find Jq
 = ‖f ‖p

p,�δ
. If J = , then () is trivially valid; if J = ∞, then () keeps

impossible. Suppose that  < J < ∞. By (), we have

‖f ‖p
p,�δ

= Jq
 = I < k(σ )‖f ‖p,�δ

‖a‖q,̂ , ‖f ‖p–
p,�δ

= J < k(σ )‖a‖q,̂ ,

and then () follows, which is equivalent to ().
Therefore, (), (), and () are equivalent. �

Theorem  As regards the assumptions of Theorem , if there exists n ∈ N, such that
{νn}∞n=n is decreasing and U(∞) = V (∞) = ∞, then the constant factor k(σ ) = �(σ /γ )

γ ασ /γ in
(), (), and () is the best possible.

Proof For ε ∈ (, qσ ), we set σ̃ = σ – ε
q (∈ (, )), and f̃ = f̃ (x), x ∈ R+, ã = {̃an}∞n=,

f̃ (x) =

{
Uδ(̃σ+ε)–(x)μ(x),  < xδ ≤ ,
, xδ > ,

()

ãn = (Vn – τn)σ̃–νn = (Vn – τn)σ– ε
q –

νn, n ∈ N. ()

Then for δ = ±, since U(∞) = ∞, we find

∫

{x>;<xδ≤}
μ(x)

U–δε(x)
dx =


ε

Uδε(). ()

By (), (), and (), we obtain

‖̃f ‖p,�δ
‖̃a‖q, =

(∫

{x>;<xδ≤}
μ(x) dx
U–δε(x)

) 
p
[ ∞∑

n=

νn

(Vn – τn)+ε

] 
q

=

ε

U
δε
p ()

(

νε


+ εO()

) 
q

, ()

Ĩ :=
∫ ∞



∞∑

n=


eαUδγ (x)(Vn–τn)γ

ãñf (x) dx

=
∫

{x>;<xδ≤}

∞∑

n=


eαUδγ (x)(Vn–τn)γ

(Vn – τn)σ̃–νnμ(x)
U–δ(̃σ+ε)(x)

dx

=
∫

{x>;<xδ≤}
ωδ (̃σ , x)

μ(x)
U–δε(x)

dx

≥ k(̃σ )
∫

{x>;<xδ≤}

(
 – θδ (̃σ , x)

) μ(x)
U–δε(x)

dx

= k(̃σ )
∫

{x>;<xδ≤}

(
 – O

((
U(x)

)δσ̃ )) μ(x)
U–δε(x)

dx
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= k(̃σ )
[∫

{x>;<xδ≤}
μ(x) dx
U–δε(x)

–
∫

{x>;<xδ≤}
O

(
μ(x)

U–δ(σ+ ε
p )(x)

)

dx
]

=

ε

k
(

σ –
ε

q

)
(
Uδε() – εO()

)
.

If there exists a positive constant K ≤ k(σ ), such that () is valid when replacing
k(σ ) to K , then in particular, by Lebesgue term by term integration theorem, we have
ε̃I < εK ‖̃f ‖p,�δ

‖̃a‖q, , namely,

k
(

σ –
ε

q

)
(
Uδε() – εO()

)
< K · U

δε
p ()

(

νε


+ εO()

) 
q

.

It follows that k(σ ) ≤ K (ε → +). Hence, K = k(σ ) is the best possible constant factor of
().

The constant factor k(σ ) in () (()) is still the best possible. Otherwise, we would
reach a contradiction by () (()) that the constant factor in () is not the best possi-
ble. �

For p > , we find ̂–p(n) = νn
(Vn–τn)–pσ (n ∈ N), �–q

δ (x) = μ(x)
U–qδσ (x) (x ∈ R+), and we define

the following real normed spaces:

Lp,�δ
(R+) =

{
f ; f = f (x), x ∈ R+,‖f ‖p,�δ

< ∞}
,

lq,̂ =
{

a; a = {an}∞n=,‖a‖q,̂ < ∞}
,

Lq,�–q
δ

(R+) =
{

h; h = h(x), x ∈ R+,‖h‖q,�–q
δ

< ∞}
,

lp,̂–p =
{

c; c = {cn}∞n=,‖c‖p,̂–p < ∞}
.

