
EURASIP Journal on Image
and Video Processing

Johnston and Chazal EURASIP Journal on Image and Video
Processing  (2018) 2018:86 
https://doi.org/10.1186/s13640-018-0324-4

REVIEW Open Access

A review of image-based automatic facial
landmark identification techniques
Benjamin Johnston1,2* and Philip de Chazal1

Abstract

The accurate identification of landmarks within facial images is an important step in the completion of a number of
higher-order computer vision tasks such as facial recognition and facial expression analysis. While being an intuitive
and simple task for human vision, it has taken decades of research, an increase in the availability of quality data sets,
and a dramatic improvement in computational processing power to achieve near-human accuracy in landmark
localisation. The intent of this paper is to provide a review of the current facial landmarking literature, outlining the
significant progress that has been made in the field from classical generative methods to more modern techniques
such as sophisticated deep neural network architectures. This review considers a generalised facial landmarking
problem and provides experimental examples for each stage in the process, reporting repeatable benchmarks across
a number of publicly available datasets and linking the results of these examples to the recently reported
performance in the literature.
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1 Introduction
The accurate identification of specific facial features and
landmarks is a foundational process by which a number
of more complicated image analysis problems are solved.
Tasks such as facial identification, expression analysis, age
estimation, and gender classification are often built upon
a facial landmarking component in their methods [1, 2].
The use of image-based automated facial landmarking has
been extended outside of the domain of image research
and into other applications, including some within the
medical field. Conditions such as facial palsy, facial paral-
ysis, and even sleep apnoea are either characterised by
or associated with unique facial structures that enables
the use of facial landmarking as a useful research or even
screening tool. Very recently, Guarin et al. [3] described
an automated facial landmarking tool which is used in
the characterisation of facial displacements in sufferers of
facial palsy; while the work by Anping et al. [4] uses land-
marks as predicted by Active ShapeModels to assess facial
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nerve paralysis. The use of facial landmarking methodolo-
gies has been recently examined as a means of screening
for sleep apnoea by Tabatabaei Balaei et al. [5], looking at
the association between the underlying structure of pre-
dicted facial landmarks and the likelihood of suffering
from obstructive sleep apnoea. The authors of this review
have also investigated the use of facial landmarks in sizing
sleep apnoea masks [6], a critical device in sleep apnoea
treatment. Given the wide variety of applications in which
facial landmarking is applied, and in the case of medi-
cal applications the critical nature of the tasks it is vital
that the systems be capable of accurately identifying the
landmarks of interest.
While the process of identifying features such as the cor-

ner of an eye on a face is a natural and instinctive task
for human vision; it has proven somewhat more challeng-
ing for computer vision, which has not benefited from
millenia of evolution. Despite the overall similarity in the
general content of facial images, common differences such
as variation in pose, lighting, facial expression, and varia-
tions in the facial features themselves can be problematic
for many computer vision systems leading to significant
errors in landmarking accuracy.
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The intent of this paper is to review the current state
of automated image-based facial landmarking processes
and provide a comparison of the performance achieved
by some of these methods. This paper aims to build upon
the comprehensive review completed by Çeliktutan et al.
[7]. Since the publication of this article in 2013 increases
in computing power through the reduction in the cost of
GPUs, in addition to an increase in the availability of large
datasets has enabled the development of highly accurate,
though computationally expensive methods. While not
covered within this review, readers may also be interested
in the automated detection of facial landmarks in three-
dimensional models. With the improved availability and
reduced cost of three dimensional scanners such as the
Kinect or even those found in late model smartphones, 3D
facial models are more readily available for analysis. While
in some respects, automated 3D facial landmarking has
evolved from its 2D counterpart, significant differences
exist in the current focus of research. Three-dimensional
landmarking currently uses a series of powerful geometric
descriptors to both interpret and summarises the complex
information encoded within the 3D model. Marcolin and
Vezzetti describe 105 novel descriptors [8] mapped on 217
facial depth maps to generate a set of landmarks within
a number of different facial expressions. Similar descrip-
tors used by Vezzetti et al. in 2017 [9] achieved a mean
localization error of 4.75 mm in facial scans containing
differing emotions as well as the presence of occlusions,
such as fingers or hands covering the face.
The structure of this review will differ somewhat to pre-

vious image processing surveys. This discussion will occur
within the framework of a generic process for construct-
ing an automated facial landmarking model; reviewing the
state of the art at each stage of model construction. The
details of this structure will be outlined in more detail in
the next section; however, it is intended that reviewing the
literature in the framework of a generic process will pro-
vide the reader with more clarity of the progress that has
been made within the field. To further support the review,
stages 2, 3, and 4 also contain experimental components
with the intent of improving reader understanding of the
corresponding stage. For a high performing, automated
landmarking algorithm, it is important that each stage
in constructing an automated methodology be carefully
considered and appropriate design choices made. By dis-
cussing the state of the art within the context of these
stages, the authors hope the reader is able to more com-
pletely understand the current state of the art.

2 Review
2.1 Generic model construction
While there are many differences between the various
applications and methods of automated facial landmark-
ing, it is possible to describe a generic process by which

almost all models are created. This process which is
not necessarily unique to facial landmarking provides an
effective means for comparing different methodologies.
We will define the generic model construction process as
comprising five stages:

1 Definition of the objective: what is the exact nature
of the problem to be solved?,

2 Selection of an appropriate dataset for solving the
defined problem: what information is required to
meet the objective?,

3 Extraction of regions of interest from the dataset:
what features from the selected dataset will best meet
the defined objective?,

4 Definition of model architecture: which model will
give the best performance? and

5 Model training and evaluation: what is the best
training methodology given all of the above stage?

Each of the following sections will discuss in detail each
stage of the generic model construction process.

2.2 Stage 1: objective definition
The objective definition is arguably the most important
step in the model construction process. A clear, con-
cise, and correct definition of what is to be achieved is
crucial as it forms the basis of all other steps, design deci-
sions, and is often a platform for solving more complex
problems. Wu et al. in 2012 [1] used facial landmarks
to assist in age estimation and face verification; Devries
et al. [2] used landmarking in facial expression recognition
while Tabatabaei Balaei et al. [5] investigated the use of
facial landmarks as a means of determining the likelihood
that an individual sufferer from obstructive sleep apnoea
(OSA).
This review paper will not consider any higher level

applications and will define the objective definition for
the generic model construction process as

Aiming to construct an automatic facial landmarking
system with performance comparable to that of an
expert human annotator

2.2.1 Measuring performance
Performance metrics will vary depending upon the objec-
tive definition; Devries et al. [2] used expression classifica-
tion accuracy while Tabatabaei Balaei et al. [5] measured
performance based on rates of correct OSA diagnosis.
While these measures determine overall system perfor-
mance, measuring facial landmarking accuracy is required
to ensure landmark predictions are acceptable. This is
completed by comparing the predictions made by the sys-
tem to a set of ‘ground truth’ landmarks which have been
manually annotated by one or more human experts (see
Figs. 1 and 2).
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Fig. 1 Example annotated image. Example training image provided
for the second facial landmark localisation competition held in
conjunction with International Conference on Computer Vision and
Pattern Recognition (CVPR) 2017 [57]

The simplest comparison is a root mean squared error
(RMSE) assessment; where the average distance between
each of the N predicted landmarks (xpi , y

p
i ) and the corre-

sponding ‘ground truth’ (xti , yti) is calculated on a per land-
mark basis. Landmarks that are poorly predicted will be
positioned far their corresponding ground truth locations
and thus contribute to increasing the RMSE value. Often
the root mean squared error is normalised by the distance
between two specific ‘ground truth’ points (NMRSE) such
as the left (xtle, y

t
le) and the right (xtre, ytre) outer corners of

the eyes dnorm (see Eq. 2) [10] to allow a fair comparison
between faces of different sizes

RMSE = 1
N

N∑

i=1

√(
xpi − xti

)2 + (
ypi − yti

)2, (1)

NRMSE = 1
N

N∑

i=1

√(
xpi − xti

)2 + (
ypi − yti

)2

dnorm
, (2)

dnorm =
√(

xtle − xtre
)2 + (

ytle − ytre
)2 (3)

When comparing the performance of different land-
marking algorithms against the same dataset, the average
RMSE or NRMSE value over the number of samples in
the dataset (K) may simply be reported. A more detailed
summary of themodel performance can be provided using
the cumulative error distribution (CED), which plots the
cumulative NRMSE against the proportion of images with

an NRMSE of less than or equal to a particular value (e.g.
Figs. 11, 12, 13, 14, 15, 16, 17, and 18).
A less frequently reported metric is the landmark detec-

tion rate, i.e. the proportion of the N landmarks from the
K images, correctly identified by the system. A landmark
is correctly identified if its position is less than a defined
Euclidean distance from the ‘ground truth’. Similarly to the
mean squared error calculations, landmark detection rate
can also occur on a per-image, per-landmark, and overall
average basis.

Throughout this review paper we will use normalised
root mean squared error (NRMSE), providing
point-to-point CED plots to compare the performance
of different landmarking methodologies.

2.3 Stage 2: dataset selection
A correct and appropriate selection of a dataset is cru-
cial for the development of any predictive algorithm. The
selected dataset must contain features with sufficient pre-
dictive power that the training process can ‘learn’ the
relationships within the data. For many problems, such as
the prediction of obstructive sleep apnoea [5] a custom
dataset is required which itself may be subject to iterations
of improvement to ensure the most appropriate features
are being used.
For many facial analysis problems, there exists large,

publicly available databases with rich feature sets (see
Table 1). The datasets can be divided into two cate-
gories: those produced within a controlled environment
and those produced in an uncontrolled environment. The
development of social networks such as Facebook and
Flickr, image search engines such as Google Images and
the ability to obtain images at mass from these sites has
enabled the construction of large datasets of facial images
in various, uncontrolled situations. These ‘in-the-wild’
datasets have proven vital for facial landmarking/analysis
problems where it is important to achieve high levels of
accuracy without the burden of maintaining a controlled
environment.
While many datasets are available for use, it can be

seen in Table 1 that there is little consistency amongst
the different sets. They have different numbers of sam-
ples, image resolutions, and configurations of ground
truth landmarks. Some sets have multiple subjects in
some images, while others have multiple images for some
subjects. Many in-the-wild datasets are built from web
links which may not still be valid. While such data
variety is useful, it can lead to difficulties in compar-
ing the performance of facial landmarking algorithms.
Unlike image classification problems which often state
performance using standard reference datasets such as
MNIST and CIFAR, facial landmarking literature has
not benefited from a common means of comparison.
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Fig. 2 Examples from public face datasets. These images demonstrate the variety of image types and landmark configurations available within
public face datasets. aMULTI-PIE [75], bMUCT [76], c XM2VTS [77], dMenpo (Profile ) [78], e AFLW [79], f PUT [80], g Caltech 10K [81], h BioID
provided by BioID AG. ©2001 [82], and i HELEN [83]

This problem was identified by Sagonas et al. dur-
ing the design of the 300W faces in-the-wild challenge
[11]; recognising the variation in annotation schemes
between public datasets, Sagonas and colleagues pro-
posed a semi-automatic landmarking tool [12] to pro-
vide a single annotation schema (MULTI-PIE/IBUG 68pt)
for a number of datasets. This work provided the
field with a means of comparing different landmark-
ing methodologies, while utilising the existing datasets.
Subsquent to the second faces in-the-wild challenge
[10], the 300W dataset has been used for performance
comparison outside of the context of the landmarking
competition [13].

