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Abstract

In this paper, we establish a bi-level optimization model for the equilibrium
transportation problem concerning both capacity expansion and road toll pricing
under the user equilibrium conditions. The bi-level optimization problem is
reformulated as a mathematical programming problem with complementarity
constraints (MPCC), which fails to satisfy the Mangasarian-Fromovitz constraint
qualification (MFCQ). We adopt a smoothing approach to overcome the lack of
constraint qualifications in the MPCC problem. Under mild conditions, it has been
proven that the sequence of the global optimal solutions generated by solving
corresponding smoothing subproblems converges to one optimal solution of the
original MPCC problem. Numerical experiments show that the proposed method is
practical in solving user equilibrium transportation problems with capacity expansion
combining road toll pricing.

Keywords: bi-level programming; perturbation approach; Fischer-Burmeister
function; road toll pricing; capacity expansion

1 Introduction

During the past decade, bi-level programming problems have received remarkable con-
siderations in the decentralized planning problems concerning the decision progress with
a hierarchical structure, which differ from the classical optimization problems as required
to solve two levels of optimization tasks, e.g. the upper level (the leader problem) and
the lower level (the follower problem). Two roots have dominated the study of bi-level
programming. The first root dates back to the Stackelberg game [1], which is a famous
problem in game theory. The second one stems from mathematical programming prob-
lems, in which the optimization problem becomes a constraint in another optimization
problem [2]. Besides the paper above, a variety of literature has contributed to this topic
from theoretical aspects to the computational point of view; see [3—6] and the references
therein.

A lot of practical applications can be reformulated as bi-level programming problems,
for instance [7-9]. Despite the extensive use in real life, bi-level programming problems
are still difficult to solve in the optimization field because they require more computa-
tion time even for a small problems [5, 10]. If the lower-level problem is convex, people
always substitute it by the corresponding Karush-Kuhn-Tucker (KKT) optimality condi-
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tions, so the whole model becomes a mathematical program with complementarity con-
straints (MPCC). Due to the hardness of the structure, such a problem does not satisfy the
Mangasarian Fromovitz constraints qualification (MFCQ) and leads to the non-existence
of the Lagrange multipliers in the KKT optimality conditions [11]. As a result, many state-
of-the-art algorithms for solving nonlinear programming problems cannot be applied
to this MPCC problem directly. Instead, various methods have been proposed in differ-
ent branches of numerical optimization to solve bi-level programming problems, such as
penalty type approaches [12], the branch-bound approach [13], the Taylor approach [14],
and the neural network approach [15]. A comprehensive review of using standard nonlin-
ear programming (NLP) methods to solve MPCCs can be found in Fletcher and Leyffer
[16].

In this paper, we consider the combined road toll pricing and capacity expansion prob-
lem, which is reformulated as a bi-level programming problem [17]. The upper level re-
garded as a leader aims to minimize the total system travel time/cost, and the lower level
considered as a follower determines the individual user travel time subject to user equi-
librium conditions. Because our lower-level problem is convex, the whole model can be
transformed into an MPCC problem and further converted to a nonlinear program (NLP)
problem. When the idea of smoothing methods is combined with the technique of varia-
tional analysis, a perturbation-based approach is proposed to relax the difficulty of solving
the MPCC problem. Also, the objective function and constraints in the corresponding per-
turbed NLP problem are differentiable; a linear independent constraint qualification holds
at every feasible point. Consequently, a sequential quadratic programming (SQP) solver
in MATLAB is adopted to solve the smoothing subproblems. The numerical results show
that the smoothing approach is efficient to solve the combined road toll pricing and ca-
pacity expansion problems compared with other solvers.

This paper is organized as follows. Section 2 establishes a bi-level optimization model
for the capacity expansion problem with road toll pricing strategy under the user equilib-
rium conditions. Section 3 uses the proposed method to solve the combined pricing and
capacity expansion problem. In Section 4, we report numerical results by the proposed
method for different scale capacity expansion problems. Some concluding remarks are
presented in the last section.