Assuming that f ∈ Lp,�δ
(R+), setting

c = {cn}∞n=, cn :=
∫ ∞




eαUδγ (x)(Vn–τn)γ

f (x) dx, n ∈ N,

we can rewrite () as ‖c‖p,̂–p < k(σ )‖f ‖p,�δ
< ∞, namely, c ∈ lp,̂–p .

Definition  Define a half-discrete Hardy-Hilbert-type operator T : Lp,�δ
(R+) → lp,̂–p

as follows: For any f ∈ Lp,�δ
(R+), there exists a unique representation Tf = c ∈ lp,̂–p .

Define the formal inner product of Tf and a = {an}∞n= ∈ lq,̂ as follows:

(Tf , a) :=
∞∑

n=

[∫ ∞




eαUδγ (x)(Vn–τn)γ

f (x) dx
]

an. ()

Then we can rewrite () and () as follows:

(Tf , a) < k(σ )‖f ‖p,�δ
‖a‖q,̂ , ()

‖Tf ‖p,̂–p < k(σ )‖f ‖p,�δ
. ()



Liao and Yang Journal of Inequalities and Applications  (2016) 2016:162 Page 12 of 21

Define the norm of operator T as follows:

‖T‖ := sup
f ( �=θ )∈Lp,�δ

(R+)

‖Tf ‖p,̂–p

‖f ‖p,�δ

.

Then by (), it follows that ‖T‖ ≤ k(σ ). Since, by Theorem , the constant factor in ()
is the best possible, we have

‖T‖ = k(σ ) =
�(σ /γ )
γασ /γ . ()

Assuming that a = {an}∞n= ∈ lq,̂ , setting

h(x) :=
∞∑

n=


eαUδγ (x)(Vn–τn)γ

an, x ∈ R+,

we can rewrite () as ‖h‖q,�–q
δ

< k(σ )‖a‖q,̂ < ∞, namely, h ∈ Lq,�–q
δ

(R+).

Definition  Define a half-discrete Hardy-Hilbert-type operator T : lq,̂ → Lq,�–q
δ

(R+)
as follows: For any a = {an}∞n= ∈ lq,̂ , there exists a unique representation Ta = h ∈
Lq,�–q

δ

(R+). Define the formal inner product of Ta and f ∈ Lp,�δ
(R+) as follows:

(Ta, f ) :=
∫ ∞



[ ∞∑

n=


eαUδγ (x)(Vn–τn)γ

an

]

f (x) dx. ()

Then we can rewrite () and () as follows:

(Ta, f ) < k(σ )‖f ‖p,�δ
‖a‖q,̂ , ()

‖Ta‖q,�–q
δ

< k(σ )‖a‖q,̂ . ()

Define the norm of operator T as follows:

‖T‖ := sup
a( �=θ )∈lq,̂

‖Ta‖q,�–q
δ

‖a‖q,̂
.

Then by (), we find ‖T‖ ≤ k(σ ). Since, by Theorem , the constant factor in () is the
best possible, we have

‖T‖ = k(σ ) =
�(σ /γ )
γασ /γ = ‖T‖. ()

4 Some equivalent reverses
In the following, we also set

�̃δ(x) :=
(
 – θδ(σ , x)

)Up(–δσ )–(x)
μp–(x)

(x ∈ R+).

For  < p <  or p < , we still use the formal symbols ‖f ‖p,�δ
, ‖f ‖p,�̃δ

, and ‖a‖q,̂ .
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Theorem  As regards the assumptions of Theorem , for p < ,  < ‖f ‖p,�δ
, ‖a‖q,̂ < ∞,

we have the following equivalent inequalities with the best possible constant factor k(σ ) =
�(σ /γ )
γ ασ /γ :

I =
∞∑

n=

∫ ∞



anf (x)
eαUδγ (x)(Vn–τn)γ

dx >
�(σ /γ )
γασ /γ ‖f ‖p,�δ

‖a‖q,̂ , ()

