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Abstract

Background: Expenditure on driver-related behavioral interventions and road use policy is often justified by their
impact on the frequency of fatal and serious injury crashes. Given the rarity of fatal and serious injury crashes,
offense history, and crash history of drivers are sometimes used as an alternative measure of the impact of
interventions and changes to policy. The primary purpose of this systematic review was to assess the rigor of
statistical modeling used to predict fatal and serious crashes from offense history and crash history using a
purpose-made quality assessment tool. A secondary purpose was to explore study outcomes.

Methods: Only studies that used observational data and presented a statistical model of crash prediction from
offense history or crash history were included. A quality assessment tool was developed for the systematic
evaluation of statistical quality indicators across studies. The search was conducted in June 2019.

Results: One thousand one hundred and five unique records were identified, 252 full texts were screened for
inclusion, resulting in 20 studies being included in the review. The results indicate substantial and important
limitations in the modeling methods used. Most studies demonstrated poor statistical rigor ranging from low to
middle quality. There was a lack of confidence in published findings due to poor variable selection, poor adherence
to statistical assumptions relating to multicollinearity, and lack of validation using new data.

Conclusions: It was concluded that future research should consider machine learning to overcome correlations in
the data, use rigorous vetting procedures to identify predictor variables, and validate statistical models using new
data to improve utility and generalizability of models.

Systematic review registration: PROSPERO CRD42019137081

Keywords: Systematic review, Quality assessment tool, Crash, Traffic, Offense, Statistics, Statistical modeling, Driver
offenses, Crash history
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Background
Expenditure on driver-related behavioral interventions
and road use policy is often justified by their impact on
the frequency of fatal and serious injury (FSI) crashes.
Fatal and serious injury includes death and injuries that
endanger human life, including fetuses. Injury can be
acute, cumulative, and protracted [1]. Due to the increased
rarity of FSI crashes, because of factors such as improved
vehicle design and road infrastructure, reliably evaluating
the short- and medium-term impact of interventions on
FSI crashes is challenging. On the other hand, traffic of-
fenses (e.g., speeding and disobeying traffic lights) are
much more frequent than FSI crashes [2, 3]. This has led
to organizations using offending patterns as a proxy meas-
ure to evaluate the effectiveness of new interventions and
policies targeting the reduction of FSI crashes.
Predictive models of FSI crashes can be complex and in-

clude variables from multiple domains. Environmental
factors, road conditions, legal factors, licensing factors,
and driver characteristics have all been found to contrib-
ute to FSI crash involvement [4–12]. Offense history (i.e.,
the number of traffic infringements a driver has incurred)
and crash history (i.e., the number of crashes a driver has
been involved in) have also frequently been found to be
useful predictors of future FSI crashes [13–15]. Offense
histories that include repeated violations over time, such
as exceeding the speed limit and failure to obey road signs,
have been found to increase crash risk. The increase in
crash risk is particularly high when repeated violations
lead to license suspension or revocation. Involvement in
multiple crashes over time is a stronger predictor of future
crash involvement than traffic violations [13, 14, 16]. In-
deed, even particularly risky offenses do not appear to al-
ways increase the risk of FSI crashes. For example, Leal
and Watson [17] reported that for those who engage in il-
legal street racing only 3.7% of offenses result in crashes,
none of them being fatal.
A handful of reviews have investigated the modeling of

FSI crashes [18–22]. A common critique in these reviews
concerns the suitability of the traditional statistical tech-
niques that have been applied to this data [22]. Consid-
ering the wide-ranging implications for developing and
employing a statistical model to help inform decisions
around policy and funding, it is vital that models are de-
veloped using rigorous and suitable methods, producing
models that can be understood by non-technical audi-
ences. Our review emphasizes the statistical approaches
and methodologies applied to modelling FSI crash data.
However, we were unable to find an existing quality as-
sessment tool that met this need and have therefore de-
veloped our own.
Further, while statistical heterogeneity between pri-

mary studies is regularly noted as a limitation in system-
atic reviews and meta-analyses, detail such as the rigor

and suitability of the modeling methods, as well as the
ease of model interpretation is rarely discussed [9, 23–27].
In this review, we focus on an area of importance to policy
makers. We focus exclusively on how offense history and
crash history predict future FSI crashes and how such as-
sociations are best modeled. No previous reviews have
had this focus and a new quality assessment tool has been
developed specifically for this review because nothing suit-
able could be found.

