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1 Introduction
The well-known inequality due to Beckenbach can be stated as follows (see [], also see
[], p.).

Theorem A If  ≤ p ≤ , and xi, yi >  for i = , , . . . , n, then

∑n
i=(xi + yi)p

∑n
i=(xi + yi)p– ≤

∑n
i= xp

i
∑n

i= xp–
i

+
∑n

i= yp
i

∑n
i= yp–

i
. (.)

An integral analogue of Beckenbach’s inequality easily follows.

Theorem B Let  ≤ p ≤ . If f and g are positive and continuous functions on [a, b], then

∫ b
a (f (x) + g(x))p dx

∫ b
a (f (x) + g(x))p– dx

≤
∫ b

a f (x)p dx
∫ b

a f (x)p– dx
+

∫ b
a g(x)p dx

∫ b
a g(x)p– dx

. (.)

An extension of Beckenbach’s inequality was obtained by Dresher [] by an ingenious
method using moment-space theory.

Theorem C Let f and g be positive and continuous functions on [a, b]. If p ≥  ≥ r ≥ ,
then

(∫ b
a (f (x) + g(x))p dx

∫ b
a (f (x) + g(x))r dx

)/(p–r)

≤
(∫ b

a f p(x) dx
∫ b

a f r(x) dx

)/(p–r)

+
(∫ b

a gp(x) dx
∫ b

a gr(x) dx

)/(p–r)

. (.)

The inequality which we shall call Beckenbach-Dresher’s inequality. In fact, this re-
sult was also established by Danskin [], who employed a combination of Hölder’s and
Minkowski’s inequalities.
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Beckenbach-Dresher’s inequality was studied extensively and numerous variants, gen-
eralizations, and extensions appeared in the literature (see [–] and the references cited
therein). Research of reverse Beckenbach-Dresher’s integral inequality is rare (see [] and
[]). The aim of this paper is to discuss reverse Beckenbach-Dresher’s integral inequality
and establish the following reversed Beckenbach-Dresher integral inequality by deriving
reverse Hölder’s, Minkowski’s and Radon’s integral inequalities.

Theorem Let f and g be continuous functions on [a, b],  < m ≤ f (x) ≤ M and  < m ≤
g(x) ≤ M. If p ≥  ≥ r ≥ , then

� ·
(∫ b

a (f (x) + g(x))p dx
∫ b

a (f (x) + g(x))r dx

)/(p–r)

≥
(∫ b

a f p(x) dx
∫ b

a f r(x) dx

)/(p–r)

+
(∫ b

a gp(x) dx
∫ b

a gr(x) dx

)/(p–r)

, (.)

where

� =
Lα,β (s, t, S, T)

�α,β (m, m, M, M)
,


α

+

β

= ,α > , (.)

Lα,β (s, t, S, T) =
(
ϒα,β

(
sT– m

m+ ,
(
stS–) m

m+ , St– m
m+ ,

(
s–ST

) m
m+

))m+, m > , (.)

s = min
{

m(b – a)/p, m(b – a)/p}, S = max
{

M(b – a)/p, M(b – a)/p},

t = min
{

m(b – a)/r , m(b – a)/r}, T = max
{

M(b – a)/r, M(b – a)/r},

ϒα,β (m, m, M, M) = max

{

Cα,β

(
Mα


mα

 (b – a)
,

mβ


Mβ
 (b – a)

)

,

Cα,β

(
mα


Mα

 (b – a)
,

Mβ


mβ
 (b – a)

)}

, (.)

Cα,β (ξ ,η) =
ξ /α + η/β
ξ /αη/β , (.)

and

�α,β (m, m, M, M)

= max
{
ϒα,β

(
m, (m + m)α–, M, (M + M)α–),

ϒα,β
(
m, (m + m)α–, M, (M + M)α–)}. (.)