2 Bi-level programming problems

A bi-level programming involves two competing decision-making parties acting at differ-
ent levels: one is the upper-level decision makers (leader); the other is a lower-level deci-
sion maker (follower). Although the two levels interact with each other, yet each set has
their decision variables and objectives and attempts to optimize their goals in sequence.
The leader can adjust the performance of the overall system by setting some parameters
to influence the decisions of the road users.

A general bi-level programming problem can be formulated as follows:

min F(x,y)
up) X )
s.t. G(x, ) <0,
minf(x,y)
wp) < @)

s.t. g(x,y) <0.
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Recently, many problems found in the transportation literature have been reformu-
lated as a bi-level programming, particularly in discrete network design problems [17, 18].
Gao et al. [19] introduced a traditional bi-level programming model for the discrete net-
work design problem and new solution algorithm for analyzing the existing relationship
between the improved flows and the new addition links in the existing urban network.
Numerical results for proposed algorithm produced a better solution and performed effi-
ciently in practice. Marcotte [20] conducted an extensive study of a continuous and non-
linear design problem where the problem was reformulated as a bi-level programming
problem. The findings showed that heuristics can produce near optimal solutions. Suh
and Kim [21] presented specific issues associated with solving a bi-level transportation
planning model in which there is a public-private interaction. Also the study discussed
issues on solving a large bi-level programming problem, which contribute to building a
normative theory necessary for resources allocation in a mixed economy system.

In addition, the application of the bi-level programming to the network design problem
reformulated as a nonlinear problem was studied by Friesz et al. [22], where the lower-level
problem substituted with equivalent variational inequality problem. LeBlanc and Boyce
[23] investigated a nonlinear bi-level network design problem while utilizing the user equi-
librium route choice problem as the lower-level problem. Apart from the mentioned refer-
ences, many researchers have reformulated second best toll pricing as a bi-level program-
ming problem or mathematical program with equilibrium constraints (MPEC) [9, 24]. In
these references, the upper-level models are the leaders/managers responsible for plan-
ning where to add a new link and timing signals, and how much to charge road users.
The lower level minimizes the individual route choice under user equilibrium conditions
[25, 26] corresponding to these controls. Although a bi-level model provides a flexible
platform for both the upper-level and the lower-level problems and achieves the optimal
solution simultaneously, these problems are difficult to solve because most of these prob-
lems are nonlinear and entail a non-convex programming problem.

One advantage of dealing with the convex bi-level programming problem is that un-
der mild constraint qualification, the lower-level problem can be replaced by its Karush-
Kuhn-Tucker (KKT) optimality conditions to obtain an equivalence single level mathe-
matical programming problem. Although bi-level programming has been used in various
applications, one of the essential conditions for applying bi-level programming to solve
designed problems is the availability of the efficient algorithms. In transportation road
networks various algorithms have been proposed for solving the bi-level programming
problems, such as the simulated annealing [27], the genetic algorithm [28], the ant colony
algorithm [29]. These algorithms have also succeeded to solve other branches of network
design problems [30-32] and [33]. However, in traffic assignment problems even when
the upper-level and the lower-level problems are convex, the resulting bi-level program it-
self may be non-convex [34]. For that reason, up to now most of the proposed approaches
are inapplicable when the size of the problem becomes big. Therefore, it is important to
find advanced theoretical and methodological methods for handling such as bi-level prob-
lems efficiently. In this study, we adopt the smoothing based on the F-B function to solve

a combined road toll pricing and capacity expansion problem.