Aims
The overall research question was to assess the state of
evidence for the prediction of FSI crashes from offense
history and/or crash history by completing a systematic
review of published literature and grey literature. Based
on the failure to identify a systematic review focused on
our research question and failure to identify a statistical
quality assessment tool, two specific aims were formed.
The first aim was to determine the type and quality of
statistical analyses applied to the prediction of FSI
crashes from driver offense and crash history. The qual-
ity of the papers included in the review was assessed
based on the reporting of statistical assumptions, the
reporting of statistical results, and the reporting of con-
siderations specific to the statistical methods used. The
second aim was to summarize the evidence and out-
comes of studies that include offense history and crash
history as predictors of FSI crashes.

Methods
Protocol and registration
The Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) were followed for the re-
view [28]. The protocol was registered with the Inter-
national Prospective Register of Systematic Reviews
(PROSPERO), registration number: CRD42019137081.

Inclusion and exclusion criteria
Individuals and outcome of interest
There were no restrictions on the type of individuals
(i.e., drivers) included in the review. Efficacy and out-
comes of interventions were not the subject of this re-
view. Rather, we were interested in how the prediction
of FSI road crashes has been modeled when described
by driver offense and crash history. FSI crashes are the
outcome of interest. A fatality is defined as a death that
results from a crash, while serious injury resulting from
a crash is defined as long-term impairment or loss of
body function, permanent serious disfigurement, severe
long-term mental, or severe long-term behavioral dis-
turbance or disorder, or loss of a fetus [1]. Studies that
examined crashes that did not result in fatalities or ser-
ious injury were not included in this review.
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Data
Only models based on observational data were included.
Data derived from laboratory tests, simulated data, self-
report measures, and driving simulations were excluded.
Studies that presented models built on qualitative data,
mixed qualitative and quantitative data, and simulated
data were excluded. Instantaneous traffic data used in
real-time traffic crash prediction were excluded because
these models typically apply only to a small section of
the road.

Model specifications
To be included in the review studies must have pre-
sented a quantitative model predicting FSI crashes for
individual drivers. That is, FSI crashes must be the out-
come variable. A model was excluded from the review if
the dependent variable included only minor crashes,
such as when those involved in the accident received
cuts and bruises and the vehicle had minor/repairable
damage. When the dependent variable included a com-
bination of serious and minor crashes, the model was
excluded. Models had to describe crash risk based on
driver offense and/or crash history. Models using longi-
tudinal data were included. Models that considered only
summarized country or state level offense and crash
data, rather than individual driver data as the unit of
interest, were excluded.

Study design
A study or report was included if it was a primary study
that presented a quantitative model predicting FSI
crashes. Study designs that were excluded included those
which reported only qualitative data, reviews, meta-
analyses, case studies, and any study that did not present
a model for crash prediction.

Publication date
Studies and reports published prior to 1984 were ex-
cluded because data without a digital format was rare
prior to this date, making statistical analysis difficult.

Search strategy
Four academic databases were systematically searched:
Australian Transport Index: ATRI database (via infor-
mat); Transportation Research International Documen-
tation (ITRD) database; Scopus; and Web of Science.
Search terms were chosen to identify papers that in-
cluded statistical models, serious crashes, and variables
related to the driver (Appendix S1). For example for
Scopus we used the following search string: (predict* OR
model) AND (“serious crash*” OR “serious accident” OR
“serious collision” OR “fatal accident” OR “fatal crash”
OR “fatal collision” OR “road deaths” OR “road fatal*”

OR “traffic fatal*” OR “collision fatal*” OR “accident
fatal*”) AND (driver).
Grey literature was also searched for government re-

ports of crash prediction. The grey literature search was
focused on, but not limited to, high-income countries
that have low road traffic fatality rates, as indicated by
the World Health Organization [29] (i.e., < 19.9 deaths
per 100,000 population per annum). This was to increase
the chance of identifying relevant reports in relation to
the time spent searching. The search for grey literature
utilized Google and Google Scholar to identify relevant
international organizations, their websites, and informa-
tion repositories. A total of 58 official government and
statistic websites were searched from 38 countries
(Appendix S2).
A forward and backward search was conducted on the

articles that met the inclusion criteria. Forward search-
ing involved identifying articles that cited the included
study. Forward searching was conducted in Scopus. The
backward search consisted of screening the references of
the included studies (Appendix S3).