This study reviews and compares the current state of the
art in facial landmarking methodologies. To enable this
comparison, we require datasets which contain the same
landmarking configuration.

The MULTI-PIE landmark configuration as illustrated
in Fig. 3 will be used. This configuration is present
within many of the datasets contained within Table 1,
including the Menpo and 300W datasets.

2.3.1 Ground truth reliability
With the exception of the annotations provided by
IBUG through their semi-automated annotation tool, face

https://www.bioid.com/About/BioID-Face-Database
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Table 1 Selection of publicly available facial landmarking databases

Name Images Subjects Landmarks Description Year

XM2VTS [77] 2 360 295 68ptsa Controlled, 2 head 1999

(720× 560) rotation images, 6 images

RGB captured during speech

BioID [82] 1 521 23 20 Controlled, front on image, 2001

(384× 286) varying expressions

Grayscale

LFW [84] 13 233 5749 (1680 MULTI-PIE Uncontrolled, originally 2007

(250× 250) have≥ 2 images 68ptsa intended for face identification,

mostly RGB in the set) images collected from the web

Caltech [81] 7 092 varied size Unknown (10 4pts Uncontrolled, images collected 2007

10 000 mostly RGB 524 faces in from Google images

web faces 7 092 images)

PUT [80] 9 971 100 30 primary Controlled, 2008

(2048× 1536) RGB (194 control portrait images,

on subset) 5 poses per subject

MULTI-PIE [75] 755 370 337 68pts Controlled, 2008

(3072× 2048) RGB landmarks for subset,

varying expressions

MUCT [76] 3 755 276 XM2VTS 68pts +4 Controlled, 5 perspectives 2010

(640× 480) RGB around eyes (76 total) 3 lighting conditions

Neutral expression or smile

AFLW [79] 2 330 varied Unknown PUT 97ptsa Uncontrolled, 2012

size RGB portrait images, collected

from the web (Flickr)

HELEN [83] 2 330 Unknown PUT 97ptsa Uncontrolled, collected 2012

RGB from the web (Flickr)

300W [10, 11] 600 varied Unknown MULTI-PIE 68pts Uncontrolled, 300 outdoor 2013

size RGB images 300 indoor images

difficult poses and expressions

Menpo benchmark [78] 8 979 varied Unknown Frontal: MULTI-PIE Uncontrolled, 6679 frontal 2017

size RGB 68 pts Profile: 39pts images 2300 profile images

difficult poses and expressions

aThe Intelligent Behaviour Understanding Group (iBUG) [71] have made MULTI-PIE 68pts landmarks available for this dataset

datasets require the use of a human annotator(s) to man-
ually identify the fudicial points within the images. This
task is critical as any annotation errors will be learnt by
the algorithm being trained.

2.3.2 Landmark variability survey
To demonstrate the variability of ground truth landmarks,
we performed a study using 20 ‘workers’ on Amazon

Mechanical Turk (https://www.mturk.com), who were
instructed to identify the MULTI-PIE ground truth land-
marks on a single face image. During the study, each
annotator used the web-based based ‘turkmarker’ tool to
select the location of each point on the image; ensuring
all points were selected, in the correct configuration, and
that all results were correctly recorded. In the current lit-
erature, ground truth landmarks are typically reported as

https://www.mturk.com
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Fig. 3MULTI-PIE landmark configuration. The MULTI-PIE landmark
configuration within the MUCT [76] dataset

being annotated by ‘experts’. For the purpose of our study
the, Mechanical Turk workers were experts.
The turkmarker system is made publicly available for

use or modification by the authors through GitLab
(https://gitlab.com/docEbrown/turkmarker). A demon-
stration of the site can also be found via http://
benjohnston.info/turkmarker-gh-pages/index.html.
The positions of the ground truth landmarks, identified

by the 20 ‘expert’ annotators, are illustrated in Fig. 4. This
figure shows that there is increased agreement amongst
the annotators regarding the positions of the landmarks

on or around the nose, eyes, and the outer border of the
lips, compared to the border of the face, eye brows, or
joining line of the mouth. It is also interesting to note that
while the border of the face was arguably more difficult
for the annotators, there is a relative reduction in vari-
ability regarding the position of the tip of the chin. These
observations are in agreement with Sagonas et al. [10] who
performed a similar experiment with three ‘expert’ anno-
tators and found that it is easier to identify landmarks that
lie on distinctive boundaries or junctions such as the cor-
ners of the eyes. The raw data and analysis of the results of
this survey and the other experimental components of this
paper are available online for reference through GitLab.
Given the variation that occurs between different types

of landmarks, it is important for achieving accurate pre-
dictions that this variation also be considered at the
time of dataset selection. Some landmark configuration
schemes, such as me17, possess more landmarks at posi-
tions with high agreement and if suitable for the problem
being solved could improve accuracy. This survey demon-
strates the importance of using multiple experts in the
ground truth landmarking process to reduce annotator
bias.

2.4 Stage 3: regions of interest
The next stage is to extract only those features from the
data relevant for solving the defined problem. For auto-
mated facial landmarking we must detect and extract the
face of interest from the image and discard irrelevant
information such as the background. This face detection
process forms the first stage of an automated landmarking
system and is critical for overall performance. The system
must accurately identify and locate the face(s) within the

Fig. 4 Ground truth variation. a Ground truth landmarks provided by individual annotators. Landmarks in red are the individual positions provided by
the annotators, while the yellow points indicate the mean position for each of the landmarks. b Ground truth landmarks variation. Points in red are
the mean positions for each landmark, while the major and minor axes of the blue ellipses indicate the x and y variance of the ground truth positions

https://gitlab.com/docEbrown/turkmarker
http://benjohnston.info/turkmarker-gh-pages/index.html
http://benjohnston.info/turkmarker-gh-pages/index.html
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image, given variations in lighting, pose, expression, and
face appearance. All images must first pass through a face
detector to extract only the important region(s) of interest
(ROI) from the data.
As this article focuses on facial landmarking techniques,

we only provide a brief overview of face detectors.
For the purpose of this article:

We will define the region of interest to be extracted
from each image to be a single human face.

Two foundational methods of face detection, which
are used as benchmark methods are the Viola-Jones [14]
and Histogram of Gradients (HOG) [15] methods. These
methods while not currently state of the art achieve
reasonable accuracy, processing speed, and are in many
‘off-the-shelf ’ implementations such as in OpenCV [16]
and Dlib.
The Viola-Jones method uses a combination of two

main techniques: the representation of Haar-like features
through construction of an ‘integral image’ and a series
of ‘weak’ classifiers boosted using the Adaboost learning
algorithm. At the very last stage of the cascading classifier
is a high-performing perceptron and a decision thresh-
old. Using the boosted classifiers and the perceptron layer
Viola-Jones were able to produce a high performing sys-
tem. While generally not used in more modern applica-
tions, Viola-Jones face detection still holds its place in
literature as an effective reference method.
Dalal and Triggs [15] proposed the HOG method

which produced near-perfect pedestrian detection rates
on the MIT pedestrian database. This method converts
the image into a series of histograms based on the orien-
tation and magnitude of pixel gradients within the image.
An SVM classifier is then used to identify the face within
the image based on the values of the histogram. This
unique pixel gradient signature has proven to be useful
in detecting faces in other image sources such as Li et al.
[17] who used camera depth information, as well as clas-
sifying if eyes are opened or closed within an image [18].
While HOG may no longer be considered state of the art,
the method is still demonstrating its relevance and flexi-
bility through its direct application in hardware. Suleiman
and Sze in 2016 [19] were able to acheive object detection
within 1080HD video at 60 frames per second while only
consuming 45.3 mW of power. Suleiman and Sze propose
the use of their hardware in embedded, real-time sys-
tems which need to minimise power usage. This hardware
based HOG system has a significant power consumption
advantage over more modern object detection methods
that require the use of a dedicated GPU; as an example, the
more recent Nvidia GTX 1080TI GPU consumes 250W
of power and recommends a 600 W system power supply,
essentially eliminating their use in embedded systems.

First investigated in the early 1990s [20], the use of
convolutional neural networks (CNN) in face detection
has recently been the focus of much research effort.
In 2007, Osadchy et al. [21] demonstrated the perfor-
mance benefit that can be obtained through the use of
CNNs and multi-task learning. Their method trained a
CNN (with a similar architecture to the LeNet5 [22])
to map images of faces into a low-dimensional manifold
space, parameterised by the pose of the face. In Osad-
chy’s opinion, solving the problem of identifying the face
and determining pose are quite related, so that when the
two tasks are trained together, an improved performance
would be achieved when compared to using separate
networks.
Theuse of a cascade of CNNswas proposed byHaoxiang

et al. in 2015 [23] and demonstrated an improvement on
the state-of-the-art performance against the Face Detec-
tion Data Set and Benchmark (FDDB) [24]. Their method
consists of a cascading series of three CNN stages. Each
stage is used to detect faces at different resolutions, given
potential location windows for a face from the previous
stage; where the potential detection window for the first
stage is defined as the entire image. Each of the three cas-
cading stages are themselves composed of two separate
CNNs, one designed to detect faces within the potential
detection window at the given resolution and the fol-
lowing designed to calibrate the bounding boxes of the
detected faces to ensure the optimal bounding box for a
face is passed onto the next stage.
More recently, an implementation of region-based con-

volutional neural networks (R-CNNs) claimed to achieve
the best performance to date on FDDB amongst pub-
lished results [25]. Region-based CNNs by Girshick et al.
in 2014 [26, 27] apply a CNN to warped ‘category indepen-
dent’ regions of an image previously computed by a first
stage region proposer such as selective search [28]. The
method by Sun and colleagues pre-trained a model using
the WIDER-FACE database [24] with hard-negative rein-
forcement and a feature concatenation stage [29]. Feature
concatenation combines the features of selected convolu-
tional layers before they are passed onto the subsequent
layers in the network. These extracted features provide
greater granularity of the through the combination of
high- and low-level convolutional layers.
Other recent studies have investigated the use of CNNs

in conjunction with other classification techniques: Zhan
et al. in 2015 [30] and Tao et al. in 2016 [31] used
CNNs in combination with AdaBoost and SVMs, while
Wang et al. in 2016 [32] used a multi-task learning
approach combining classification of the presence or
absence of a face in addition to the coordinates of the facial
bounding box.
For further details on face dection the authors recom-

mend [33, 34].
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2.4.1 ‘Off-the-shelf’ face detector performance
This section provides an experimental performance com-
parison of the OpenCV [16] implementation of the Viola-
Jones algorithm as well as the Dlib [35] version of a HOG
face detector [15]. This section provides the reader with
an expectation of the typical performance that can be
obtained using one of these ‘generic’ face detectors and
the value of a specifically trained face detector. The source
code for this analysis can be obtained from https://gitlab.
com/docEbrown/FacialLandmarkingReview.