2 Proof of theorem
Lemma . [] If  < m ≤ a ≤ M,  < m ≤ b ≤ M, 

α
+ 

β
=  and α > , then

max
{

Cα,β (M, m), Cα,β (m, M)
} · αβa/αb/β ≥ aβ + bα, (.)

with equality if and only if either (a, b) = (m, M) or (a, b) = (M, m), where Cα,β (ξ ,η) is
as in (.).

Obviously, by using a way similar to the proof of (.), we may find that inequality (.)
is reversed if  < α <  or α < . Here, we omit the details.
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Lemma . Let f and g be positive continuous functions on [a, b], 
α

+ 
β

= , α >  and f α

and gβ be integrable on [a, b]. If  < m ≤ f (x) ≤ M and  < m ≤ g(x) ≤ M, then

(∫ b

a
f α(x) dx

)/α(∫ b

a
gβ (x) dx

)/β

≤ ϒα,β (m, m, M, M) ·
∫ b

a
f (x)g(x) dx, (.)

with equality if and only if f α and gβ are proportional, where ϒα,β (m, m, M, M) is as in
(.).

The inequality is reversed if  < α <  or α < .

Proof If we set successively

ā =
f α(x)

X
, X =

∫ b

a
f α(x) dx,

b̄ =
gβ (x)

Y
, Y =

∫ b

a
gβ (x) dx.

Notice that

mα


Mα
 (b – a)

≤ ā ≤ Mα


mα
 (b – a)

,

and

mβ


Mβ
 (b – a)

≤ b̄ ≤ Mβ


mβ
 (b – a)

.

By using Lemma ., we have

max

{

Cα,β

(
Mα


mα

 (b – a)
,

mβ


Mβ
 (b – a)

)

, Cα,β

(
mα


Mα

 (b – a)
,

Mβ


mβ
 (b – a)

)}

· f (x)g(x)
X/αY /β

≥ 
α

f α(x)
X

+

β

gβ (x)
Y

,

with equality if and only if either

(ā, b̄) =
(

mα


Mα
 (b – a)

,
Mβ



mβ
 (b – a)

)

or

(ā, b̄) =
(

Mα


mα
 (b – a)

,
mβ



Mβ
 (b – a)

)

.

Therefore

ϒα,β (m, m, M, M) ·
∫ b

a f (x)g(x) dx
X/αY /β ≥ 

α

∫ b
a f α(x) dx

X
+


β

∫ b
a gβ (x) dx

Y
= . (.)

From (.), inequality (.) easily follows.
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In the following, we discuss the equality condition of (.). In view of the equality con-
ditions of Lemma ., the equality in (.) holds if and only if

(
f α(x)

∫ b
a f α(x) dx

,
gβ (x)

∫ b
a gβ (x) dx

)

=
(

mα


Mα
 (b – a)

,
Mβ



mβ
 (b – a)

)

,

or

(
f α(x)

∫ b
a f α(x) dx

,
gβ (x)

∫ b
a gβ (x) dx

)

=
(

Mα


mα
 (b – a)

,
mβ



Mβ
 (b – a)

)

.

Hence f α(x) = μgβ (x), where

μ =
mα

 mβ


Mβ
 Mα



‖f ‖α
α

‖g‖β

β

,

or

μ =
Mα

 Mβ


mβ
 mα



‖f ‖α
α

‖g‖β

β

is a constant. It follows that the equality in (.) holds if and only if f α and gβ are propor-
tional.

This proof is completed. �

Lemma . Let f and g be non-negative continuous functions on [a, b]. If  < m ≤ f (x) ≤
M,  < m ≤ g(x) ≤ M and α > , then

(∫ b

a

(
f (x) + g(x)

)α dx
)/α

≥ �α,β (m, m, M, M)
((∫ b

a
f α(x) dx

)/α

+
(∫ b

a
gα(x) dx

)/α)

, (.)

with equality if and only if f and g are proportional, where �α,β (m, m, M, M) is as in
(.).

The inequality is reversed if  < α <  or α < .