2.1 Mathematical formulation
Consider a road network G = (N, A) connected by sets of links and nodes denoted by A
and N, respectively. Let r and s be the origin and destination on a given network, re-
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spectively. The set of origin and destination denoted by r and s is represented by w. Each
origin-destination (O-D) pair w is connected by a set of paths (routes) represented by K.
Let g, and u,, be the demand and the minimum travel time/cost between an O-D pair
w, respectively. The flow and travel time/cost on link a are given by x, and ¢,, respec-
tively. While £ and ¢}/ are the flow and travel time/cost experienced by travelers along
the path k € K,; 8, =1 if link a is part of path k connecting O-D pair w and 0 other-
wise.
We formulate the combined road toll pricing and capacity expansion problem as a bi-
level programming problem under budget constraints.
Here is a list of additional notations used in this paper:
qw is the travel demand between O-D pair w,
D, (uy) is the demand function between O-D pair w,
D;}(gw) is the inverse of the demand function, where D;!(gy) = hw(qw), Yw € W,
t,(x4,y,) is the unit cost of travel on link 4, where the ¢ denote the vector of ¢,(x,, y,),
Va € A,
¢, is the capacity of each link, Va € A4,
¥, is the upper bound for the link capacity expansion, Va € A4,
24(y,) is the cost of improving link a,
g, is a twice continuously differentiable and nondecreasing function,
F is the upper-level objective function,
f is the lower-level objective function,
¥4 is the link capacity, Va € A,
7, is the link parameter for road pricing, Va € A,
0 is the conversion coefficient converting investment cost to travel cost,
8z(E(z, u,v)) is the indicator function,
B;(z, i, v) is the open ball with center (z, #, v) and radius 8.
The bi-level model consists of two problems: the leader problem and the follower prob-

lem (lower-level problem), which can be written as follows.

The leader problem

w(T)
muxFs) - Y | DR ds = Y tawu )0~ 0 Y )

weW acA acA

st.7,>0, VacA, 3)
x = x(y),

where the link flow pattern x = x(y) is determined by solving the following network equi-

librium problem.

The follower problem

*a aw
rgcl,iqnf:Z/(; t,(s,t,) ds — Z/o D;,l(s)ds

acA weW

s.t. Zﬁ(W = qw) VW € W,

keKy
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=0, YweW,VkeKk,, (4)

qw >0, VYweWw,

X, = Z kaWSZkSCa+ym YacA,

weW keKy,
where t,(s,t,) = t,(s) + T4, a € A.

The lower level of the above bi-level programming problem is convex optimization prob-
lem, which is equivalently transformed to the Karush-Kuhn-Tucker (KKT) optimality con-

ditions as follows:

£y (c;“ + Y (ha + )8 — uw> =0, VYwe W,VkeKk,,

acA

(cf + Z(}m + ta)gsjk - MW> >0, VYweW,Vkek,,

acA

qw(uw - D;l(qw)) =0, VweW,VkeKk,,

ww— Dy} (qw) >0, Ywe W,

Aa(cu + Vg — Z Zﬁw82k> =0, VacA,

weW keKy
Cat+Ya— Z kaWSZkzO, Va e A, (5)
weW keKy,
Q=Y =0, YweW,

keKy,
qw=>0, YweWw,
f'>0, VYweW,VkeKk,,
Aa>0, VYaceA,

u,>0, VaecA,

which can be written in compact form as follows:

Osfkwi(c% > —uW)ZO, Ywe W,Vk € K,,

aeA(Aa+ra)52’k

0<qy L (uy-D;'(qu) >0, VYweW,VkeK,,

0<i, L <Ca+ya— > kawa;;k) >0, VacA,
weW keKy (6)
qw — kaw=0; Ywe W,
keKy

qw>0, YweW,
=0, YweW,VkeKk,.



Msigwa et al. Journal of Inequalities and Applications (2015) 2015:237 Page 6 of 17

Combining the upper-level problem (3) with the KKT conditions (6) and the problem
becomes a mathematical program with complementarity constraints (MPCC):

m1nZt X4 l’) %4(7) +92ga(ya)—2/ D

acA acA weW

st.7,>0, VacA,

0<f¥L (c,‘f + Z(Aa + rﬂ,)agk - uw) >0, VYweW,Vkek,,

acA

0<gq,Ll (uw —D;l(qw)) >0, YweWw,

0<A, J_(c,,+yﬂ ZZ W(SW) YacA,

weW keKy,
- =0, YweWw, 7)
kekKy,
0= D Y [N =0, VacA,
weW keKy

x,>0, acA,
uy,>0, YweWw,
qw >0, YweWw,

=0, YweW,VkeKk,.