2.4.2 Methods
The target face bounding boxes for the BioID, HELEN,
MUCT, 300W, and Menpo datasets were computed.
The ground truth bounding box was determined by the
extremes of the ground truth landmarks for each image,
i.e. the minimum and maximum values for x and y. A face
was labelled as detected if the bounding box returned by
the detector and the ground truth bounding box over-
lapped by at least 50%
Each of the four pre-trained classifiers of the OpenCV

and Viola-Jones algorithm [16] were applied to each of
the data sets: OpenCV 1(uses the haarcascade_frontal-
face_default.xml), OpenCV 2 (haarcascade_frontalface_
alt.xml), OpenCV 3: (haarcascade_frontalface_alt2.xml),
and OpenCV 4 (haarcascade_profileface.xml. The pro-
file face detector (OpenCV 4) was not applied to the
BioID and MUCT datasets as these images only con-
tain front-on faces. As per the OpenCV documentation,
the default parameters for each detector were used. The
Dlib [35] HOG-based face detector was also applied to
each of the datasets using default values as per the Dlib
documentation.

2.4.3 Results
Tables 2, 3 , and Figs. 5 and 6 summarise the results
obtained from applying each of these face detectors to the
datasets listed above, with some images in the HELEN,
300W, andMenpo datasets containing multiple faces. Due
to the lack of bounding boxes or landmarks for the addi-
tional faces, the results count the detected, additional

faces in the image which are not the ground truth as false
positives.

2.4.4 Discussion
The results of Tables 2 and 3 show that the perfor-
mance of the off-the-shelf face detectors is highly vari-
able and with the exception of the BioID and MUCT
databases is moderate at best. All of the frontal face
detectors performed best when applied to the BioID and
MUCT datasets (Table 2), as these images were taken in
highly controlled environments with consistent lighting,
pose, and expression. In contrast, the detectors performed
poorly on images from uncontrolled environments, drop-
ping to 67.35% accuracy in the frontal Menpo set. It was
also observed that the Dlib detectors outperformed the
OpenCV, Viola-Jones-based detectors in all examples, and
with fewer false positives. Referring to the profile face
detectors (Table 3), all variants performed poorly when
applied to the profile Menpo dataset. This can in part
be attributed to the significant variance in pose within
the dataset with some images being quite similar to those
within the frontal Menpo set; however, there is also evi-
dence to suggest that the power of the profile detectors is
limited.

2.4.5 Conclusion
In conclusion, the Dlib, HOG-based face detector outper-
formed all of the OpenCV variants with greater accuracy
and fewer false positives. Both the Dlib and OpenCV face
detctors performed better when applied to images from
controlled environments.

2.5 Stage 4: model definition
After defining the problem, selecting a database, and iden-
tifying the faces in the images, the next step is choosing
a method for detecting the landmarks. The current lit-
erature of facial landmarking methods can be divided
into three categories: generative methods, discriminative
methods [36] and methods combining the two, produc-
ing statistical methods [37]. Generative methods, such
as Active Shape and Appearance models as to maximise
the probability of facial reconstruction from a deformable

Table 2 ‘Off-the-shelf’ frontal face detector performance

BioID (N = 1521) MUCT (N=3755) HELEN# (N = 2330) 300W# (N = 600) Menpo (Front)# (N=6679)
Detector % Acc False P % Acc False P % Acc False P % Acc False P % Acc False P

OpenCV 1 96.45 184 97.95 616 89.06 3548 75.33 6203 73.24 2775

OpenCV 2 96.12 28 98.24 77 84.64 447 71.17 3574 67.35 387

OpenCV 3 96.45 52 98.62 135 85.88 821 72.00 3966 69.35 670

OpenCV 4 N/A N/A N/A N/A 27.21 274 24.83 1597 22.74 349

Dlib 99.34 1 99.89 6 96.82 351 88.17 2488 87.50 339

#Some images in this dataset contain more faces than just the ground truth. These additional faces may be recorded as a false positive result

https://gitlab.com/docEbrown/FacialLandmarkingReview
https://gitlab.com/docEbrown/FacialLandmarkingReview
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Table 3 ‘Off-the-shelf’ profile face detector performance

Menpo (profile) (N = 2300)

Detector % Acc False P

OpenCV 1 15.61 1181

OpenCV 2 6.87 144

OpenCV 3 9.09 266

OpenCV 4 14.87 76

Dlib 24.65 64

#Some images in this dataset contain more faces than just the ground truth. These
additional faces may be recorded as a false positive result

model. Discriminative methods infer face shape by train-
ing a regression function(s) that maps image values to
facial landmark coordinates.
Similarly to the face detection process there is a bench-

mark model to which many other models have been
compared. Active appearance models (AAM) [38, 39],
an improvement upon Active Shape models (ASM) [40],
build a statistical-based representation of the face using
the shape information provided by the landmarks and tex-
ture information provided by the training images them-
selves.
We begin our discussion with a description of AAMs

and ASMs. These models still play an important role
within the field as they provide a benchmark to compare
other competing methods [11]. When compared to other
techniques (such as deep learning), ASMs and AAMs are
not computationally expensive and do not require large
sample sizes. They also illustrate the extent the field has
progressed over a relatively short period.

2.5.1 Active shapemodels
The first step in creating an active shape model is to use
the Procrustes method [41] to scale and align the land-
marks of the training set, while preserving the shape of
each training example. After applying Procrustes, a point
distribution model (PDM) of the shape is constructed
using principal component analysis (PCA) [42] to decom-
pose the data into its constituent components. Having
computed and selected the first t principal components
for the shape of the ground truth landmarks (Ps), a model
is constructed using a vector of weights bs that can be
varied to generate new face shape examples.
In addition to a shape deformable model, a representa-

tion of the pixel values around each landmark is required.
Typically, this is done by sampling the spatial derivatives of
m pixels at either side of each landmark, along the orthog-
onal vector to the shape contour. When searching for a
face within a test image, a pyramid of images is created
by scaling and sub-sampling the test image a number of
times. The mean shape is then placed at a specified posi-
tion within the lowest resolution image of the pyramid.

Fig. 5 Face detector results

This initial placement is very important as it forms the
basis of the searching process. The benefit of using an
image pyramid is that at lower levels coarse adjustments
quickly allows approximation of the correct face location.
For each image pyramid and every landmark in the test

shape, a new location is chosen by selecting the pixel along
the orthogonal vector to the shape, where the pixel deriva-
tives are most similar to the training set. The parameters
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Fig. 6 Simple convolutional neural network. Diagram of a simple convolutional neural network architecture

of the PDM are then updated to match these coordinate
locations and the process is repeated, using the updated
shape model. This test and update process is repeated
until a fixed portion of the predicted landmarks in the test
shape stopmoving and nomore images are available in the
pyramid.

2.5.2 Active appearancemodels
As described above, ASMs do not utilise all of the infor-
mation that is available within the images, with only
pixel information surrounding each landmark being used.
AAMs [38, 43] build upon the shape information pro-
vided by ASMs by including a detailed texture model of
the image. Once the mean shape has been determined
a ‘shape-free patch’ of each training sample is created
by warping each training image so the annotated land-
marks match the mean shape. Again, PCA is applied to
determine a statistical model of texture.
Once statistical models of shape and texture have been

generated, they can be combined to form an appearance
model that has parameters c to control shape and tex-
ture. For a detailed derivation of the combined shape
and texture model, see Chapter 5 of Cootes and Taylor’s
report in [44].
After construction of the combined representation of

shape and appearance, the process of searching for the
specified facial landmarks within an image is the result
of an optimisation problem; aiming to minimise the dif-
ference between the grey-level values in the image and
the grey-level values described within the combined shape
and appearance model.

2.5.3 300W faces in-the-wild challenge
Starting in 2013, the 300W faces in-the-wild challenge [10,
11] has had a significant impact on automatic facial land-
mark detection research. As discussed in Section 2.3 the
300W competition has provided a benchmark dataset of

in-the-wild images with varying lighting, pose, expression,
and image location. Due to the influence of this chal-
lenge on recent research, our discussion of landmarking
literature focuses on the work completed since 2013. For
readers interested in literature published prior to 2013, see
the review by Çeliktutan et al. [7].
The use of convolutional neural networks and deep

learning techniques has dominated recent research in
computer vision and particularly in facial landmark-
ing. Given this popularity, it is convenient to discuss
convolutional-based and non-convolutional landmarking
models separately.

2.5.4 Non-convolutional models
As an entry in the inaugural 300W faces in-the-wild
challenge, Baltrusaitis et al. [45] presented a constrained
local neural field model. This method built upon the
constrained local model (CLM) method described by
Cristinacce and Cootes in 2006 [46]; which itself uses
the combined shape and appearance model of the AAM.
The CLMs, use a series of local patches, one for each
landmark, constructed by sampling around the landmarks
within the image. The model uses local ‘expert’ patches
around the landmarks with conditional neural fields [47]
and a novel non-uniform regularised landmark mean-
shift optimisation technique to determine the probability
distribution of a landmark location within a patch. This
method enabled the landmarking system to learn spa-
tial similarities between landmarks and introduced the
requirement of a single landmark to be identified within
each patch.
One of the highest performing submissions into the

first 300W challenge was the method by Yan et al. [48]
which used a series of cascading HOG descriptors to
provide a number of landmark estimates for each image
followed by a stage that collated the hypotheses from each
descriptor into a single result. Given K training samples
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{
Ik,X∗

k,X
0
k; k = 1 . . .K

}
where Ik is the image/texture

information, X∗
k are the ground truth landmarks, and X0

k,
the initialised landmarks [48] (the mean face shape at the
start of the process). The objective is to learn a regression
function f minimising the mean squared error between
the predicted and ground truth landmarks (Eq. 4). This
cascading model learns complex non-linear relationships
within the dataset by dividing f into a series of T sim-
pler regression functions (f0, f1, f1 . . . fT ) and using the
Hadamard product represented by ◦ (Eq. 5). The output
of each sub-function is passed as the input to the follow-
ing stage and a linear transformationWt is applied (Eq. 6)
to a feature transform

(
�

(
Xk

t−1, Ik
))

thus encoding the
image information around the shape.

f = argmin
f

K∑

k=1

∥∥f
(
X0
k, Ik

) − X∗
k
∥∥
2 (4)

f = f0 ◦ f1 ◦ f2 ◦ · · · ◦ fT (5)

Where

Xt
k = ft

(
Xt−1
k , Ik

) = Wt · �
(
Xt−1
k , Ik

)
(6)

The authors noted that their method is highly sensitive
to shape initialisation and that the accepted benchmark
for face detection of a 50% bounding box overlap was
insufficient. To reduce the influence of initialisation, the
bounding boxes determined by the face detector are ran-
domly scaled and shifted, generating multiple hypotheses
of landmark positions for each image. Given that multi-
ple sets of landmarks are estimated for each image, Yan et
al. propose two methods for combining these results. The
first method: learn to rank, assumes that for each image at
least one hypothesis is better than the others and defines
a function that ranks and selects the best one from the
set. The second method learn to combine assumes that for
an image the information contained within the entire set
of hypotheses is complementary to the final solution and
thus defines a function that combines the hypotheses into
a single result. The parameters of both of these functions
can be determined by solving with a structural SVM.