Proof From the hypotheses, we have

∥
∥f (x) + g(x)

∥
∥α

α
=

∥
∥f (x)

[
f (x) + g(x)

]α–∥∥
 +

∥
∥g(x)

[
f (x) + g(x)

]α–∥∥
. (.)

By using Lemma ., we obtain

∥
∥f (x)

[
f (x) + g(x)

]α–∥∥
 ≥ [

ϒα,β
(
m, (m + m)α–, M, (M + M)α–)]–

× ∥
∥f (x)

∥
∥

α
· ∥∥f (x) + g(x)

∥
∥α/β

α
, (.)

with equality if and only if f α(x) and (f (x) + g(x))α are proportional. It follows that the
equality holds if and only if f (x) and g(x) are proportional.



Zhao and Cheung Journal of Inequalities and Applications  (2015) 2015:153 Page 5 of 8

∥
∥g(x)

[
f (x) + g(x)

]α–∥∥
 ≥ [

ϒα,β
(
m, (m + m)α–, M, (M + M)α–)]–

× ∥
∥g(x)

∥
∥

α
· ∥∥f (x) + g(x)

∥
∥α/β

α
, (.)

with equality if and only if gα(x) and (f (x) + g(x))α are proportional. It follows that the
equality holds if and only if f (x) and g(x) are proportional. Hence

∥
∥f (x) + g(x)

∥
∥α

α
≥ �α,β (m, m, M, M) · ∥∥f (x) + g(x)

∥
∥α/β

α

(∥
∥f (x)

∥
∥

α
+

∥
∥g(x)

∥
∥

α

)
, (.)

where �α,β (m, m, M, M) = max{M, N},

M = ϒα,β
(
m, (m + m)α–, M, (M + M)α–),

and

N = ϒα,β
(
m, (m + m)α–, M, (M + M)α–).

Dividing both sides of (.) by ‖f (x) + g(x)‖α/β
α , we have

∥
∥f (x) + g(x)

∥
∥

α
≥ �α,β (m, m, M, M) · (∥∥f (x)

∥
∥

α
+

∥
∥g(x)

∥
∥

α

)
. (.)

Moreover, in view of the equality conditions of (.) and (.), it follows that the equality
in (.) holds if and only if f (x) and g(x) are proportional.

This proof is completed. �

Lemma . Let f and g be continuous functions on [a, b],  < m ≤ f (x) ≤ M and  <
m ≤ g(x) ≤ M. If m > , then

∫ b

a

f m+(x)
gm(x)

dx ≤ Lα,β (m, m, M, M)
(
∫ b

a f (x) dx)m+

(
∫ b

a g(x) dx)m
, (.)

where Lα,β (m, m, M, M) is as in (.).

Proof Let α = m + , β = (m + )/m and replacing f (x) and g(x) by u(x) and v(x) in (.),
respectively, we have

(∫ b

a
u(x)m+ dx

)/(m+)(∫ b

a
v(x)(m+)/m dx

)m/(m+)

≤ ϒα,β (m, m, M, M) ·
∫ b

a
u(x)v(x) dx. (.)

Taking for

u(x) =
(

f (x)
g(x)

)/(m+)

, v(x) = f m/(m+)(x)g/(m+)(x)

in (.), and in view of

(
m

M

) 
m+ ≤ u(x) ≤

(
M

m

) 
m+
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and

m
m

m+
 m


m+
 ≤ v(x) ≤ M

m
m+
 M


m+
 ,

we obtain

ϒα,β
((

mM–


) 
m+ , m

m
m+
 m


m+
 ,

(
Mm–


) 

m+ , M
m

m+
 M


m+


)
∫ b

a
f (x) dx

≥
(∫ b

a

f (x)
g(x)

dx
)/(m+)(∫ b

a
f (x)g/m(x) dx

)m/(m+)

.

Hence
∫ b

a

f (x)
g(x)

dx

≤ [ϒα,β ((mM–
 ) 

m+ , m
m

m+
 m


m+
 , (Mm–

 ) 
m+ , M

m
m+
 M


m+
 )

∫ b
a f (x) dx]m+

(
∫ b

a f (x)g/m(x) dx)m
. (.)