J =
∞∑

n=

νn

(Vn – τn)–pσ

[∫ ∞



f (x)
eαUδγ (x)(Vn–τn)γ

dx
]p

>
�(σ /γ )
γασ /γ ‖f ‖p,�δ

, ()

J =

{∫ ∞



μ(x)
U–qδσ (x)

[ ∞∑

n=

an

eαUδγ (x)(Vn–τn)γ

]q

dx

} 
q

>
�(σ /γ )
γασ /γ ‖a‖q,̂ . ()

Proof By the reverse Hölder inequality with weight (cf. []), since p < , in the similar way
to obtaining () and (), we have

[∫ ∞




eαUδγ (x)(Vn–τn)γ

f (x) dx
]p

≤ (�δ(σ , n))p–

(Vn – τn)pσ–νn

∫ ∞




eαUδγ (x)(Vn–τn)γ

U (–δσ )(p–)(x)νn

(Vn – τn)–σμp–(x)
f p(x) dx.

Then by () and the Lebesgue term by term integration theorem, it follows that

J ≥ (
k(σ )

) 
q

[ ∞∑

n=

∫ ∞




eαUδγ (x)(Vn–τn)γ

U (–δσ )(p–)(x)νn

(Vn – τn)–σμp–(x)
f p(x) dx

] 
p

=
(
k(σ )

) 
q

[∫ ∞


ωδ(σ , x)

Up(–δσ )–(x)
μp–(x)

f p(x) dx
] 

p
.

Then by (), we have ().
By the reverse Hölder inequality (cf. []), we have

I =
∞∑

n=

[
ν


p

n

(Vn – τn)

p –σ

∫ ∞



f (x)
eαUδγ (x)(Vn–τn)γ

dx
][

(Vn – τn)

p –σ an

ν
/p
n

]

≥ J‖a‖q,̂ . ()

Then by (), we have (). On the other hand, assuming that () is valid, we set an as in
Theorem . Then we find Jp

 = ‖a‖q
q,̂ . If J = ∞, then () is trivially valid; if J = , then

() keeps impossible. Suppose that  < J < ∞. By (), it follows that

‖a‖q
q,̂ = Jp

 = I > k(σ )‖f ‖p,�δ
‖a‖q,̂ , ‖a‖q–

q,̂ = J > k(σ )‖f ‖p,�δ
,

and then () follows, which is equivalent to ().
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Still by the reverse Hölder’s inequality with weight (cf. []), since  < q < , in the similar
way to obtaining () and (), we have

[ ∞∑

n=


eαUδγ (x)(Vn–τn)γ

an

]q

≥ (ωδ(σ , x))q–

Uqδσ–(x)μ(x)

∞∑

n=


eαUδγ (x)(Vn–τn)γ

(Vn – τn)(–σ )(q–)μ(x)
U–δσ (x)νq–

n
aq

n.

Then by () and the Lebesgue term by term integration theorem, it follows that

J >
(
k(σ )

) 
p

[∫ ∞



∞∑

n=


eαUδγ (x)(Vn–τn)γ

(Vn – τn)(–σ )(q–)μ(x)
U–δσ (x)νq–

n
aq

n dx

] 
q

=
(
k(σ )

) 
p

[ ∞∑

n=

�δ(σ , n)
(Vn – τn)q(–σ )–

ν
q–
n

aq
n

] 
q

.

Then by (), we have ().
By the reverse Hölder inequality (cf. []), we have

I =
∫ ∞



(
U


q –δσ (x)

μ

q (x)

f (x)
)[

μ

q (x)

U

q –δσ (x)

∞∑

n=

an

eαUδγ (x)(Vn–τn)γ

]

dx

≥ ‖f ‖p,�δ
J. ()

Then by (), we have (). On the other hand, assuming that () is valid, we set f (x) as
in Theorem . Then we find Jq

 = ‖f ‖p
p,�δ

. If J = ∞, then () is trivially valid; if J = , then
() remains impossible. Suppose that  < J < ∞. By (), it follows that

‖f ‖p
p,�δ

= Jq
 = I > k(σ )‖f ‖p,�δ

‖a‖q,̂ , ‖f ‖p–
p,�δ

= J > k(σ )‖a‖q,̂ ,

and then () follows, which is equivalent to ().
Therefore, inequalities (), (), and () are equivalent.
For ε ∈ (, qσ ), we set σ̃ = σ – ε

q (∈ (, )) and f̃ = f̃ (x), x ∈ R+, ã = {̃an}∞n=,

f̃ (x) =

{
Uδ(̃σ+ε)–(x)μ(x),  < xδ ≤ ,
, xδ > ,

ãn = (Vn – τn)σ̃–νn = (Vn – τn)σ– ε
q –

νn, n ∈ N.