Selection of studies
Initial search records were recorded in a Word docu-
ment. Every article title and the first author from each
article were systematically entered into the “find” func-
tion to identify and remove duplicates. The first author
conducted all searches, eliminated duplicates, screened
titles, and abstracts against the inclusion/exclusion cri-
teria, and produced a list for full-text screening. If the
full text was not available, the record was excluded from
the review at the title/abstract screen stage. An auditing
trail was created using an inclusion/exclusion checklist
for the full-text screen in Excel, in which reasons for ex-
clusion were recorded. Two authors screened studies at
the full-text stage in Excel; discrepancies were resolved
by a third author.

Quality assessment tool
Statistical models were assessed in three areas using a
purpose-made statistical quality assessment tool. Firstly,
the degree to which assumptions were met and whether
the method used in the study was appropriate. Secondly,
the validation of the statistical model presented includ-
ing whether the model had been validated using fresh
data allowing an evaluation of generalizability. Thirdly,
how adequately the authors reported the analysis proce-
dures used and the results.
The quality assessment tool was based on the Statis-

tical Analyses and Methods in the Published Literature
(SAMPL) guidelines [30]. Items from the guidelines were
rewritten as questions and additional items were added
when required (Table 1). The tool was divided into three
sub-sections. The “Reporting of statistical methods” sub-
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Table 1 Quality assessment tool

Sub-section
and area of
interest

Items

Section 1—Reporting of statistical analysis

Data quality Does the study report information about the research population?
Does the study report what type of data has been used for the analysis, whether it is primary data (collected
initially for the study) or secondary data (from a different source)?
If the study used secondary data does the study name, the databases which have been used for the analysis?
If the study has used different databases, does the study describe any linkage between the databases?
Does the study report whether the data set is a representative data set?

Preliminary
analyses

Does the study report any statistical procedures used to modify raw data before the analysis?

Primary
analyses

Does the study describe about the purpose of the analysis?
Does the study identify the variables used in the analysis and summarize each with descriptive statistics?
Does the study describe the main methods fully, for analyzing the primary objectives of the study?

Is the study clear on which method is used for each analysis, rather than just listing all statistical methods used in one place?
If the method includes any assumptions, does the study verify that the data conformed to the assumptions of the test used
to analyze them?
Does the study indicate whether and how any allowance or adjustments were made for multiple comparisons (performing
multiple hypothesis tests on the same data)?
Does the study report how it deals with missing data?
If relevant, does the study report how any outlying data were treated in the analysis?
Does the study report the alpha level (e.g., 0.05) that defines statistical significance?
Does the study report the name of the statistical package or program used in the analysis?
If the study needs to control any variables for its objective, does the study report it properly?

Supplementary
analyses

Does the study describe sensitivity analyses if applicable?
Does the study test for the underlying assumptions of the methods used in the analysis?
Does the study identify post hoc analyses, including unplanned subgroup analyses, as exploratory?
If there is an imbalance that exists in the outcome variable of the data set, does the study report how the training phase
overcome this issue?

Section 2—Reporting of results

Reporting
numbers and
descriptive stat
avg

Does the study report numbers—especially measurements—with an appropriate degree of precision. For ease of
comprehension and simplicity, rounded to a reasonable extent?
Does the study report total sample and group sizes for each analysis?
Does the study report numerators and denominators for all percentages?
Does the study summarize data that are approximately normally distributed with means and standard deviations (SD)?
Use the form: mean (SD), not mean ± SD?
Does the study summarize data that are not normally distributed with medians and interpercentile ranges, ranges, or both
(report the upper and lower boundaries of interpercentile ranges and the minimum and maximum values of ranges, not just
the size of t)?
Does the study report the variability of the data set using either standard deviations, inter-percentile ranges, or ranges (the SE is
an inferential statistic—it is about a 68% confidence interval—not a descriptive statistic)?
Does the study display summarized or exact data in tables?
Does the study display data in figures? Tables present exact values, and figures provide an overall assessment of the data?

Reporting risk
and ratios

Does the study describe the type of rate (e.g., incidence rates; survival rates), ratio (e.g., odds ratios; hazard ratios), or risk (e.g.,
absolute risks; relative risk differences), being reported?
Does the study describe the quantities represented in the numerator and denominator?
Does the study report the time period over with each rate applies?
Does the study report any unit of population (that is, the unit multiplier: e.g., × 100; × 10,000) associated with the rate?
Does the study consider reporting a measure of precision (a confidence interval) for estimated risks, rates, and ratios?

Validation Does the study describe methods of validation used in the training phase (e.g., cross validation, use of test/hold-out sample)?
Does the study describe the attempts to generalize the model beyond the immediate context?