2.5.5 Cascade shape regressionmodels
Compared with their generative counterparts, discrimi-
native landmarking methods have demonstrated superior
performance in uncontrolled conditions [36]. This per-
formance has been further improved through the devel-
opment of a cascade of linear regression models that are
capable of describing complex non-linear relationships.
Asthana et al. [36] outline such a method which has
resemblance to AAMs models, defining a shape model as

x(p) = sR (x̄ + �sg) + t; i = 1 . . .N (7)

Where x ∈ �2N×1 is a vector form of X ∈ �N×2, s is the
scale,R is the rotationmatri, and t is a translational vector.
The vector �sg specifies non-rigid shape variation; thus,
p = [

s; rx; ry; rz; tx; ty; g
]T . By specifying a set of shape

parameters P∗ = {
p∗
i
}K
k=0 that are defined by the ground

truth shape. Asthana et al. define their objective as learn-
ing a function from an initial estimate of pwhich produces
the ground truth p∗. The function that converts the initial
shape estimate is a sequence of regression functions [49].
For each of the K training shapes, the parameters defining
the shape model are randomly sampled within a defined
range around the ground truth parameters P∗ producing
a set of J perturbed shape parameters

{
p(1)
j

}J
j=1

. A linear
relationship between the input image I and the perturbed
parameters p(1)

j is described as

p∗ = p(1) + f
(
I, x

(
p(1)

))
W + b (8)

where the function f could return SIFT [50] or HOG
features around each landmark matrix. The linear rela-
tionship described by Eq. 8 is unable to map the perturbed
shape parameters p(1) to the ground truth p∗. Thus, a cas-
cading series of regression functions is trained by finding
W̃ =[W ; b] to solve the following problem:

arg min
W(1),b(1)

K∑

k=1

J∑

j=1

∥∥∥�p(1)
kj − f̃

(
Ii, p(1)

kj

)
W̃(1)

∥∥∥
2

(9)

Where f̃(I,p) =[ f (I,p) 1] and�p(1)
kj = p∗

k − p(1)
kj and j

is the index of perturbation. By repeatedly solving for W̃(1)

and updating pkj, the perturbed parameters approach the
ground truth. In their work, Asthana et al. propose a par-
allel method of cascade linear regression that does not
rely on the perturbations of previous iterations and ben-
efits from executing the process in parallel. This parallel
cascade of linear regression uses only the statistics of the
previous level, removing the need to propagate through all
of the samples and iterations. One further benefit of this
method is that if additional training data is made available,
the costly process of retraining through all combinations
of iterations and perturbations is not required as the
cascade of regression functions are trained individually.
Deng et al. in 2015 [37] extended the cascade

shape model, describing a multi-view, multi-scale, and
multi-component cascade shape model (M3CSR). Deng’s
method first applied a six-component deformable part
model face detector to divide the training samples into
front, left, and right profile views. By grouping the images,
the variation within each view set is reduced, improving
the model’s performance with an increased range in pose.
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After finding the HOG descriptors for each of the
images in each set, the cascade shape regression process is
executed in a coarse to fine manner; starting with a small
instance of the face and then doubling the face’s size to
produce a second scaled image. This coarse to fine pro-
cess improves the speed and accuracy of convergence by
allowing for gross changes to landmark position at the
coarse level and precision adjustment within the higher
resolution image.
The final aspect of the M3CSR process is the multi-

component stage to compensate for differences in
landmark stability, similar to that described in the
Section 2.3.2. Given differences in facial expression or nat-
ural variation in the location of particular landmarks such
as the tip of the nose compared to the cheek, an additional
alignment process was executed for each landmark:

argmin
Wt

K∑

k=1

∥∥∥
(
X∗
k − Xt−1

k

)
− Wt�

(
Ik,Xt−1

k

)∥∥∥
2

2
(10)

where t is the iteration number, X0
k is the initialised shape

coordinates, Wt is the linear transform matrix, and �

represents the shape index feature descriptor, correspond-
ing to either the front, left, or right profile views. Note
the similarities between Eqs. 9 and 10 which follows the
similar processes used by Deng et al. and Asthana et
al.; applying the variation within the landmarks them-
selves, instead of intentional perturbations to construct an
aligned shape model.
Having separated the training images on the basis of

pose and doubled the scale of the images, the training pro-
cess comprises of iterating through each set of poses and
scales: generating 10 different shape initialisations, com-
puting the HOG features around each landmark, finding
W, and updating the shape Xt

k = Xt−1
k +Wt�

(
Xt−1
k , Ik

)
.

During their experimentation, Deng and colleagues also
confirmed the performance increase of M3CSR when
compared with M1CSR (multi-view cascade shape regres-
sion) and M2CSR (multi-view, multi-scale cascade shape
regression) models.

2.5.6 Convolutional neural network landmarkingmodels
The use of CNNs has gained much popularity recently
within the field. This popularity can partly be attributed
to the availability of large datasets and high perfor-
mance, affordable computational hardware such as graph-
ics processing units (GPUs). The use of CNNs have also
increased after the significant increase in ImageNet clas-
sification performance achieved by Krizhevsky et al. [51]
with AlexNet. Many of the current leading classifiers on
benchmark datasets such as MNIST [22, 52], CIFAR-10
[53, 54], and CIFAR-100 [53, 55] are based on CNNs. This
has been particularly evident in computer vision where

CNNs or deep learning has provided effective solutions
for face detection, facial landmark prediction, and other
problems.

2.5.7 Convolutional neural networks
In its most basic form, a convolutional neural network
is a simple perceptron (or neural network) with a pre-
ceeding stage that performs a convolution operation
(Q = I ∗ W + b) on an input image I, given a set of
weights W and biases b [56]. Similarly to the weights
within the perceptron, backpropagation is applied to opti-
miseW,b for the given cost function to adjust the weights
according to their contribution to the error. Thus, the con-
volutional layers form a set of feature extracters for the
system. This is one of the most powerful aspects of CNNs;
rather than using manually crafted features such as Haar-
like or HOG features, the system automatically ‘learns’ the
optimal features for the dataset and the objective of the
network. Additionally, CNNs, unlike many other model
designs, are able to continue to improve their performance
as data is added to the training set.
As outlined in the Section 2.5.4 as well as in [11] and

[10], the first two 300W competitions received submis-
sions using a number of different methodologies including
deep learning. In contrast to the 2017Menpo Facial Land-
mark Localisation Challenge [57], all submissions to the
competition utilised deep learning. Deep learning meth-
ods have won every recent facial landmarking challenge:
Zhou et al. in 2013 [58], Fan and Zhou in 2015 [59], and
Yang et al. [60] winning both frontal and profile competi-
tions in 2017. The high performance of these techniques
prompted the organisers of the Menpo Challenge to ask
“is the current achieved performance good enough?” [61].
One of themost common designs of deep learningmod-

els in facial landmarking is the cascading structure where
a number of different convolutional neural network stages
are connected sequentially to produce the final landmark
predictions. Typically, cascading networks are employed
in a coarse to fine manner, where earlier networks in the
cascade make more gross predictions regarding landmark
position and later stagesmake fine positional adjustments.
An early user of this methodology was Sun et al. in 2013
[62]. They used three cascading levels to predict five
landmarks on the face (see Fig. 7). After applying the
face detector, Sun et al. constructed three CNNs within
the first stage: the first CNN received an image of the
entire facial region, the second an image of the eyes and
nose, and the third of the nose and mouth. The first
stage estimated the approximate landmark locations, thus
each network was trained to make coarse predictions of
the landmark positions within the corresponding region
of the image. The three CNNs observed each landmark
at least twice, and thus multiple predictions for each
landmark were produced. The average of each of these
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Fig. 7 5 point landmark configuration. The landmark configuration
used by Sun et al. [62]

predictions was calculated and used to define local image
patches which were provided to the second convolutional
stage. As can be seen in Fig. 8, the design of the second
and third convolutional stages is somewhat similar; both
being provided with localised image patches on which
to train and thus both being restricted to making small
adjustments on the previous predictions. Similar to the
first convolutional stage, multiple predictions were made
for each landmark by the second and third stages and thus
the averages were again computed. The CNNs within each
stage used repeating, alternating convolutional and pool-
ing layers followed by two fully connected layers; for more
details see [62].
Zhou et al. and Fan and Zhou also employed a cascad-

ing coarse to fine process in their work in 2013 and 2016
[58, 59], taking a slightly different approach in each. The
earlier work employed a method similar to that of Sun
et al. [62]; defining a 3-stage cascading CNN structure
where the first stage made predictions at ‘face-level’ while
the latter two made predictions with localised patches
[58]. After detecting the bounding box of a face within an
image, Zhou et al. extracted two sub-images of the face
with one centered on the 300W inner facial landmarks
and the other centered on the 300W outer facial land-
marks. These sub-images were provided to the first stage
which used two distinct CNNs to separate predictions for
inner and outer facial landmarks. Similarly to Sun et al.,
following the coarse prediction stages, localised patches
(in this case of the eyes, eyesbrows, nose, and mouth)
were used in the following two CNN stages to make pre-
cise position adjustments. In their paper, Zhou notes that
due to time constraints, the final predictions made for the
outer landmarks were purely those provided by the first
CNN stage; there is no technical reason why the outer
landmark set could not be passed through similar sub-
sequent stages to potentially improve performance. Each

of the CNNs within the structure utilised three convo-
lutional layers, each followed by max-pooling layers. An
interesting aspect of their design is the inclusion of an
unshared convolutional or local-receptive field layer prior
to a fully connected layer. Unlike the typical convolutional
layer which shares the same weights as it convolves across
all of the input, unshared convolutional layers use differ-
ent weights within the convolutional kernel at locations of
the input. Shared weight convolutional layers are known
to be useful in extracting features and removing transla-
tional variance within images [56]; the use of unshared
weights allows for translational variance to be included
into the convolutional kernels. In scenarios where the
general structure of the image is consistently positioned,
such as a centered face, the use of unshared weights can
allow the network to learn more subtle features within the
known structures such as the eyes, eyebrows, and mouth.
In 2016, Fan and Zhou claimed near human landmark-