By (), (), and (), we obtain

‖̃f ‖p,�δ
‖̃a‖q,̂ =


ε

U
δε
p ()

(

νε


+ εO()

) 
q

,

Ĩ =
∞∑

n=

∫ ∞



ãñf (x)
eαUδγ (x)(Vn–τn)γ

dx =
∫

{x>;<xδ≤}
ωδ (̃σ , x)

μ(x)
U–δε(x)

dx

≤ k(̃σ )
∫

{x>;<xδ≤}
μ(x)

U–δε(x)
dx =


ε

k
(

σ –
ε

q

)

Uδε().



Liao and Yang Journal of Inequalities and Applications  (2016) 2016:162 Page 15 of 21

If there exists a positive constant K ≥ k(σ ), such that () is valid when replacing k(σ )
to K , then in particular, we have ε̃I > εK ‖̃f ‖p,�δ

‖̃a‖q,̂ , namely,

k
(

σ –
ε

q

)

Uδε() > K · U
δε
p ()

(

νε


+ εO()

) 
q

.

It follows that k(σ ) ≥ K (ε → +). Hence, K = k(σ ) is the best possible constant factor of
().

The constant factor k(σ ) in () (()) is still the best possible. Otherwise, we would
reach a contradiction by () (()) that the constant factor in () is not the best possi-
ble. �

Theorem  As regards the assumptions of Theorem , if  < p < ,  < ‖f ‖p,�δ
, ‖a‖q,̂ < ∞,

then we have the following equivalent inequalities with the best possible constant factor
k(σ ) = �(σ /γ )

γ ασ /γ :

I =
∞∑

n=

∫ ∞



anf (x)
eαUδγ (x)(Vn–τn)γ

dx >
�(σ /γ )
γασ /γ ‖f ‖p,�̃δ

‖a‖q,̂ , ()

J =
∞∑

n=

νn

(Vn – τn)–pσ

[∫ ∞



f (x) dx
eαUδγ (x)(Vn–τn)γ

]p

>
�(σ /γ )
γασ /γ ‖f ‖p,�̃δ

, ()

J :=

{∫ ∞



( – θδ(σ , x))–qμ(x)
U–qδσ (x)

[ ∞∑

n=

an

eαUδγ (x)(Vn–τn)γ

]q

dx

} 
q

>
�(σ /γ )
γασ /γ ‖a‖q,̂ . ()

Proof By the reverse Hölder inequality with weight (cf. []), since  < p < , in a similar
way to obtaining () and (), we have

[∫ ∞



f (x)
eαUδγ (x)(Vn–τn)γ

dx
]p

≥ (�δ(σ , n))p–

(Vn – τn)pσ–νn

∫ ∞




eαUδγ (x)(Vn–τn)γ

U (–δσ )(p–)(x)νn

(Vn – τn)–σμp–(x)
f p(x) dx.

In view of () and the Lebesgue term by term integration theorem, we find

J ≥ (
k(σ )

) 
q

[ ∞∑

n=

∫ ∞




eαUδγ (x)(Vn–τn)γ

U (–δσ )(p–)(x)νn

(Vn – τn)–σμp–(x)
f p(x) dx

] 
p

=
(
k(σ )

) 
q

[∫ ∞


ωδ(σ , x)

Up(–δσ )–(x)
μp–(x)

f p(x) dx
] 

p
.