Section 3—Method specific quality indicators

Regression
analysis

Does the study describe the purpose of the analysis?
Does the study confirm that the assumptions of the analysis were met? For example, in linear regression indicate whether an
analysis of residuals confirmed the assumptions of linearity.
Does the study report the regression equation for either simple or multiple (multivariable) regression analyses?
For primary comparisons analyzed with simple linear regression analysis, does the study consider reporting the results graphically,
in a scatter plot showing the regression line and its confidence bounds?
Does the study report the alpha level used in the univariate analysis?
Does the study report whether the variables were assessed for collinearity?
Does the study report whether variables were assessed for interactions?
Does the study describe the variable selection process by which the final model was developed (e.g., forward stepwise; best subset).
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section included assessments of data quality (5 items),
preliminary analyses (1 item), primary analyses (11
items), and supplemental analyses (4 items). The
“Reporting of results” sub-section was made up of items
assessing the reporting of numbers, descriptive statistics
and averages (8 items), reporting risk ratios (5 items),
and validation (2 items). The third section assessed
“Method specific quality indicators” for regression ana-
lysis (10 items), survival analysis (13 items), and struc-
tural equation modeling (5 items). Studies were not
assessed on items irrelevant to the methods used.

Quality assessment procedure
Included studies were quality assessed by two independ-
ent authors (SM and SS) using the purpose-made quality
assessment tool. The quality assessment tool was com-
pleted as a Google doc and automatically exported into
an Excel file for analysis. Disagreements were resolved
by a third author (DM). Items were allocated a score of
1 for yes, 0 for no, or NA for not applicable with higher
quality papers receiving higher quality scores. Sub-
section quality scores were calculated by averaging re-
sponses to reveal a quality score ranging from 1 when all
quality indicators were met, to 0 when no quality indica-
tors were met. When an item was not applicable, that
item was excluded from the mean score of that study’s
rating. Then each reviewers’ sub-section quality scores
were averaged to get a final quality score for every study

independently. Finally, the independently reviewed qual-
ity scores of the two reviewers were averaged to get an
overall quality measure for each study. Studies were then
categorized as scoring low (0 to 0.333), medium (0.334
to 0.666), and high (0.667 to 1.00); i.e., 1/3 = 0.333 with
one being the totality of all studies included in the
review.

Results
The flow of studies from identification, through screen-
ing for eligible inclusion, to the final synthesis, is pre-
sented in the PRISMA flowchart, Fig. 1. One thousand
one hundred and five records were identified. Of the 252
studies included in the full-text screen (Appendix S4),
243 were identified in the database search and nine were
identified in the forwards and backward search. Agree-
ment between the two reviewers (RS and SM) of the full
texts for inclusion was low (k = 0.469, p < 0.00). These
disagreements were resolved by a third author (SM),
resulting in twenty studies being included in the quality
assessment, comprising of data from a total of 2,379,862
individuals. The statistical techniques, findings, and
characteristics of the included studies are presented in
Table 2.

Vehicle type and population
Nine out of the 20 reviewed studies included all vehicle
types (i.e., cars, motorcyclists, and trucks). The

Table 1 Quality assessment tool (Continued)

Sub-section
and area of
interest

Items

Does the study report the regression coefficients (beta weights) of each explanatory variable and the associated confidence
intervals and P values, preferably in a table?
Does the study provide a measure of the model’s “goodness-of-fit” to the data (the coefficient of determination, r2, for simple
regression and the coefficient of multiple determination, R2, for multiple regression)?

Survival analysis Does the study describe the purpose of the analysis?
Does the study describe the dates or events that mark the beginning and the end of the time period analyzed?
Does the study specify the circumstances under which data were censored?
Does the study specify the statistical methods used to estimate the survival rate?
Does the study confirm that the assumptions of survival analysis were met?
For each group, give the estimated survival probability at appropriate follow-up times, with confidence intervals, and the number
of participants at risk for death at each time. It is often more helpful to plot the cumulative probability of not surviving.
For each group, give the estimated survival probability at appropriate follow-up times, with confidence intervals, and the number
of participants at risk for death at each time. It is often more helpful to plot the cumulative probability of not surviving.
Reporting median survival times, with confidence intervals, is often useful to allow the results to be compared with those of other
studies?
Does the study present the full results in a graph (e.g., a Kaplan-Meier plot) or table?
Does the study specify the statistical methods used to compare two or more survival curves?
Does the study report the P value, when comparing two or more survival curves with hypothesis tests?
Does the study report the regression model used to assess the associations between the explanatory variables and survival or time-
to-event?
Does the study report a measure of risk (e.g., a hazard ratio) for each explanatory variable, with a confidence interval?