ing performance with a 2-stage cascade of deep CNNs [59]
similar to that of Sun et al. but with an additional align-
ment stage following the first level of predictions. This
alignment process, similar to that used in Procrustes anal-
ysis [41], transforms the original predictions and input
images into a common scale and rotation space prior to
dividing the input image into localised patches. For each
landmark, a separate transformed patch was provided to
an individually trained CNN to refine the initial predic-
tions and produce the overall result. Unlike in [58], Fan
and Zhou used a more conventional CNN design in this
model, alternating shared weight convolutional layers and
pooling layers followed by two fully connected layers.
This method of combining cascade CNN stages with

image and landmark alignment was extended by Chen
et al. [63]. This updated method executed the alignment
process prior to the stage 1 and included an additional
refinement stage following the component level stage 2;
with the third stage performing alignment at the individ-
ual landmark level. With regards to the composition of
the CNNs themselves, Chen and colleagues implemented
a first stage network using skip-connections and channel
wise convolutions.
When compared to previous years, one could argue that

recent facial landmarking publications have implemented
CNNs and deep learning techniques with more variety
and creativity than before. As the effects of various cas-
cading structures of more ‘conventional’ CNNs have been
thoroughly explored, recent studies have investigated dra-
matically different network designs and methodologies.
Similarly to the multi-task face detection techniques
described previously, Zhang et al. [64] supplemented the
image and landmark information with auxiliary attributes
such as gender, pose, facial expression, and whether sub-
jects are wearing glasses. By training a deep CNN with a
sparse set of landmarks and the auxiliary features, Zhang
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Fig. 8 Cascading convolutional networks. The cascading CNN structure used by Sun et al. [62]

et al. were able to demonstrate an increase in perfor-
mance when transferring the model to dense landmark
predictions.
Yang et al. [60] won both the frontal and profile com-

petitions of the 2017 Menpo landmarking challenge using
a stacked hourglass convolutional network architecture.
The conventional CNN design increases the depth of each
layer throughout the network, while decreasing the height
and width, until the last layer produces a very deep, but
small output. The stacked hourglass approach, first pro-
posed by Newall et al. in 2016 [65], differs in that after
each max-pooling stage a copy of the convolved output
is taken (Fig. 9). Once the network has reached its lowest
resolution, the output is passed through a series of upscal-
ing methods, combining the previous copy of the output
at each stage which allows for input at a variety of scales
and produces a symmetric topology. The coined name
stacked hourglass is applied to this method as Newall
stacked a number of these symmetric networks together
to perform the final prediction. Following a supervised
alignment process using Procrustes analysis, Yang et al.

applied four stacked hourglass networks to face images of
256 × 256 pixels to achieve state of the art results.
Wu and Yang’s approach to facial landmarking [66]

investigated the variance and bias with regards to facial
pose, expression, occlusion, and other factors within and
between each of the benchmark datasets. Their analy-
sis hypothesised that the variability between the datasets
could lead to overfitting for particular factors and thus
poor generalisation, for example, in the 300W data set
14.16% of the faces have a scream expression while in
HELEN, none of them do [66]. Given this hypothesis,
the landmarking model described by Wu and Yang com-
prises of two individual CNNs; the first, known as the
Dataset-Across Network (DA-Net) is a more conventional
CNN except that the last fully connected layers are split
into n layers where n is the number of datasets being
used to train the network. DA-Net, by splitting the final
fully connect layers, attempts to learn the general fea-
tures that comprise faces within each of the datasets, e.g.
shape and landmark relationships. It is important to note
that this network does not produce multiple landmark
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Fig. 9 Example of a stacked hourglass CNN. The stacked hourglass CNN not only follows a conventional CNN structure by reducing image width
and height, and increasing depth but is also followed by an inverting structure which returns the width, height, and depth to original or
near-original values

estimates for each image but rather produces estimates
for an image using the fully connected layers correspond-
ing with its appropriate dataset of origin. This model is
essentially training individual regressors for each dataset
but shares a common set of feature extractors via the
preceding convolutional stages.
Wu and Yang acknowledge that DA-Net would still suf-

fer from intra dataset bias and proposed a Candidate
Decision Network (CD-Net) to address these biases; e.g.
Wu and Yang attempted to account for the bias of views
within theMenpo profile dataset, with 72.9% of the images
right viewed. Using a combination of left view samples and
right view samples Wu and Yang trained a DA-Net and
CD-Net to decide whether landmark predictions made by
DA-Net are more suited to an image or its corresponding
left-right flipped image. In this way, CD-Net essentially
forms a decision layer whereby two versions of an image
with DA-Net predictions are provided and the best result
selected by CD-Net. Wu and Yang note that CD-Net is
provided to mitigate bias, when applied to new datasets
performance may vary, depending on the variance within
the dataset. In other examples, such as varying facial
expression an augmentation process would need to sig-
nificantly alter the image to provide DA-Net and CD-Net
which could further increase error or bias inthe result.
One of themost interesting aspects of recent deep learn-

ing and CNNwork has been the merging of more classical
generative modelling techniques with that of the modern
deep methods. He et al. [67] describe a fully end-to-
end cascaded convolutional neural network (FEC-CNN),
whereby each layer in the cascade builds upon the results
of previous predictions. Each FEC-CNN (H) is composed
of individual CNNs (Ct), which are trained using image
patches extracted using a function �, given the landmark
locations and the results of the previous layer. For the
first sub CNN C0, the mean shape X̄ is provided to deter-
mine the image patches and C0 is trained to predict the

landmark positions. The difference between the target
landmarks and the predicted �Xt are then added to the
input shape (X0) to produce the image patches for the next
sub CNN. This process is then repeated for T stages of sub
CNN where the final predicted shape X is given by

X = H(I) =
T∑

t=1
�Xt + X0 (11)

�Xt = Ct(�(I,Xt−1)), t = 1, . . . ,T (12)

What is particularly interesting about this method is
that as each sub CNN takes patches from the original
image and the output is fed into the next layer, the errors
can be backpropagated throughout all CNNs within the
network, leading to a significant performance improve-
ment over networks which are trained in isolation. This
process of using the errors of the previous sub CNN is
similar to the process of constructing an active shape
model, i.e. starting with the mean shape, determining the
corresponding errors, updating the model, and repeat-
ing. He and colleagues successfully applied this FEC-CNN
model in [68] with a preceding CNN-based face detec-
tor which reduced landmark sensitivity due to bounding
box initialisation by providing the minimum enclosing
rectangle.
Zadeh et al. proposed a convolutional experts con-

strained local model (CE-CLM) [61] which sought to
blend the feature extraction ability of CNNs with the land-
mark specificity of CLMs [69]. They believed that the
CLMs are currently under-performing alternative mod-
els due to a restricted ability to accommodate the large
image variations about each landmark and thus intro-
duced expert local detectors capable of modelling such
variation. As the CE-CLM algorithm is based upon a
CLM, an iterative parameter update is at the core of the
process and aims to optimise
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p∗ = argmin
p

[ N∑

i=1
−Di(xi; I) + �(p)

]
(13)

where xi ∈ �1×2 is a subset of X ∈ �N×2. Similarly to
Eq. 8, p∗ are the optimal parameters defining landmark
position and p denotes the current estimate for the loca-
tion of xi. Di(xi; I) is the probability of the ith landmark
being in position xi for input image I and �(p) is a reg-
ularisation function. One should note that the definition
of p∗ and p are identical to that described within Eq. 7
and in contrast to many other methods Eqs. 7 and 13 use
ground truth and predicted landmarks in vector form x
not the corresponding matrix form X. The most impor-
tant part of the CE-CLM design is the Convolutional
Experts Network (CEN) which takes landmark localised
image patches and returns the probability map Di(xi; I),
which as shown in Eq. 13 is crucial in finding the optimum
model parameters.
The CEN is a specially crafted network composed of

three distinct layers: a contrast normalising convolutional
layer, a generic convolutional layer, and a mixture of
experts (ME) convolutional layer. Upon providing the
network with a localised image patch, the contrast nor-
malising layer performs Z score normalisation on the
image prior to convolving with a ReLU-based kernel of the
generic convolution layer. The first two layers of the net-
work essentially prepare the data for the third and final
ME-layer which produces the final alignment probabili-
ties for the image patch. The ME-layer is a convolutional
layer with a kernel using a sigmoid activation function
which produces the response map or probabilities of land-
mark alignment within an image patch. The response
maps are then combined with a non-negative weight final
layer which too uses a sigmoid activation function to
compute Di(xi; I). Zadeh et al. noted that a 1 × 1 ker-
nel size with no pooling layers was selected to increase
the resolution of the landmark prediction space and that
the ME-layer had a significant impact on the overall per-
formance. Unlike other CNNs, increasing the depth of
the CEN did not improve the performance of the net-
work while changes to the ME-layer such as removing the
constraint of non-negative weights result in a significant
reduction in performance.
Consistent with CLMs and cascade regression models,

Zadeh et al. used point distribution models (PDMs) to
control landmark locations and penalise irregular shapes
through �(p). Using Eq. 7 and given an initial CE-CLM
estimate p, the required updates�p are iteratively applied
in response to the positions provided by CEN to deter-
mine the final model that maps the input image to the
corresponding face shape.
The final CNN model discussed is the Deep Alignment

Network (DAN) by Kowalski et al. [70], which was inspired
by the cascade shape regression (CSR) model. Like CSR

models, DAN starts with the mean shape X̄ as the ini-
tial shape estimate X0, which is refined by a single stage
of a deep neural network representing an iteration of a
CSR. In addition to being inspired by the CSR method-
ology, this method also possesses components similar to
that described by He et al. [67] and Zadeh et al. [61].
Each stage of DAN (see Fig. 10), with the exception of the
first, is comprised of a CNN landmark prediction process
followed by a landmark transformation step and a connec-
tion layer which passes the information onto subsequent
DAN stages. The transformation layer is comprised of
multiple sub-layers, each which produce one of five inputs
for the subsequent DAN stage.
The first component of a DAN stage is a four-layer CNN

with pooling and two fully connected layers, trained to
estimate the position of each of the landmarks (ϒt). For
stages t = 2, . . .T , the CNN is provided with a warped
image Wt, a landmark response map Et, and a feature
image Lt from the previous stage; for the first stage (t = 1),
only the original image I is provided. The CNN predic-
tions (ϒt) are added with the transformed shape provided
by �t(Xt−1).
The second step in a DAN stage is landmark transfor-

mation which is used to warp the input image I and the
current landmark predictionsXt to the canonical or mean
shape X̄ and to constructWt. In the described implemen-
tation, Kowalski et al. used an affine transform to warp
the image and landmarks. They note that other transforms
can be used provided that the transform �t is invertible as
the output of every stage must be able to be returned into
the original image space.