Then by (), we have ().
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By the reverse Hölder inequality (cf. []), we have

I =
∞∑

n=

[
ν

/p
n

(Vn – τn)

p –σ

∫ ∞



f (x)
eαUδγ (x)(Vn–τn)γ

dx
][

(Vn – τn)

p –σ an

ν
/p
n

]

≥ J‖a‖q,̂ . ()

Then by (), we have (). On the other hand, assuming that () is valid, we set an as in
Theorem . Then we find Jp

 = ‖a‖q
q,̂ . If J = ∞, then () is trivially valid; if J = , then

() remains impossible. Suppose that  < J < ∞. By (), it follows that

‖a‖q
q,̂ = Jp

 = I > k(σ )‖f ‖p,�̃δ
‖a‖q,̂ , ‖a‖q–

q,̂ = J > k(σ )‖f ‖p,�̃δ
,

and then () follows, which is equivalent to ().
Still by the reverse Hölder inequality with weight (cf. []), since q < , we have

[ ∞∑

n=

an

eαUδγ (x)(Vn–τn)γ

]q

≤ (ωδ(σ , x))q–

Uqδσ–(x)μ(x)

∞∑

n=


eαUδγ (x)(Vn–τn)γ

(Vn – τn)(–σ )(q–)μ(x)
U–δσ (x)νq–

n
aq

n.

Then by () and the Lebesgue term by term integration theorem, it follows that

J >
(
k(σ )

) 
p

[∫ ∞



∞∑

n=


eαUδγ (x)(Vn–τn)γ

(Vn – τn)(–σ )(q–)μ(x)
U–δσ (x)νq–

n
aq

n dx

] 
q

=
(
k(σ )

) 
p

[ ∞∑

n=

�δ(σ , n)
(Vn – τn)q(–σ )–

ν
q–
n

aq
n

] 
q

.

Then by (), we have ().
By the reverse Hölder inequality (cf. []), we have

I =
∫ ∞



[
(
 – θδ(σ , x)

) 
p U


q –δσ (x)

μ

q (x)

f (x)
]

×
[

( – θδ(σ , x))
–
p μ


q (x)

U

q –δσ (x)

∞∑

n=

an

eαUδγ (x)(Vn–τn)γ

]

dx

≥ ‖f ‖p,�̃δ
J . ()

Then by (), we have (). On the other hand, assuming that () is valid, we set f (x) as
in Theorem . Then we find Jq = ‖f ‖p

p,�̃δ
. If J = ∞, then () is trivially valid; if J = , then

() keeps impossible. Suppose that  < J < ∞. By (), it follows that

‖f ‖p
p,�̃δ

= Jq = I > k(σ )‖f ‖p,�̃δ
‖a‖q,̂ , ‖f ‖p–

p,�̃δ
= J > k(σ )‖a‖q,̂ ,

and then () follows, which is equivalent to ().
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Therefore, inequalities (), (), and () are equivalent.
For ε ∈ (, pσ ), we set σ̃ = σ + ε

p and f̃ = f̃ (x), x ∈ R+, ã = {̃an}∞n=,

f̃ (x) =

{
Uδσ̃–(x)μ(x),  < xδ ≤ ,
, xδ > ,

ãn = (Vn – τn)σ̃–ε–νn = (Vn – τn)σ– ε
q –

νn, n ∈ N.

By (), (), and (), we obtain

‖̃f ‖p,�̃δ
‖̃a‖q,̂

=
[∫

{x>;<xδ≤}

(
 – O

((
U(x)

)δσ )) μ(x) dx
U–δε(x)

] 
p
[ ∞∑

n=

νn

(Vn – τn)+ε

] 
q

=

ε

(
Uδε() – εO()

) 
p

(

νε


+ εO()

) 
q

,

Ĩ =
∞∑

n=

∫ ∞




eαUδγ (x)(Vn–τn)γ

ãñf (x) dx

=
∞∑

n=

[∫

{x>;<xδ≤}


eαUδγ (x)(Vn–τn)γ
(Vn – τn)σ̃ μ(x)

U–δσ̃ (x)
dx

]
νn

(Vn – τn)+ε

≤
∞∑

n=

[∫ ∞




eαUδγ (x)(Vn–τn)γ

(Vn – τn)σ̃ μ(x)
U–δσ̃ (x)

dx
]

νn

(Vn – β)+ε

=
∞∑

n=

�δ (̃σ , n)
νn

(Vn – τn)+ε
= k(̃σ )

∞∑

n=

νn

(Vn – τn)+ε

=

ε

k
(

σ +
ε

p

)(

νε


+ εO()

)

.