SEM models Does the study report all the parameters and their standard errors?
Does the study report the reason for the choice of a clear and complete form of path model structure?
Does the study report the global indices of fit?
Does the study provide reasons as justification for omitted directed and non-directed arcs?
Does the study report alternative and equivalent models?
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remaining 11 studies explored the prediction of FSI
crashes from offense history and crash history using data
related to distinct vehicle types: buses (1 study), heavy
trucks (5 studies), and cars and light trucks (4 studies).
Seventeen studies used data representing the population,
three countries were represented—USA, Finland, and
Canada, and two states were represented—North Dakota
(USA) and South Australia (Australia). Of the studies
using sample data, one used a 20% representative sample
based on Israeli census data, one used data from six states
in the USA, and a third study selected various highways
within the USA state of Wyoming (Appendix S5).

Quality assessment
Overall, there was high agreement between the two re-
viewers of statistical quality (inter-class correlation coef-
ficient 0.919; Appendix S6). Fifteen studies used logistic
regression and most of these studies received quality

scores in the middle range (low = 3, middle = 12, high =
2). The only study to use structural equation modeling
also received a quality score in the middle range. One
study used a survival analysis, and one used a Poisson
multi-level growth curve model, both receiving a high-
quality score. Quality scores tended to be consistently
higher for more recently published studies (Table 3).
The improvement in quality seems to be led predomin-
antly by improved “Reporting of statistical methods,”
while the method specific quality indicators provide the
poorest results (Fig. 2).

Qualitative synthesis of study outcomes
Using binary logistic regression analyses, seven studies
reported that offense history predicts FSI crash involve-
ment. Perneger and Smith [32] found that having an in-
valid driving license or license suspension, or a prior
DWI (driving while intoxicated) conviction increases the

Fig. 1 PRISMA flowchart
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likelihood of initiating a fatal crash. Cooper [34] found
that fourteen conviction types increase the chance of be-
ing in a subsequent FSI crash; speeding and DWI con-
victions were the most important. These findings are
supported by Factor [41], who used traffic infringement
tickets as a predictor variable, and Rajalin [33], who
compared drivers who had had an FSI crash to those
who had not. Further nuance to the role of offense his-
tory is added by Kim et al. [36]. Offense history in-
creased the likelihood of having a crash regardless of the
number of vehicles involved. Additionally, those with
previous traffic offenses were less likely to survive a one
or two-vehicle crash, but more likely to survive a crash
involving three or more vehicles. Speeding violations
and a license suspension, rather than any other type of
offense, were associated with increased injury severity
[47].
Six studies using binary logistic regression reported

that both crash history and offense history increase the
likelihood of FSI crash involvement. The odds of a driver
making an error directly leading to an FSI crash in-
creased by approximately 27% if they had been

responsible for a previous crash, a driving infraction/vio-
lation, or speeding infraction [37, 38, 42]. Specifically,
driver error leading to an FSI crash increased by 13% if
the driver had one prior crash [43], 30% if the driver had
one or more prior crashes [40], and 39% if the driver
had three or more prior crashes [43]. Prior license sus-
pension was a strong predictor of driver error leading to
an FSI crash: one suspension increased the odds by 26%
[40, 43] and three or more prior suspensions increased
the odds by 33% [43]. Not only are offense history and
crash history associated with driver errors causing an
FSI crash, but they are also associated with the likeli-
hood of the driver being legally culpable. Predictors of
being legally culpable include a crash history, a DWI
conviction, a speeding conviction, and a license suspen-
sion in the 3 years prior to the crash [46]. Property dam-
age only crashes also predicted FSI crash involvement
[38]. Feng et al. [45] took a unique approach by group-
ing drivers on several characteristics. Middle-aged
drivers with a history of convictions had a low chance of
being involved in a crash involving more than two fatal-
ities. Young and elderly drivers with a history of