Let /(v) denote the number of components of a vector v. Define

z=W g f5 %0 u;T),
Jolz) = Z[ (%a())%a(2) + 0> galya) :| > / D, \(s)ds,
acA acA weW

K= {Ol )+1(x)+1(x } X [0 ya] 5}{i(f)+l(u)+l(r)

- ka‘”, Ywe W,

kekKy,

_Z kaw Ve VacA

weW keKy,

E(z) =

’

K, Ywe W,Vk ek,
G@)=| qw YWweWw, )

Xar Uws Tay Ya GA,VWG w

(c}:’ — Uy + Z(Aa + ra)SZk), Ywe W,Vk € K,

acA

H() = | (uw-D;/qy)), YweW,

<ca+ya ZkaWSak) Vac A

weW keKy




Msigwa et al. Journal of Inequalities and Applications (2015) 2015:237 Page 7 of 17

where [(g), I(x), (1), I(f), (1), and I(7) denote the lengths of ¢, x, A, f, u, and 7, respec-
tively.

Then problem (7) can be put in the general framework of mathematical programs with
complementarity constraints (MPCC) in the following standard form:

min fy(z)
(MPCC) st.0<G(z) LH(z) >0, (8)

E(z) €K,

where fy : R” - R, G,H : R" — R"”, E:R” — R? are smooth functions, and K C 9 is a
closed convex set.

3 A perturbation approach for MPCC
To solve the MPCC problem (8), we proposed a smoothing-based function in this section.
First, let us rewrite problem (8) in the following form:

minfp(z)
XU,V

st.0O<ulv>0,

G(z)—u=0, )
H(z)-v=0,
E(z) eK.

Define
K={0,}x{0,} xK, E(z,u,v) = [G(2) - w; H(z) - v; E(2) ].
One can observe that problem (9) is equivalent to

minf @y
P 7 (10)
st.0<ulv>0,

where

J_’(z, u,v):=f(x) + SF(E(z, U, v))
and

0, (zuv) ek,

8=(E(z,u,v)) = _
K( ) oo, (z,u,v)¢K.
Then z minimizes f over K <=5 z minimizes f(x) + §z(E(z, u,v)) over R".
Now, let us focus on solving problem (10), which is still an MPCC problem. For such
a problem, even if f is smooth, it is not suitable to treat it as a traditional nonlinear pro-
gramming problems, for the reason explained in Examples 3.1.1 and 3.1.2 in Luo et al. [35]
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that even the basic constraint qualification (namely the tangent cone equivalent to the lin-
earized cone at an optimal solution) does not hold. In these examples, the Mangasarian-
Fromovitz constraint qualification may fail to be met near the optimal solution and the
boundedness of the set of Lagrange multipliers is not guaranteed. To overcome this diffi-
culty, various relaxation approaches have been proposed to deal with the complementarity
constraints. Facchinei et al. [36] and Fukushima and Pang [37] used ¢,,(a, b) = 0 to approx-
imate the complementarity relation 0 < a, 0 < b, ab = 0, where ¢, (a, b) is the smoothed
Fischer-Burmeister function. We have

dpla,b)=a+b—+/a®+b>+2u2 (11)
Scholtes [38] used
a>0, b>0, ab < u,
and recently Lin and Fukushima [39] proposed the following:
(@+mW)®+p)>=p® and ab<p’
to relax the complementarity relationship between a and b.
In this research, we adopt the smoothed Fischer-Burmeister function to deal with the

complementarity constraints, so the perturbed problem (8) is defined as follows:

min f(z, u,v)

FATAN

(P) (12)
s.t. W, (u,v) =0,
where
I/fﬂ(ub Vl)
W, (u,v) = ,
wu(um: Vi)

and v, is defined by (11). The difference between our methodology from that of Facchinei
et al. [36] and Fukushima and Pang [37] is that we use the variational analysis technique
in Rockafellar and Wets [40] to establish the convergence property of the solution set
SOL(P,) to SOL(P). Let us write the feasible region problem (P, ) as

Qu) := {(z,u, V) eR"xR" xR": W, (u,v) = 0}.
Obviously, ¥(a,b) = 0 if and only if 0 < a, 0 < b, ab = 0. Therefore 2(0) is the feasible
set of MPCC problem. Since z is not constrained in the problem (P,), for simplicity we
can rewrite ©2(u) in the following form:

Qu) = {(u,v) e R” x R™ : W, (u,v) = 0}. (13)

We first analyze the convergence of the smoothing perturbation-based approach by
demonstrating the convergence of ©2(u) to €2(0) as p \ 0.
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Lemma 3.1 For Q(u) defined by (13), we have
lim @ =Q(0).
lim, (n) = 2(0)

Proof For any (u,v) € limsup,,\ o Q(u), there exist jx 0 and 1k, %) € Q(ux) such that
(u*,v*) = (u,v). The inclusion (X, %) € Q(ux) implies

uk vk = \/(uk)2 + (vk)2 +2u? =0.
Then, letting k — oo, we have
utv-vVu2 +v2 =0,
namely Wy (u,v) = 0 and (&, v) € ©2(0). Therefore we have

limsup Q(u) C 2(0).
UNO

For any (u,v) € 2(0), let
I, ={i:u;>0}, J.={i:v;>0]}, Iy={1,...,m}\ (I, UJ,).

For any u > 0 defined (u(u), v(u)) by

(wirn?lu;) ifiel,
(i), vi(w)) = Y (w21vivi)  ifie],,
(s ) ifi e I.

Then ¥, (u;(),vi(n)) = 0 for i = 1,...,m or equivalently W, (u(n),v(i)) = 0 or (u(w),
v(i)) € 2(w). Obviously (u(u), v()) — (#,v) and this implies that

liminf Q(u) D 2(0).
“N\O

Therefore Q(u) — €(0) as 1 \ 0. O

Let us introduce the following notations:

k() = inf{f(z, u,v) | (u,v) € Q(u)} and S(u):= Argmin{f(z, u,v) | (u,v) € Q(u)}.

The following theorem shows the convergence of the smoothing approach for solving the
MPCC problem, which is characterized by using the terminology in variational analysis.

Theorem 3.1 Assume that f is level-bounded. Then the function (1) is continuous at 0
with respect to R, and the set-valued mapping S(u) is outer semi-continuous at 0 with
respect to R,.
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Proof Asf is level-bounded, we see that « (i) is finite and S(u) # ¥ for any pu > 0. Let

]A‘,L(z, u,v) =f(z,u,v) + 8o @, v),

where 8q(,,) is the indicator function of Q(x). From Lemma 3.1, Q(u) — €2(0) as 0 N\ O,fﬂ
epi-converges to fo. The level-boundedness of fu is easily verified for u > 0. Therefore, we
see from Theorem 7.41 of Rockafellar and Wets [40] that the function k(i) is continuous
at 0 with respect to R, and the set-valued mapping S(u) is outer semi-continuous at 0
with respect to R,. O

Now, we discuss the computational issue for problem (P,) when n > 0 is small enough.
For any 1 > 0 and x € R”, we have

ju,vlpu,(”’ V) = [ju\p,u,(u: V)«jv\l”u (u’ V)])

where
1o ——m
u% +vl2+2p¢2
ju ‘I//J, (Li, V) =
1— —Ym
u%n+v3,,+2uz
and
1— —U
~/ u%+vf +2u?
TV (u,v) =
1— —Ym
uZ,+vE+2p2

Obviously for any u > 0 and (1, v) € R*”, both 7, ¥,, (4, v) and 7, ¥, (1, v) are nonsingular
matrices, we can easily obtain the following conclusion.

Corollary 3.2 Let u > 0. Then for any (u,v) € Q) the linear independence constraint
qualification (LICQ) holds and the tangent cone of Q(u) at (u,v) is

Tou(,v) = {(Au, Av) € R : T, W, (u,v)(Au, Av) = 0},
and the normal cone of Q(u) at (u,v) is
Nogy @, v) = TV (u, WIR™,
Now we rewrite problem (P, ) as follows:
i)

s.t. E(z,u,v) €K, (14)

W, (4,v) =0.
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The Lagrangian for problem (P,,) is defined as
L(u,v, 1) = fo(2) + (A, W, (s, v)) + (x, Ez, u,v)).