If there exists a positive constant K ≥ k(σ ), such that () is valid when replacing k(σ )
to K , then, in particular, we have ε̃I > εK ‖̃f ‖p,�̃δ

‖̃a‖q,̂ , namely,

k
(

σ +
ε

p

)(

νε


+ εO()

)

> K
(
Uδε() – εO()

) 
p

(

νε


+ εO()

) 
q

.

It follows that k(σ ) ≥ K (ε → +). Hence, K = k(σ ) is the best possible constant factor of
().

The constant factor k(σ ) in () (()) is still the best possible. Otherwise, we would
reach the contradiction by () (()) that the constant factor in () is not the best possi-
ble. �

5 Some corollaries and a remark
For δ =  in Theorems -, we have the following inequalities with the non-homogeneous
kernel.
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Corollary  As regards the assumptions of Theorem , (i) for p > ,  < ‖f ‖p,� , ‖a‖q,̂ < ∞,
we have the following equivalent inequalities:

∞∑

n=

∫ ∞



anf (x)
eαUδγ (x)(Vn–τn)γ

dx <
�(σ /γ )
γασ /γ ‖f ‖p,�‖a‖q,̂ , ()

∞∑

n=

νn

(Vn – τn)–pσ

[∫ ∞



f (x)
eαUγ (x)(Vn–τn)γ dx

]p

<
�(σ /γ )
γασ /γ ‖f ‖p,� , ()

{∫ ∞



μ(x)
U–qσ (x)

[ ∞∑

n=

an

eαUγ (x)(Vn–τn)γ

]q

dx

} 
q

<
�(σ /γ )
γασ /γ ‖a‖q,̂ ; ()

(ii) for p < ,  < ‖f ‖p,� , ‖a‖q,̂ < ∞, we have the following equivalent inequalities:

∞∑

n=

∫ ∞



anf (x)
eαUγ (x)(Vn–τn)γ dx >

�(σ /γ )
γασ /γ ‖f ‖p,�‖a‖q,̂ , ()

∞∑

n=

νn

(Vn – τn)–pσ

[∫ ∞



f (x)
eαUγ (x)(Vn–τn)γ dx

]p

>
�(σ /γ )
γασ /γ ‖f ‖p,� , ()

{∫ ∞



μ(x)
U–qσ (x)

[ ∞∑

n=

an

eαUγ (x)(Vn–τn)γ

]q

dx

} 
q

>
�(σ /γ )
γασ /γ ‖a‖q,̂ ; ()

(iii) for  < p < ,  < ‖f ‖p,� , ‖a‖q,̂ < ∞, we have the following equivalent inequalities:

∞∑

n=

∫ ∞



anf (x)
eαUγ (x)(Vn–τn)γ dx >

�(σ /γ )
γασ /γ ‖f ‖p,�̃‖a‖q,̂ , ()

∞∑

n=

νn

(Vn – τn)–pσ

[∫ ∞



f (x)
eαUγ (x)(Vn–τn)γ dx

]p

>
�(σ /γ )
γασ /γ ‖f ‖p,�̃ , ()

{∫ ∞



( – θ(σ , x))–qμ(x)
U–qσ (x)

[ ∞∑

n=

an

eαUγ (x)(Vn–τn)γ

]q

dx

} 
q

>
�(σ /γ )
γασ /γ ‖a‖q,̂ . ()

The above inequalities are with the best possible constant factor �(σ /γ )
γ ασ /γ .