Table 3 Quality tool assessment results

Studies grouped by statistical technique Reporting of statistical
methods

Reporting of statistical
results

Method specific quality
indicators

Overall quality
score

Logistic regression

Perneger and Smith 1991 0.704 0.552 0.299 0.463

Rajalin 1994 0.193 0.391 0.000 0.146

Cooper 1997 0.372 0.188 0.444 0.362

Wundersitz et al. 2004 0.435 0.525 0.167 0.323

Kim et al. 2006 0.470 0.432 0.278 0.365

Blower and Green 2010 0.675 0.590 0.556 0.594

Malchose and Vachal 2011 0.646 0.449 0.500 0.524

Lueck and Murry 2011 0.333 0.382 0.111 0.234

Gates et al. 2013 0.741 0.617 0.611 0.645

Factor 2014 0.880 0.576 0.389 0.558

Reguly et al. 2014 0.907 0.636 0.556 0.664

Dubois et al. 2015 0.869 0.750 0.611 0.710

Kumfer et al. 2015 0.938 0.651 0.611 0.703

Feng et al. 2016 0.750 0.617 0.500 0.592

Li et al. 2017 0.697 0.464 0.997 0.755

Hamzeie et al. 2017 0.741 0.571 0.500 0.578

Mashhadi et al. 2018 0.696 0.569 0.500 0.566

Structural equation modeling

Yuan et al. 2019 1.000 0.387 0.600 0.647

Survival analysis

Lui and Marchbanks 1990 0.481 0.625 0.808 0.680

Poisson multi-level growth curve

Stringer 2018 0.958 0.504 0.778 0.755
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violations had a high chance of being involved in a crash
involving less than 3 fatalities [45].
Analyses other than logistic regression produced com-

parable findings. Based on longitudinal data, Stringer
[48] found that crash history and offense history signifi-
cantly predict future fatal crashes with crash history be-
ing the more important predictor. Yuan et al. [2019]
found that prior suspension and speeding convictions
are associated with fatal accidents. Finally, Lui and
Marchbanks [31] found that should a fatal crash occur
after license suspension, a conviction, or prior crash, it is
likely to occur within 5 years. While the predictors of
FSI crashes have been identified, these findings cannot
be verified given that most of these studies were assessed
as having only low to middle quality in our quality
assessment.

Critical discussion
Strengths of logistic regression in this context
There are several reasons for the popularity of logistic
regression. Logistic regression has many different forms
allowing its use for conditional logistic regression with
matched-pairs data [32, 45]; ordinal and nominal logistic
regression when the dependent variable has several cat-
egories [45, 47]; direct logistical regression when no pre-
dictor variables are considered more or less important
than the others [37]; sequential logistic regression when
confounding variables need to be controlled [41, 43];
stepwise logistic regression when an exploratory

approach is needed [49]; and censored regression when
data for the dependent variable is incomplete [36]. Fur-
ther, the assumptions for logistic regression are lenient.
Also, logistic regression can perform several functions. It
can predict group membership, identify important pre-
dictors, identify interactions among predictors and pro-
vide odds ratios for quantifying the effects of predictors.
Moreover, the accuracy of logistic regression models is
easily assessed using a variety of measures including the
proportion of variance in the dependent variable ex-
plained by the predictors, using pseudo R squared
values.

Weaknesses of the use of logistic regression in this
review
Most of the papers that applied a logistic regression model
in this review was rated as “medium” quality. There were
striking statistical deficiencies found in these studies.
Firstly, the selection of predictor variables and the number
of predictors included often appeared to be made post
hoc, i.e., inclusion was justified only after the model was
created. Given the scope of variables available from large
population databases recording fatal crashes, a surprising
observation was that only five studies [32, 37, 40, 43, 49]
described the variable selection process used. While the
practice of post hoc justification of predictors is common,
it is damaging to the integrity of findings and real-world
implications. Logistic regression is often used to inform
life and death decisions; therefore, inadequate or poor a

Fig 2 Quality assessment sub-section scores for included studies
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priori variable selection may indeed lead to unwanted
consequences.
Secondly, of vital importance to the quality of analyses

and subsequent confidence in findings is the adherence
to underlying statistical assumptions. Only two studies
using logistic regression confirmed that the assumptions
were met [46, 47]. Particularly problematic within the
studies using logistic regression was the failure to check
for correlations between predictor variables (multicolli-
nearity) and interactions. Of studies using logistic re-
gression, only two studies reported checking
multicollinearity [44, 46], and only five studies, checked
for interactions [40, 42–44, 46]. The presence of multi-
collinearity and interactions within the predictor vari-
ables artificially increases their ability to predict FSI
crashes and makes interpretation of odds ratios prob-
lematic. Not meeting these assumptions raises questions
about the validity of the results.
A critical observation repeatedly made by reviewers of