If (z, 4, ) is alocal minimizer for problem (P,,) and the basic constraint qualification (from
Rockafellar and Wets [40]) holds, namely

0e %,u,vf(z, Ij‘} ‘_/)TX + {On} X NQ([L)(I}, 1_/)r

——3 = 0, 15
X € Nz, i, 7) X 15)

then the Karush-Kuhn-Tucker (KKT) conditions for (P, ) are satisfied, namely
TounL @ 8,9, 4, %) =0, v, (,v)=0, xe€Nz(izuv) (16)
and
Touwl @i, 0,0, %) =0, W,(#,7¥)=0, X €Nz i,v). 17)
As the linear independence constraint qualification holds at any feasible solution of (P,,),
we see that if there exists A such that the above KKT condition holds, then % is unique. The
following proposition gives the second-order sufficient conditions at a KKT point of (P,,).

Proposition 3.3 Let (z,u, v, A X) be a Karush-Kuhn-Tucker point for (P,,). Suppose the
following condition holds:

(d, V0, L@ 8,9, 1)d) > 0 (18)
for

Vd # 0 satisfying Jpu,V,. (i, V)(dy; d,) = 0 and TouvE(Z, 1, v)d € Ty(E(i, i, 17)).

Then the second-order growth condition holds at (i1, V), namely, there exist positive numbers
y >0 and 8 > 0 such that

/@@ =v|@uv)-Gad)|’ VEuv) e[R x uw]NBsE i),

where
Bs(z,i1,7) = {(zu,v) € R" | || (2, v) - (i, V) || < 8}.

Proof First we need the notion of the second-order derivative, which has been studied
extensively in Chapter 13 of Rockafellar and Wets [40]. For any extended-real-value of the
function f : R” — R with f(z) finite and u,v € R", the second subderivative of f at z for u
and v is defined by

folz+ V) —folz) — t{u, V)

1.2
5T

d*fo(zlu)(v) = liminf
T—=0+,V —>v
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By definition, it is easy to verify that
1
d*f,(210)(V) =2[df2 @W)]’, VveR". (19)

In view of (16) and (17) and by applying Example 13.6 and Proposition 13.19 of Rockafellar
and Wets [40], we have, for each u 82[f0 (z) and v € kerdfy(z) Nu™,

V.Lo(z, ) = u,
d*fo(z|u)(v) = max { (v, V2,Lo(z,A\)V) | 4;=0,Yi¢1(2),0<r;>1Viel), . (20)
—-1<xi>1Vje]

In view of (19) and (20), the result follows immediately. This completes the proof. O

4 Numerical examples
The perturbed NLP (P,,) using the smoothing F-B function for the combined road toll
pricing and capacity expansion is expressed as follows:

minF = Ztﬂ(xa(r))xa(r) +0 Zga(yq) - Z Iy (qw)
acA acA weW

st.t, >0,
Ves(fsna i) =0, YaeANwe W,Vk € K,,
wFB()\a, Ca: H’) = O, Va e A, (21)

qw = kaw, Ywe W,

keKy,

Xy = Z kaw Z:k’ VaeA,

weW keKy

XasYVa> Tar Aas NarCas kW; Uy, Qw = 0, Vace A, Ywe W, Vk € I(w,

where

nuZCZ_Mw'*'Z()\a"'Ta)aZk: Ca=CatYa— Z kaw Zk'

acA weW keKy,

In this section, three numerical examples for combined road toll pricing and capacity ex-
pansion problems with homogeneous road users are analyzed to illustrate the applicability
of the proposed model. In these examples, we adopt the SQP solver in MATLAB to solv-
ing the smoothing subproblem NLP (P, ). All experiments are carried out using MATLAB
8.3.0 (2014a), 64-bit, on a desktop computer with the Intel (R), Core (TM) 2 of 3.3 GHz
CPU and 4 GB RAM executed in Windows 7.

The link travel function ¢, is defined by

4
ta(xm_ya: Ta) = (Aa +Ba< Ya ) ) + Tg. (22)
CatYa

The functions g,(y,) and 4,,(q,) are defined by
ga(Ya) =Yar Va e A, hw(qw) =@y —yqy, YWeW,

where ¢y, o, are the parameters of function #,,(qy,).
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Example 1 (A 5-link network) This network consists of five links and four nodes as shown
in Figure 1. The total travel demand and the corresponding parameters are given in Table 1,
where A, denotes the free flow travel time in link 4, x, represents the link flows, and B,
is the link specific constant. y, is the link capacity expansion variable, which is set to 20
and ¢, is the link capacity of each link. In this study, we adopt the flat road toll policy
where road users are charged with the same amount of fees in every access point of the
links.