For δ = – in Theorems -, we have the following inequalities with the homogeneous
kernel of degree :

Corollary  As regards the assumptions of Theorem , (i) for p > ,  < ‖f ‖p,�– , ‖a‖q,̂ <
∞, we have the following equivalent inequalities:

∞∑

n=

∫ ∞



anf (x)

eα( Vn–τn
U(x) )γ

dx <
�(σ /γ )
γασ /γ ‖f ‖p,�–‖a‖q,̂ , ()

∞∑

n=

νn

(Vn – τn)–pσ

[∫ ∞



f (x)

eα( Vn–τn
U(x) )γ

dx
]p

<
�(σ /γ )
γασ /γ ‖f ‖p,�– , ()
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{∫ ∞



μ(x)
U+qσ (x)

[ ∞∑

n=

an

eα( Vn–τn
U(x) )γ

]q

dx

} 
q

<
�(σ /γ )
γασ /γ ‖a‖q,̂ ; ()

(ii) for p < ,  < ‖f ‖p,�– , ‖a‖q,̂ < ∞, we have the following equivalent inequalities:

∞∑

n=

∫ ∞



anf (x)

eα( Vn–τn
U(x) )γ

dx >
�(σ /γ )
γασ /γ ‖f ‖p,�–‖a‖q,̂ , ()

∞∑

n=

νn

(Vn – τn)–pσ

[∫ ∞



f (x)

eα( Vn–τn
U(x) )γ

dx
]p

>
�(σ /γ )
γασ /γ ‖f ‖p,�– , ()

{∫ ∞



μ(x)
U+qσ (x)

[ ∞∑

n=

an

eα( Vn–τn
U(x) )γ

]q

dx

} 
q

>
�(σ /γ )
γασ /γ ‖a‖q,̂ ; ()

(iii) for  < p < ,  < ‖f ‖p,�– , ‖a‖q,̂ < ∞, we have the following equivalent inequalities:

∞∑

n=

∫ ∞



anf (x)

eα( Vn–τn
U(x) )γ

dx >
�(σ /γ )
γασ /γ ‖f ‖p,�̃–‖a‖q,̂ , ()

∞∑

n=

νn

(Vn – τn)–pσ

[∫ ∞



f (x)

eα( Vn–τn
U(x) )γ

dx
]p

>
�(σ /γ )
γασ /γ ‖f ‖p,�̃– , ()

{∫ ∞



( – θ–(σ , x))–qμ(x)
U+qσ (x)

[ ∞∑

n=

an

eα( Vn–τn
U(x) )γ

]q

dx

} 
q

>
�(σ /γ )
γασ /γ ‖a‖q,̂ . ()

The above inequalities are with the best possible constant factor �(σ /γ )
γ ασ /γ .

Remark  (i) For τn =  (n ∈ N) in (), setting (n) := Vnq(–σ )–

ν
q–
n

(n ∈ N), we have the
following inequality:

∞∑

n=

∫ ∞



anf (x)
eα(Uδ (x)Vn)γ

dx <
�(σ /γ )
γασ /γ ‖f ‖p,�δ

‖a‖q, . ()

Hence, () is a more accurate inequality of () for  < τn ≤ νn
 .

(ii) For μ(x) = νn =  in (), setting  ≤ τ ≤ 
 , we have the following inequality with the

best possible constant factor �(σ /γ )
γ ασ /γ :

∞∑

n=

∫ ∞



anf (x)
eα[xδ (n–τ )]γ

dx

<
�(σ /γ )
γασ /γ

[∫ ∞


xp(–δσ )–f p(x) dx

] 
p
[ ∞∑

n=

(n – τ )q(–σ )–aq
n

] 
q

. ()
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In particular, for δ = , we have the following inequality with the non-homogeneous
kernel:

∞∑

n=

∫ ∞



anf (x)
eα[x(n–τ )]γ dx

<
�(σ /γ )
γασ /γ

[∫ ∞


xp(–σ )–f p(x) dx

] 
p
[ ∞∑

n=

(n – τ )q(–σ )–aq
n

] 
q

; ()

for δ = –, we have the following inequality with the homogeneous kernel of degree :

∞∑

n=

∫ ∞



anf (x)
eα( n–τ

x )γ
dx

<
�(σ /γ )
γασ /γ

[∫ ∞


xp(+σ )–f p(x) dx

] 
p
[ ∞∑

n=

(n – τ )q(–σ )–aq
n

] 
q

. ()
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