statistical models is the inclusion of unwanted correlations
in data. Examples are, serial correlation, i.e., correlation
over time [18], spatial and temporal correlation between
predictor variables, and correlation between predictor var-
iables and error [20]. The inclusion of these correlations
in data results in incorrect inferences being made from
the results. To illustrate the problem, helmet use may ap-
pear to reduce crash fatalities, yet when a biological or
psychological predisposition to risk predicts both helmet
use and crash involvement, helmet use may no longer be a
significant predictor of fatalities. This argument is sup-
ported by a clear relationship between sensation seeking
and risky driving [51]. The problem of unwanted correl-
ation in the data is relevant in this review, when contem-
poraneous offense and crash data are considered. It is
important to note that there is likely to be a two-way rela-
tionship between offense history and crash history in this
context. Not only is someone with an extensive offense
history more likely to have a crash. In addition, it is likely
that a crash caused by a driver will lead to the driver being
charged with an offense [49].
The third weakness identified in the reviewed studies

using logistic regression is the lack of validation. For ex-
ample, none of the studies reported the results of a Hos-
mer Lemeshow goodness of fit test or areas under the
receiver operating characteristic curve. Validation of
final models using new data and the use of validation
during model creation was not conducted anywhere in
the reviewed literature. Given the pervasive international
interest and enormous volume of publications on FSI
crashes, the lack of validated models that predict FSI
crashes from offense history, crash history, and licensing
variables is an important limitation. However, one of the
papers in this review [46] did conduct two sensitivity
analyses for their models. One of these sensitivity

analyses tested their model with data from the USA
states that accounted for more than 80% of FSI crashes
in the USA and the second sensitivity analysis tested the
model on data for two different time periods.
The fourth major limitation is lack of effective calibra-

tion of the models, considering any imbalance in the
data in order to provide accurate estimates of classifica-
tion accuracy. Indeed, no study in this review presented
a confusion/classification matrix to evaluate how well
the model classified participants into the correct cat-
egories. Both validation and calibration must be con-
ducted after a model has been created to confirm its
classification accuracy [52].
Taken together these four deficits within the literature

using logistic regression models, drastically lowers confi-
dence in the overall findings that offense history or crash
history can accurately predict future FSI crashes.

Critical summary of other modeling techniques utilized in
this review
Three studies used a modeling technique other than lo-
gistic regression: survival analysis [31], Poisson multi-
level growth curve modeling [48], and structural equa-
tion modeling [50]. The use of survival analysis was
largely responsible for Lui and Marchbanks article [31]
receiving a high-quality score, with many statistical con-
siderations not being applicable. However, lacking within
the study was a description of how raw data was treated,
whether preliminary analyses were conducted, and the
reporting of descriptive statistics. These limitations re-
duce the generalization and utility of the model.
A Poisson multi-level growth curve model was used by

Stringer [48] to address the question, “What is the prob-
ability that in a given period an FSI crash will occur?”
Stringer [48] received the highest quality score among
the included studies, suggesting that this paper was the
most rigorous. The weaknesses identified in Stringer
[48] did not seriously undermine the validity of the re-
sults. The most important result was based on longitu-
dinal data; crash history and offense history significantly
predict future fatal crashes with crash history being the
more important predictor. Weaknesses were failure to
report the statistical packages used and descriptive sta-
tistics for the included variables. In addition, there was
no model validation attempt so the extent to which the
model has general application is unknown. Notable
strengths of the study were the use of a Poisson distribu-
tion to avoid overestimation of zero values, the use of
longitudinal data, and rigorous checks of the model
assumptions.
Yuan et al. [50] used structural equation modeling to

make sense of a broad range of variables involved in FSI
crashes. Structural equation modeling allows for the
modeling of latent constructs using measurement
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models and for path models used to assess relationships
between variables that are measured (observed) or latent
(not observed) or both. An example of a latent variable
constructed in this paper is “Driver Factors” made up
from the following measured variables-seatbelt use, driv-
ing expertise, offense history, crash history, and gender
(measurement model). “Driver Factors” was used to pre-
dict two other latent variables, “Truck Occupant” and
“Accident Size,” using a path model. This technique was
appropriately used by Yuan et al. (2019) as they had a
large data set, appropriate measures for the latent vari-
ables which met the underlying model assumptions, and
appropriate values for the goodness of fit indices.