X1 = X0 + ϒ1 (14)
Xt = �−1

t (�t(Xt−1) + ϒt) (15)

XDAN =
T∑

t=1
(�t(Xt−1) + ϒt) (16)

Following the transformation step, a landmark response
map is generated where the highest intensity values indi-
cate predicted landmark locations. The response map is
generated using the landmark estimates provided by the
previous stage, thus propagating the predictions through-
out the network.
Complementing the response map is the feature image

layer Lt, the last output of a DAN stage. Lt is an image
generated from the output of the first fully connected layer
of the previous CNN (t−1). The output of the dense layer
is reshaped to a 2D layer and is provided to the next stage
(t + 1).
Having defined and generated all of the required inputs

for the next DAN stage, T stages can be concatenated to
form the overall model. While this approach resembles
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Fig. 10 DAN structure

the FEC-CNN described by He et al. [67], the train-
ing methodology differed considerably. He and colleagues
observed a significant increase in performance by train-
ing using an end-to-end approach and backpropagating
the errors throughout each sub-CNN. Kowalski and col-
leagues however recorded a reduction in performance
using this end-to-end approach and as such trained each
DAN stage in isolation.

2.5.8 Benchmarkmodel performance
We now examine the performance of menpofit, a Python-
based open-source implementation of active appearance
models. This section provides the reader with the ‘typi-
cal’ performance that can be achieved using AAMs. The
experimental results are reported alongside results pub-
lished using deep learning methods; allowing for an indi-
rect comparison. The source code for this section can be
obtained from GitLab.

2.5.9 Methods
The BioID, HELEN, MUCT, 300W, and Menpo datasets
were used. For the HELEN, MUCT, 300W, and Menpo
(frontal) sets the complete MULTI-PIE 68 landmark con-
figuration was used as provided in either the original
dataset or the ibug coordinates [71]; for the BioID and
profile Menpo datasets, the provided landmark configura-
tions were applied.
To eliminate the potential for additional error to be

introduced by a face detector algorithm, the face for
each image was first extracted using a bounding box 10%

larger than the extremes of the ground truth landmarks.
Once each face was extracted, each data set was ran-
domly split into training and test subsets with 70% of
the data allocated for training. Each of the training sets
were then used with the MenpoFit software to train a
holistic active appearance model (hAAM) which uses the
entire image to construct the model and a patch active
appearance model (pAAM) which only uses patches of
the image surrounding the individual landmarks. Each of
the models were trained using a two-level image scal-
ing pyramid where the scaling factors were set to 0.5
and 1. Due to the large sample size of the HELEN,
MUCT, and Menpo datasets, training was completed for
these sets usingmini-batches where each batch comprised
256 samples. The BioID and 300W (indoor, outdoor,
and combined) datasets were trained without the use of
mini-batches.
For each image in the test set, landmark predictions

were made by the specifically trained models and the
normalised root mean squared error was calculated to
compare performance. For the BioID, HELEN, MUCT,
300W, and frontal Menpo datasets, the Euclidean dis-
tance between the outer corners of the left and right eyes
were used for normalisation; in the MULTI-PIE configu-
ration, this was the distance between landmarks 37 and
46, for BioID landmarks 9 and 12 were used. For the pro-
file Menpo datasets where the corners of both eyes were
not present, the diagonal length of the face as defined by
the distance between landmarks 10 and 13 was used as the
normalising factor.
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For all methods and all datasets, cumulative error dis-
tribution curves were produced. For the BioID, 300W, and
the Menpo datasets, error curves indicating state of the
art performance were overlayed and referenced.
All models were trained and tested using the high

performance computing facilities provided by the Syd-
ney Informatics Hub at the University of Sydney which
include Dell PowerEdge R630 and C6320 Server nodes.
Each PowerEdge R630 node possess 24Haswell Intel Xeon
E5-2680 V3 cores with 128 GB of DDR3 RAM, while the
C6320 nodes possess 32 Broadwell Intel Xeon E5-2697A-
V4 cores also with 128 GB of DDR3 RAM. The resource
utilisation of each model was recorded and is provided in
the Section 2.5.10.

2.5.10 Results
Figures 11, 12, 13, 14, 15, 16, 17, and 18 describe the
performance of each method on each dataset using cumu-
lative error distribution curves, while Table 4 indicates the
resources required to produce and test each model. Note
that CPU utilisation is recorded as the average number of
CPUs used over the course of executing the script.

2.5.11 Discussion
Observing the AAM curves across the figures, it can be
seen that patch-based AAMs outperform holistic models
for almost all datasets; with near-identical performance
using HELEN (see Fig. 15). This is particularly evident
in the profile Menpo results (Fig. 18) with the holistic
method essentially unable to model the data. As noted
by [66] and [61], the profile Menpo dataset is particu-
larly challenging due to the variety of facial poses (some
could plausibly be in the frontal dataset) and an imbal-
ance of left/right side facing profile images. The failure of
the holistic model can be attributed to this variance and
the inability of the model to represent it. Conversely, the

Fig. 11 BioID cumulative error distributions. Comparing the
performance of holistic AAMs, patch AAMs, and the performance
reported by Cristinacce and Cootes [46]

Fig. 12 300W (indoor) cumulative error distributions. Comparing the
performance of holistic AAMs, patch AAMs, and the performance
reported by Yan et al. [48], Zhou et al. [58], and Milborrow et al. [72]

patch-based model, while including all of the shape infor-
mation, only uses localised image information around the
areas of interest and thus ignores some of the irrelevant
information.
Comparing these ‘typical’ AAM performance metrics

to published literature, it can be seen that the patch-
based AAM model for the BioID dataset (see Fig. 11) is
comparable to the AAM as described by Cristinacce and
Cootes [46]. Both CED curves follow a similar path; how-
ever, the maximum error produced by the patch-based
AAM model is lower than that reported by Cristinacce
and Cootes. When reviewing the cumulative error distri-
bution curves in comparison to more recent deep learning
techniques, it is not appropriate to make a direct com-
parison of performance between the hAAM, pAAM, and
reported methods. The models submitted to the 300W
competition were trained using several different datasets
including the 300W training set prior to testing on the

Fig. 13 300W (outdoor) cumulative error distributions. Comparing
the performance of holistic AAMs, patch AAMs, and the performance
reported by Yan et al. [48], Zhou et al. [58], and Milborrow et al. [72]
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Fig. 14 300W (combined) cumulative error distributions. Comparing
the performance of holistic AAMs, patch AAMs, and the performance
reported by Yan et al. [48], Zhou et al. [58], and Milborrow et al. [72]

300W test set. The training data for our AAMmodels and
the literature differ significantly, thus preventing a direct
comparison with Figs. 12 and 13. Despite this, the ASM
competition entry by Milborrow et al. [72] does enable a
direct comparison between classical generative and more
recent methods. Zhou et al. [58] using a coarse to fine
convolutional network cascade and Yan et al. [48] using
a combination of multiple regressors produced an ele-
vated performance on both the 300W indoor and outdoor
datasets. It is also possible to compare the performance of
Zhou et al.’s convolutional model to the higher perform-
ing fully end-to-end CNN described by He et al. [67] as
the authors reported performance against the combined
300W dataset (see Fig. 14).
With regards to the frontal and profile Menpo datasets

while indicative performance of hAAMs and pAAMs are
provided, no meaningful comparison can be made to the
reported performance in the literature. The training and
test sets are simply too different. What is interesting to
note is that reviewing Figs. 17 and 18, in addition to

Fig. 15 HELEN cumulative error distributions. Comparing the
performance of holistic AAMs and patch AAMs

Fig. 16MUCT cumulative error distributions. Comparing the
performance of holistic AAMs and patch AAMs

the Menpo competition results [57] is that many of the
entries used some CNN-based method. The highest per-
formers employed sophisticated deep learning approaches
such as stacked hourglass and fully end-to-end convo-
lutional networks, e.g. Chen et al. [63] who reported
the maximum normalised frontal Menpo error to be less
than 0.05.
Considering the physical resource usage outlined in

Table 4, it is evident that patch-based AAMs can be
constructed with significantly less memory requirements.
Using the large HELEN dataset as an example, the patch
AAM only required 6.3 GB compared to the 26.1 GB of
the holistic version. In terms of CPU usage and work-
load, it is difficult to draw any meaningful comparison
between the holistic and patch AAMs. The resources used
depended more upon the dataset than the model. If the
reader wishes to recreate these models, Table 4 does pro-
vide a useful indicator for determining if the model can be
created using the reader’s own equipment.

Fig. 17Menpo (frontal) cumulative error distributions. Comparing
the performance of holistic AAMs, patch AAMs, and the performance
reported by Chen et al. [63], He et al. [67], and Zadeh et al. [61]
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Fig. 18Menpo (profile) cumulative error distributions. Comparing the performance of holistic AAMs, patch AAMs, and the performance reported by
Chen et al. [63], He et al. [67], and Zadeh et al. [61]

2.5.12 Conclusion
In conclusion, this section has provided examples of the
‘typical’ performance of AAMs using a selection of read-
ily available facial datasets. These performance results
reported alongside that of published literature provide the
reader with an indication of the improvements made by
more recent deep CNN-based methods.

2.6 Stage 5: model training and evaluation
The final stage in the automatic facial landmarking pro-
cess is training and assessing the defined model, given all

Table 4 AAM resources required

Dataset Model Time Avg Workload Memory

(h:min:s) # CPUs (min × CPUs) (GB)

BioID hAAM 00:03:06 4.45 14 1

BioID pAAM 00:06:12 4.70 29 1.1

300W (indoor) hAAM 00:06:14 5.53 34 2.6

300W (indoor) pAAM 00:03:09 4.47 15 1.8

300W (outdoor) hAAM 00:06:14 5.53 34 2.6

300W (outdoor) pAAM 00:03:09 4.47 14 1.8

300W (combined) hAAM 00:15:41 5.12 80 4.4

300W (combined) pAAM 00:09:10 3.79 35 4.3

HELEN hAAM 03:53:59 6.89 1612 26.1

HELEN pAAM 00:34:50 6.40 223 6.3

MUCT hAAM 01:26:56 7.81 679 4.9

MUCT pAAM 01:36:25 7.77 749 4.6

Menpo (frontal) hAAM 06:28:44 3048 7.83 16.6

Menpo (frontal) pAAM 05:44:16 2702 7.85 16.1

Menpo (profile) hAAM 00:28:56 138 4.76 5.4

Menpo (profile) pAAM 00:36:44 224 6.09 5.4

of the choices made in stages 1 to 4. Unlike the preceding
stages, this training process is not unique for the problem
of automated facial landmarking and employs methods
well described within existing ‘machine learning litera-
ture’. As such, a thorough discussion of these methods is
considered out of scope for this survey article. If read-
ers are unfamiliar with existing literature, we recommend
Deep Learning by Goodfellow et al. [56], Understanding
the difficulty of training deep feedforward neural networks
by Glorot and Bengio [73], and the many publications by
Yann Le Cun (for practical tips [74] is a useful reference)
for an introduction.