On the other hand, in (.), replacing f (x) and g(x) by u(x) and v(x), respectively, and
letting u(x) = f (x) and v(x) = ( g(x)

f (x) )m, and in view of

m ≤ u(x) ≤ M

and
(

m

M

)m

≤ v(x) ≤
(

M

m

)m

,

we have
∫ b

a

f m+(x)
gm(x)

dx

≤ [ϒα,β (mM– m
m+

 , (mmM–
 ) m

m+ , Mm– m
m+

 , (m–
 MM) m

m+ )
∫ b

a f (x) dx]m+

(
∫ b

a g(x) dx)m

=
Lα,β (m, m, M, M)(

∫ b
a f (x) dx)m+

(
∫ b

a g(x) dx)m
.

This proof is completed. �

Let f (x) and g(x) reduce to positive real sequences ai and bi (i = , . . . , n), respectively,
and with appropriate changes in the proof of (.), we have the following.

Lemma . Let ai and bi be positive real sequences and  < m ≤ ai ≤ M,  < m ≤ bi ≤
M, i = , . . . , n. If m > , then

n∑

i=

am+
i
bm

i
≤ Lα,β (m, m, M, M)

(
∑n

i= ai)m+

(
∑n

i= bi)m , (.)

where Lα,β (m, m, M, M) is as in Lemma ..
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This is just an inverse of the following well-known Radon’s inequality [], p.

n∑

i=

am+
i
bm

i
≥ (

∑n
i= ai)m+

(
∑n

i= bi)m ,

where m > , ai ≥  and bi > , i = , , . . . , n.

Proof of Theorem Let

α =
(∫ b

a
f p(x) dx

)/p

, β =
(∫ b

a
f r(x) dx

)/r

,

α =
(∫ b

a
gp(x) dx

)/p

, β =
(∫ b

a
gr(x) dx

)/r

,

then

 < m(b – a)/p ≤ α ≤ M(b – a)/p,

 < m(b – a)/p ≤ α ≤ M(b – a)/p,

 < m(b – a)/r ≤ β ≤ M(b – a)/r ,

and

 < m(b – a)/r ≤ β ≤ M(b – a)/r.

Let

s = min
{

m(b – a)/p, m(b – a)/p}, S = max
{

M(b – a)/p, M(b – a)/p}

and

t = min
{

m(b – a)/r , m(b – a)/r}, T = max
{

M(b – a)/r, M(b – a)/r}.

From reverse Radon’s inequality (.) in Lemma ., we have, for m > ,

αm+

βm


+

αm+

βm


≤ Lα,β (s, t, S, T)

(α + α)m+

(β + β)m . (.)

If m = r
p–r , then

(∫
f p(x) dx

∫
f r(x) dx

)/(p–r)

+
(∫

gp(x) dx
∫

gr(x) dx

)/(p–r)

≤ Lα,β (s, t, S, T)
[(
∫

f p(x) dx)/p + (
∫

gp(x) dx)/p]p/(p–r)

[(
∫

f r(x) dx)/r + (
∫

gr(x) dx)/r]r/(p–r) . (.)

We have assumed p > r > , since m = r
p–r > .
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On the other hand, by using the Minkowski inequality (.) and its reverse form, with
p ≥  and  < r ≤ , respectively,

�α,β (m, m, M, M)p
[(∫

f p(x) dx
)/p

+
(∫

gp(x) dx
)/p]p

≤
∫

(
f (x) + g(x)

)p dx, (.)

with equality if and only if f and g are proportional, and

�α,β (m, m, M, M)r
[(∫

f r(x) dx
)/r

+
(∫

gr(x) dx
)/r]r

≥
∫

(
f (x) + g(x)

)r(x) dx, (.)

with equality if and only if f and g are proportional.
From (.), (.) and (.), (.) follows. This proof is completed. �
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