The numerical results indicate that the social welfare decreases slightly from case 1 to
case 3 and increases slightly in case 4. The results show that when the road toll and ca-
pacity expansion are combined the general trend is that charging or expanding a larger
number of links can worsen the network performance, because adding more toll locations
allows the travelers to shift their routes at undesirable points so as to increase the total
system travel costs. On the other hand, increasing the capacity in many links may improve
the network performance because the flow toward the link may fall or rise unlike when
only the road toll is used (see Table 2).

Figure 1 A 5-link network.

Table 1 Parameters for the 5-link network

Link An Ba Ca Ta

1-2 1 10 2 5

1-3 2 5 3 3

2-3 4 10 4 2

2-4 5 15 2 3

3-4 1 7 1 4

Q14:15 Qg =2 (,014:4 6=10

Table 2 Results for the 5-link network for different link tolls
Link flow 1 3 5 77..5  Link flow 1 3 5 T1..5
X1 1514 1.381 1.274 1282 0.000 0.000 0.000 0.000
X2 2.875 2.282 1.169 2108 ys 1.875 1.282 0.169 1.108
X3 0.00 0.00 0.00 0.00 q14 4.390 3.662 2442 3.390
X4 1514 1.381 1274 1282 Fmax 178303 144662 110568 140.699

X5 2.875 2.875 1.169 2108 Netbenefit 12507 1,151.8  1,099.7  1,153.9




Msigwa et al. Journal of Inequalities and Applications (2015) 2015:237 Page 14 of 17

Example 2 (A 16-link network) The second numerical example consists of 16 links and
six nodes as shown in Figure 2. The parameters for testing this example are presented in
Table 3.

In this numerical experiment, some links will produce zero link flow as observed in Ta-
ble 4. Although some of these links give zero flow in the optimization process, yet they
can be used for investment because on self-optimizing these links they can reach subop-
timality. The results further show that road users will spend less time when selecting the
route with non-zero link flow than those choosing the path of link flow zero. When the
road capacity is determined prior to road pricing, there is an additional indirect channel
through which capacity investment affects traffic and investment impacts road pricing,
which in turn will affect traffic flow.

Table 4 shows that charging a single link and expanding others links provides a better
result in the system optimum resulting in an increased network performance. It can be
seen form this result that it is not always advantageous to consider a large number of road
toll or capacity links when improving networks. This result indicates that road tolls have
the ability to discourage the trips of road users resulting in a reduction of traffic congestion
and the investments can be seen as a wastage. The type of road toll pricing associated with

12

Figure 2 A 16-link network.

Table 3 Parameters for a 16-link network

Link 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

, 1 5 2 4 3 25 1 2 6 1 4 3 1 2 35 15
Ow 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Table 4 Results for a 16-link network for different link tolls

Link flow 1 3 5 71..16 Link flow 1 3 5 71..16
X2 3.375 4.00 2.00 1844  y» 0.322 1.846 0.000 0.000
X3 1.561 0.00 0.00 0.00 ¥3 0.000 0.000 0.000 0.000
X6 1.625 0522 0.00 1189  ye 0.000 0.000 0.000 0.000
Xg 1.813 0.00 2.00 1.844  yg 0.000 1.000 0.000 0.000
X9 1.561 0.00 0.00 0.00 Y9 0.000 0.000 0.000 0.000
X12 1.625 0522 0.00 1189  yn 0.000 0.000 0.000 1433
X14 1.813 4.00 2.00 1844 yi4 0482 2.964 2.187 0.000
X15 1.561 0.00 2.00 0.00 Yis 0.367 2.168 1.828 1.639
X16 1.625 0522 0.00 1189 gie 5.00 4522 2.000 3.033
Net benefit 9,566 8973 8,105 9494 Frax 364.833 188.231 55.891 181.561
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other factors such as quality of public transport services with induced demand depending
on the time measured may significantly affect the capacity expansion strategy when usage

is underpriced.