3 Conclusions
Throughout this review, we have considered the problem
of automatic facial landmarking in its generic form and
have investigated the current state of the art within each
individual stage of the process. Reflecting on the progress
that has been made within this domain, it can certainly
be seen that more recent techniques in multi-stage con-
volutional neural networks have achieved a significant
improvement in performance and have contributed to
improvements in face detection as well as landmark local-
isation. With such improvements and given the potential
applications for automatic facial landmarking such as that
mentioned in the Section 1 one would logically ask ‘is
the current state of the art good enough?’ and ‘what is
the optimal performance that one could expect from an
automatic landmarking system?’ In answering the first
of these two questions, we must consider the context in
which the system will be used. In reasonably controlled
environments as those provided within the MULTI-PIE,
MUCT, and BioId databases, with minimal variance in
expression, lighting and pose, current technology may
be more than sufficient. However, for applications where
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these conditions would be highly variable such as attempt-
ing to classify one’s mood in the outdoors using facial
expression, current technology may still struggle.
Considering the optimal expected performance, it is our

opinion that the current best performing vision systems
are still biological. The vision system of humans is capable
of accurately identifying facial characteristics given a very
high degree of variability in almost all aspects of an image
or ‘real-life’ situations. This differential in performance
is demonstrated by Sagonas et al. [10] which compared
the landmarking variability of three expert annotators to
the automated methods of the 300W competition. The
human annotators outperformed the best automatic sys-
tem by more than a factor of five (Table 3 [10]). In the
context of extremely sophisticated applications such as
autonomous cars, drones, and robots, a digital vision
system with performance comparable to existing biolog-
ical systems would be of enormous value. If the field
is to achieve biological or near-biological performance
in automated facial landmarking, we believe that addi-
tional progress must be made in all five stages of model
construction described within this paper. Redefining the
problem objective as achieving near-biological system per-
formance in facial landmarking, it is believed that the field
will require:

1 A significant increase in the availability of complex
‘in-the-wild’ data sets with an extremely high sample
size, robust ground truth landmarks, and high
variability in facial pose, expression, degree of
obstruction, and lighting.

2 An improvement in the accuracy of face detection
methods as well moving towards methods which
describe the outline of the face in more detail, rather
than simply specifying the extent to which a face fits
within a bounding box.

3 An improvement in modelling methods and learning
techniques which are able to capture the
characteristics and variance within the datasets in
fine detail, without suffering from overfitting.

What is particularly interesting is that in previous years,
this list would have included some increase in hardware
specifications such as memory or processing power. How-
ever, given the major increases in cloud computing and
distributed data processing, we do not consider comput-
ing resources to be a significant current constraint. Cloud
computing providers such as Amazon Web Services and
Google Cloud Computing offer configurable instances
of CPUs, GPUs with extensible RAM which are readily
accessible and at relatively low cost.

Abbreviations
AAM: Active appearance model; AdaGrad: Adaptive gradient algorithm; Adam:
Adaptive moment estimation; ASM: Active shape model; CD-Net: Candidate
decision network; CE-CLM: Convolutional experts constrained local model;

CED: Cumulative error distribution; CEN: Convolutional experts network; CLM:
Constrained local model; CNN: Convolutional neural network; CPU: Central
processing unit; DAN: Deep alignment network; DA-Net: Dataset across
network; FEC-CNN: Fully end to end cascaded convolutional neural network;
GPU: Graphical processing unit; hAAM: Holistic active appearance model;
HOG: Histogram of oriented gradients; NMRSE: Normalised root mean squared
error; OSA: Obstructive sleep apnoea; pAAM: Patch active appearance model;
PDM: Point distribution model; RMSE: Root mean squared error; ROI: Region(s)
of interest; SVM: Support vector machine

Acknowledgements
The authors would like to thank the editors and anonymous reviewers for their
valuable comments.

Funding
No funding has been provided for this work

Availability of data andmaterials
All data, source code, and other materials used and generated for this article
are publicly available under a variety of open source licenses:

• Table 1 contains a list of publicly available facial landmarking datasets,
including those used in the experimental components of this review
paper.

• The source code for all experimental components of this paper is
licensed under GPL 3.0 and can be obtained from GitLab.

• Docker containers with executable forms of the source code are also
available via DockerHub

• The image landmarking tool used for the ground truth varaibility study is
also available under GPL 3.0 on GitLab.

Authors’ contributions
BJ was responsible for the design, research, and writing of the paper as well
executing the experimental components. PC provided valuable assistance in
planning and preparing the experimental components, reviewing, shaping,
and improving the quality of the final manuscript. Both authors read and
approved the final manuscript.

Authors’ information
Benjamin Johnston is a PhD candidate at the University of Sydney and a Senior
Data Scientist at ResMed Ltd. Benjamin’s current research interests include
computer vision, image processing, pattern recognition, and the application
of these technologies in providing improved medical care.
Professor Philip de Chazal is the ResMed Chair in Biomedical Engineering at the
University of Sydney. Professor de Chazal leads the University’s research and
educational activities in biomedical engineering, working across the Charles
Perkins Centre and the Faculty of Engineering and Information Technologies.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 27 December 2017 Accepted: 24 August 2018

References
1. T. Wu, P. Turaga, R. Chellappa, Age estimation and face verification across

aging using landmarks. IEEE Trans. Inf. Forensic Secur. 7(6), 1780–1788
(2012). https://doi.org/10.1109/TIFS.2012.2213812

2. T. Devries, K. Biswaranjan, G. W. Taylor, in 2014 Canadian Conference on
Computer and Robot Vision. Multi-task learning of facial landmarks and
expression (IEEE, Montreal, 2014), pp. 98–103. https://doi.org/10.1109/
CRV.2014.21, http://ieeexplore.ieee.org/document/6816830/

3. G. DL, J. Dusseldorp, H. TA, N. Jowett, A machine learning approach for
automated facial measurements in facial palsy. JAMA Facial Plast. Surg.
20(4), 335 (2018). https://doi.org/10.1001/jamafacial.2018.0030

https://doi.org/10.1109/TIFS.2012.2213812
https://doi.org/10.1109/CRV.2014.21
https://doi.org/10.1109/CRV.2014.21
http://ieeexplore.ieee.org/document/6816830/
https://doi.org/10.1001/jamafacial.2018.0030


Johnston and Chazal EURASIP Journal on Image and Video Processing  (2018) 2018:86 Page 22 of 23

4. S. Anping, X. Guoliang, D. Xuehai, S. Jiaxin, X. Gang, Z. Wu, Assessment for
facial nerve paralysis based on facial asymmetry. Australas. Phys. Eng. Sci.
Med. 40(4), 851–860 (2017). https://doi.org/10.1007/s13246-017-0597-4

5. A. Tabatabaei Balaei, K. Sutherland, P. Cistulli, P. de Chazal, in 2017 IEEE
14th International Symposium on Biomedical Imaging (ISBI 2017). Automatic
detection of obstructive sleep apnea using facial images, (Melbourne,
2017), pp. 215–218. https://doi.org/10.1109/ISBI.2017.7950504

6. B. Johnston, A. McEwan, P. de Chazal, in 2017 39th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).
Semi-automated nasal PAP mask sizing using facial photographs (IEEE,
Jeju Island, 2017), pp. 1214–1217. https://doi.org/10.1109/EMBC.2017.
8037049, http://ieeexplore.ieee.org/document/8037049/

7. O. Çeliktutan, S. Ulukaya, B. Sankur, A comparative study of face
landmarking techniques. EURASIP J. Image Video Process. 13, 1–27
(2013). https://doi.org/10.1186/1687-5281-2013-13

8. F. Marcolin, E. Vezzetti, Novel descriptors for geometrical 3D face analysis.
Multimedia Tools Appl. 76(12), 13805–13834 (2017). https://doi.org/10.
1007/s11042-016-3741-3

9. E. Vezzetti, F. Marcolin, S. Tornincasa, L. Ulrich, N. Dagnes, 3D
geometry-based automatic landmark localization in presence of facial
occlusions. Multimedia Tools Appl. (2017). https://doi.org/10.1007/
s11042-017-5025-y

10. C. Sagonas, E. Antonakos, G. Tzimiropoulos, S. Zafeiriou, M. Pantic, 300
Faces In-The-Wild Challenge: database and results. Image Vis. Comput.
47, 3–18 (2016). https://doi.org/10.1016/j.imavis.2016.01.002

11. C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, M. Pantic, in 2013 IEEE
International Conference on Computer VisionWorkshops. 300 Faces
in-the-wild challenge: The first facial landmark localization challenge
(IEEE, Sydney, 2013), pp. 397–403. https://doi.org/10.1109/ICCVW.2013.59,
http://ieeexplore.ieee.org/document/6755925/

12. C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, M. Pantic, in 2013 IEEE Computer
Society Conference on Computer Vision and Pattern RecognitionWorkshops.
A semi-automatic methodology for facial landmark annotation (IEEE,
Portland, 2013), pp. 896–903. https://doi.org/10.1109/CVPRW.2013.132,
http://ieeexplore.ieee.org/document/6595977/

13. Y. Wu, T. Hassner, K. Kim, G. Medioni, P. Natarajan, Facial landmark
detection with tweaked convolutional neural networks. IEEE Trans.
Pattern Anal. Mach. Intell (2015). https://doi.org/10.1109/TPAMI.2017.
2787130, http://ieeexplore.ieee.org/document/8239860/

14. P. Viola, M. J. Jones, Robust real-time object detection. Int. J. Comput. Vis.
February, 1–30 (2001). https://doi.org/10.1.1.23.2751

15. N. Dalal, B. Triggs, in 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), vol.1. Histograms of oriented
gradients for human detection (IEEE, San Diego, 2005), pp. 886–893.
https://doi.org/10.1109/CVPR.2005.177, http://ieeexplore.ieee.org/
document/1467360/

16. G. Bradski, OpenCV Library (2000). OpenCV.org. Accessed 5 Sept 2018
17. T. Li, W. Hou, F. Lyu, Y. Lei, C. Xiao, in 2016 Sixth International Conference on

InstrumentationMeasurement, Computer, Communication and Control
(IMCCC). Face detection based on depth information using HOG-LBP
(IEEE, Harbin, 2016), pp. 779–784. https://doi.org/10.1109/IMCCC.2016.92,
http://ieeexplore.ieee.org/document/7774889/

18. F. Song, X. Tan, X. Liu, S. Chen, Eyes closeness detection from still images
with multi-scale histograms of principal oriented gradients. Pattern
Recognit. 47(9), 2825–2838 (2014). https://doi.org/10.1016/j.patcog.2014.
03.024

19. A. Suleiman, V. Sze, An energy-efficient hardware implementation of
HOG-based object detection at 1080HD 60 fps with multi-scale support.
J. Signal Process. Syst. 84(3), 325–337 (2016). https://doi.org/10.1007/
s11265-015-1080-7