Recommendations for future research of FSI
crashes using offense history and crash history as
predictor variables
There are multiple recommendations for future statis-
tical modeling of FSI crashes from offense and crash his-
tory based on the reviewed literature. Firstly, when using
population data, and data containing a large number of
variables, the use of statistical significance indicators
such as p-values are inappropriate. For example, tests of
predictor coefficients will inevitably result in multiple
type 1 errors. Instead, researchers need to follow and re-
port rigorous methods of variable selection prior to
commencing the main analysis. Secondly, future re-
search needs to test and report the checking of statistical
assumptions and models need to be validated using fresh
data. In addition, classification accuracy needs to be re-
ported considering any imbalance in the crash data. The
underreporting of crashes has previously been argued to
create a non-random data set, violating traditional statis-
tical assumptions [20], but this is unlikely for FSI
crashes.
Thirdly, machine learning should be utilized to over-

come the problem of unwanted correlations in the data
when there are very large sample sizes. These methods
do not rely on p values for model selection purposes.
For example, random forest can accommodate interac-
tions between predictor variables and can sort the pre-
dictor variables according to their importance [21].
Importance ranking is crucial when there are many pre-
dictor variables and there is a need for organizations to
identify the most important variables for policy changes.
Similarly, to random forest models, gradient boosting al-
gorithms may be useful in that they can handle large sets
of predictor variables and interactions. The advantage of
these models is their ability to more accurately classify
minority classes. However, careful considerations for the
tuning of the parameters during the training phase, often
involving cross-validation, is needed in order to avoid
overfitting. Unfortunately, interpretation of random for-
ests and gradient boosting is difficult. This makes the

results harder to explain to non-technical audiences
compared to the results of traditional statistical models
such as logistic regression models which provide odds
ratios with 95% confidence intervals.
Another prominent issue faced by researchers analyz-

ing FSI crash data is the prevalence of highly imbalanced
data sets with respect to the class of the dependent vari-
able. Most drivers have no history of being involved in
an FSI crash. This imbalance in the number of drivers
who have and who have not been involved in an FSI
crash is problematic for statistical models attempting to
classify drivers as being at risk of FSI crash involvement
as models developed using imbalanced data tend to
struggle to correctly classify those in the minority class
(i.e., drivers most at risk of FSI crash involvement). In
order to overcome this problem, researchers should con-
sider using techniques such as the synthetic minority
over sampling technique (SMOTE) which allows over-
sampling of the minority class in a representative man-
ner. Another consideration for researchers is the use of
hidden Markov models or recurrent neural networks to
identify drivers more a risk of an FSI crash. These
methods could use the past sequence of offenses to pre-
dict the probability of a future FSI crash.
Finally, there is a need for the use of statistical quality

assessment tools in future reviews of the crash literature.
It is hoped that future reviews of the FSI and broader
crash and transportation literature will refine and use
our tool to assess the quality of statistical analyses. This
is important because a failure to identify poor statistical
analysis in reviews may lead to incorrect conclusions
and misinformed policy. The use of a standardized as-
sessment tool improves the objectivity of a review’s find-
ings. Such tools are easy and quick to use, also allowing
comparisons between reviewer scores and ensuring that
all studies are assessed on the same characteristics.

Limitations of this review
Language and geographical bias limited this review.
Similar to other reviews of related topics [20, 53], the
bulk of the research was conducted in the USA. We
considered only articles written in English and the grey
literature review was confined to higher-income coun-
tries with lower road death rates. The review was limited
to a qualitative synthesis of included studies as a meta-
analysis was deemed inappropriate. This was because
most models reviewed included many predictor variables
in addition to our predictors of interest, namely, offense
history and crash history. Further limitations were the
time and scope of the search protocol. Despite searching
four prominent databases, it is possible that further ap-
plicable publications were missed. The lack of search
terms for specific offenses (e.g., “speeding,” “drink driv-
ing”) may have limited the identification of additional
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studies present in the databases that were searched.
Additionally, one author conducted the screening of
identified records and abstracts potentially introducing
bias and missed studies. The applicability of our findings
is limited to high income developed countries, as FSI
crashes are not rare and offense history may not be reli-
able in countries with low and middle incomes.

Conclusions
This review contributed to the literature in multiple
ways. The study developed a statistical quality assess-
ment tool and demonstrated how it can be utilized when
presenting evidence of FSI crash prediction. The review
identified that multicollinearity, model validation, and
appropriate methods for the selection of predictor vari-
ables remain problematic in studies predicting FSI
crashes from offense and crash history. However, the
most recent studies reported more rigorous modeling
practices. Future studies modeling FSI crash risk using
offense and/or crash history should consider employing
machine learning methods to overcome some of the key
limitations of the traditionally used statistical techniques
identified in this review. Seven out of the 15 studies
using logistic regression reported an association between
offense history and FSI crashes. Suspension bans and
crash history were also commonly reported as having an
association with FSI crashes.
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