Example 3 (A 17-link network) This example consists of 17 links and 12 nodes as de-
scribed in Figure 3. The parameters for testing this example are presented in Table 5.

It is observed in Table 6 that adding more road toll locations tends initially to decrease
and later to increase the total system travel times/costs. These results show the importance
of selecting the number of road toll locations in addition to the toll rates because adding
more toll locations tends to shift traveler routes to undesirable ways, increasing the total
travel times. These findings are consistent with the result illustrated in the Braess paradox
[41], in which the closure of some roads improves the performance of the road network

and increases social welfare.

Figure 3 A 17-link network.

Table 5 Parameters for a 17-link network

Link 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17

7, 1 5 2 4 3 25 1 2 6 1 4 3 1 2 35 15 4
©w 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Table 6 Comparison results for a 17-link network with tolls

Link flow 1 3 5 71...17 Linkflow 1 3 5 71...17
X1 2.135 0.938 0.386 2037  » 0.328 0.000 0.000 0.000
X2 2.135 0.938 0.386 1.202 ¥2 1.135 0.000 0.000 0.202
X3 1.000 0.938 0.386 1202 y3 0.000 0.000 0.000 0.000
X4 2.000 1363 0.00 0.775 Ya 2.130 1.377 0.000 0.001

X5 0.000 0.000 0.000 0835  ys 0.000 0.000 0.000 0.000
X6 1.135 0.000 0.000 0.000  ys 0.000 0.000 0.000 0.000
X7 1.000 0.938 0.386 1202 y7 0.000 0.369 0.000 0413
Xg 2.000 1363 0.000 0.775 Y8 0.000 0.000 0.000 0.000
X9 2.000 1.363 0.00 1610 yg 0.000 0.000 0.000 2431

X10 3.057 1363 0.000 0.775 Yio 0.057 0.000 0.000 0420
X13 0.078 0.000 0.000 0835  y13 1.009 0.000 0.000 0.263
X14 2.057 2.301 0.386 1977 yis4 3.551 0.000 0.000 0.000
X17 0.078 0.000 0.000 0.835 qi7 4135 2.301 0.386 2812

Net benefit 7,823 8,233 11,494 12629  Frmax 6229811 398818 822225 480.6378
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The overall implication of the results for combined road toll pricing and capacity expan-

sion are two-fold:

» The capacity expansion relieves congestion and lower congestion charges has a
negative effects on the price.

« Capacity expansion improves transportation service; particularly traffic congestion
would lead to a higher willingness-to-pay by road users, which has a positive effect on
the price.

These findings call for planners to coordinate properly all decisions regarding the capacity
expansion and congestion pricing to improve transportation systems.

5 Conclusions

In this paper, we have formulated the capacity expansion with the combined road pricing
problem as a bi-level program, where the upper level optimizes the link capacity expansion
vector and maximizes the social welfare, while the lower level determines the demand and
the flow satisfying the Wardrop principles. Then the bi-level program is transformed to
the MPCC model. The smoothing approach is proposed to solve the MPCC problem and
this approach overcomes the lack of a suitable set of constraint qualifications. Under the
mild conditions, the convergence property studied in this paper shows that the global op-
timal solution of the perturbed problem converges to the original solutions of the MPCC
problem.

The perturbation-based approach and the established model were tested on 5-link, 16-
link, and 17-link road networks, widely used to analyze transportation networks. The nu-
merical experiments indicate that the proposed model can be applied to solve various user
equilibrium transportation problems efficiently. The proposed model can be employed to
analyze the multi-modal transportation networks to improve the environmental pollution
caused by transport emissions.

The proposed model with the findings can be used by the planner to allocate the links
for pricing and expansion under budget constraints. Although the proposed model may
be computationally time-demanding and it may take time to find the optimal solution for
large-sized network design, yet it can easily be converted to a smaller dimensional problem
and solved. The numerical examples show that the proposed model can produce a better
solution of the combined road toll pricing and capacity expansion problem after solving
the model several times with different values of the parameters.
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