20. R. Vaillant, C. Monrocq, Y. L. Cun, Original approach for the localisation of
objects in images. IEE Proc. Vis. Image Signal Process. 141(4), 245–250
(1994). https://doi.org/10.1049/ip-vis:19941301

21. M. Osadchy, Y. Le Cun, M. L. Miller, Synergistic face detection and pose
estimation with energy-based models. J. Mach. Learn. Res. 8, 1197–1215
(2007). https://doi.org/10.1007/11957959

22. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied
to document recognition. Proc. IEEE. 86(11), 2278–2323 (1998). https://
doi.org/10.1109/5.726791. http://arxiv.org/abs/1102.0183

23. L. Haoxiang, L. Zhe, S. Xiaohui, J. Brandt, H. Gang, in 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). A convolutional neural

network cascade for face detection (IEEE, Boston, 2015), pp. 5325–5334.
https://doi.org/10.1109/CVPR.2015.7299170

24. S. Yang, P. Luo, C. C. Loy, X. Tang, in 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). WIDER FACE: A face detection
benchmark (IEEE, Las Vegas, 2016). https://doi.org/10.1109/CVPR.2016.
596, http://ieeexplore.ieee.org/document/7780965/

25. X. Sun, P. Wu, S. C. H. Hoi, Face detection using deep learning: an
improved faster RCNN approach. Neurocomputing. 299, 42–50 (2017)

26. R. Girshick, J. Donahue, T. Darrell, J. Malik, in 2014 IEEE Conference on
Computer Vision and Pattern Recognition. Rich feature hierarchies for
accurate object detection and semantic segmentation (IEEE, Columbus,
2014), pp. 580–587. https://doi.org/10.1109/CVPR.2014.81, http://
ieeexplore.ieee.org/document/6909475/

27. M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, A. Zisserman, The
pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 88(2),
303–338 (2010)

28. R. Uijlings, A. van de Sande, T. Gevers, M. Smeulders, et al., selective search
for object recognition. Int. J. Comput. Vis. 104(2), 154 (2013)

29. S. Bell, C. L. Zitnick, K. Bala, R. Girshick, in 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Inside-outside net: detecting
objects in context with skip pooling and recurrent neural networks (IEEE,
Las Vegas, 2016), pp. 2874–2883. http://doi.org/10.1109/CVPR.2016.314,
http://ieeexplore.ieee.org/document/7780683/

30. S. Zhan, Q. Q. Tao, X. H. Li, Face detection using representation learning.
Neurocomputing. 187, 1–8 (2015). https://doi.org/10.1016/j.neucom.
2015.07.130

31. Q. Q. Tao, S. Zhan, X. H. Li, T. Kurihara, Robust face detection using local
CNN and SVM based on kernel combination. Neurocomputing. 211,
98–105 (2016). https://doi.org/10.1016/j.neucom.2015.10.139

32. D. Wang, J. Yang, J. Deng, Q. Liu, FaceHunter: A multi-task convolutional
neural network based face detector. Signal Process. Image Commun. 47,
476–481 (2016). https://doi.org/10.1016/j.image.2016.04.004

33. S. Zafeiriou, C. Zhang, Z. Zhang, A survey on face detection in the wild:
Past, present and future. Comp. Vision Image Underst. 138, 1–24 (2015).
https://doi.org/10.1016/j.cviu.2015.03.015

34. M. Kawulok, M. E. Celebi, B. Smolka, Advances in Face Detection and Facial
Image Analysis. (Springer, Cham, 2016). https://doi.org/10.1007/978-3-
319-25958-1. http://link.springer.com/10.1007/978-3-319-25958-1

35. D. E. King, Dlib-ml: A Machine Learning Toolkit. J. Mach. Learn. Res. 10,
1755–1758 (2009). https://doi.org/10.1145/1577069.1755843

36. A. Asthana, S. Zafeiriou, S. Cheng, M. Pantic, in 2014 IEEE Conference on
Computer Vision and Pattern Recognition. Incremental face alignment in
the wild (IEEE, Columbus, 2014), pp. 1859–1866. https://doi.org/10.1109/
CVPR.2014.240, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=6909636

37. J. Deng, Q. Liu, J. Yang, D. Tao, M3 CSR: Multi-view, multi-scale and
multi-component cascade shape regression. Image Vis. Comput. 47,
19–26 (2015). https://doi.org/10.1016/j.imavis.2015.11.005

38. G. J. Edwards, C. J. Taylor, T. F. Cootes, in Proceedings Third IEEE
International Conference on Automatic Face and Gesture Recognition.
Interpreting face images using active appearance models (IEEE Comput.
Soc, Nara, 1998), pp. 300–305. https://doi.org/10.1109/AFGR.1998.670965,
http://ieeexplore.ieee.org/document/670965/

39. T. F. Cootes, G. J. Edwards, C. J. Taylor, active appearance models. IEEE
Trans. Pattern. Anal. Mach. Intell. 23(6), 681–685 (2001)

40. T. F. Cootes, C. J. Taylor, D. H. Cooper, J. Graham, Active shape
models-Their training and application. Comp. Vision Image Underst.
61(1), 38–59 (1995). https://doi.org/10.1006/cviu.1995.1004

41. J. C. Gower, Generalized procrustes analysis. Psychometrika. 40(1), 33–51
(1975). https://doi.org/10.1007/BF02291478

42. K. Pearson, LIII. On lines and planes of closest fit to systems of points in
space. Philos. Mag. Ser. 6. 2(11), 559–572 (1901). https://doi.org/10.1080/
14786440109462720

43. G. J. Edwards, C. J. Taylor, T. F. Cootes, in Proceedings - 3rd IEEE International
Conference on Automatic Face and Gesture Recognition. Learning to
identify and track faces in image sequences (IEEE, Comput. Soc, Nara,
1998), pp. 260–265. https://doi.org/10.1109/AFGR.1998.670958, http://
ieeexplore.ieee.org/document/670958/

44. T. F. Cootes, C. J. Taylor, Statistical models of appearance for computer
vision. Technical report. (University of Manchester, Manchester, 2008).
http://www.face-rec.org/algorithms/#AAMmodels.pdf

https://doi.org/10.1007/s13246-017-0597-4
https://doi.org/10.1109/ISBI.2017.7950504
https://doi.org/10.1109/EMBC.2017.8037049
https://doi.org/10.1109/EMBC.2017.8037049
http://ieeexplore.ieee.org/document/8037049/
https://doi.org/10.1186/1687-5281-2013-13
https://doi.org/10.1007/s11042-016-3741-3
https://doi.org/10.1007/s11042-016-3741-3
https://doi.org/10.1007/s11042-017-5025-y
https://doi.org/10.1007/s11042-017-5025-y
https://doi.org/10.1016/j.imavis.2016.01.002
https://doi.org/10.1109/ICCVW.2013.59
http://ieeexplore.ieee.org/document/6755925/
https://doi.org/10.1109/CVPRW.2013.132
http://ieeexplore.ieee.org/document/6595977/
https://doi.org/10.1109/TPAMI.2017.2787130
https://doi.org/10.1109/TPAMI.2017.2787130
http://ieeexplore.ieee.org/document/8239860/
https://doi.org/10.1.1.23.2751
https://doi.org/10.1109/CVPR.2005.177
http://ieeexplore.ieee.org/document/1467360/
http://ieeexplore.ieee.org/document/1467360/
http://docs.opencv.org/master/d1/de5/classcv_1_1CascadeClassifier.html#aaf8181cb63968136476ec4204ffca498
https://doi.org/10.1109/IMCCC.2016.92
http://ieeexplore.ieee.org/document/7774889/
https://doi.org/10.1016/j.patcog.2014.03.024
https://doi.org/10.1016/j.patcog.2014.03.024
https://doi.org/10.1007/s11265-015-1080-7
https://doi.org/10.1007/s11265-015-1080-7
https://doi.org/10.1049/ip-vis:19941301
https://doi.org/10.1007/11957959
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
http://arxiv.org/abs/1102.0183
https://doi.org/10.1109/CVPR.2015.7299170
https://doi.org/10.1109/CVPR.2016.596
https://doi.org/10.1109/CVPR.2016.596
http://ieeexplore.ieee.org/document/7780965/
https://doi.org/10.1109/CVPR.2014.81
http://ieeexplore.ieee.org/document/6909475/
http://ieeexplore.ieee.org/document/6909475/
http://doi.org/10.1109/CVPR.2016.314
http://ieeexplore.ieee.org/document/7780683/
https://doi.org/10.1016/j.neucom.2015.07.130
https://doi.org/10.1016/j.neucom.2015.07.130
https://doi.org/10.1016/j.neucom.2015.10.139
https://doi.org/10.1016/j.image.2016.04.004
https://doi.org/10.1016/j.cviu.2015.03.015
https://doi.org/10.1007/978-3-319-25958-1
https://doi.org/10.1007/978-3-319-25958-1
http://springerlink.bibliotecabuap.elogim.com/10.1007/978-3-319-25958-1
https://doi.org/10.1145/1577069.1755843
https://doi.org/10.1109/CVPR.2014.240
https://doi.org/10.1109/CVPR.2014.240
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6909636
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6909636
https://doi.org/10.1016/j.imavis.2015.11.005
https://doi.org/10.1109/AFGR.1998.670965
http://ieeexplore.ieee.org/document/670965/
https://doi.org/10.1006/cviu.1995.1004
https://doi.org/10.1007/BF02291478
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1109/AFGR.1998.670958
http://ieeexplore.ieee.org/document/670958/
http://ieeexplore.ieee.org/document/670958/
http://www.face-rec.org/algorithms/#AAMmodels.pdf


Johnston and Chazal EURASIP Journal on Image and Video Processing  (2018) 2018:86 Page 23 of 23

45. T. Baltrusaitis, P. Robinson, L. P. P. Morency, in 2013 IEEE International
Conference on Computer VisionWorkshops. Constrained local neural fields
for robust facial landmark detection in the wild, (2013), pp. 354–361.
https://doi.org/10.1109/ICCVW.2013.54. http://ieeexplore.ieee.org/
document/6755919/

46. D. Cristinacce, T. F. Cootes, in Procedings of the British Machine Vision
Conference. Feature detection and tracking with constrained local models
(British Machine Vision Association, Edinburgh, 2006), pp. 95–19510.
https://doi.org/10.5244/C.20.95

47. J. Peng, L. Bo, J. Xu, Conditional neural fields. Adv. Neural Inf. Process. Syst.
9, 1–9 (2009)

48. J. Yan, Z. Lei, D. Yi, S. Z. Li, in Proceedingsof the IEEE International Conference on
Computer Vision. Learn to combinemultiple hypotheses for accurate face
alignment, (2013), pp. 392–396. https://doi.org/10.1109/ICCVW.2013.126

49. X. Xiong, F. De La Torre, Supervised descent method and its applications
to face alignment. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., 532–539 (2013). https://doi.org/10.1109/CVPR.2013.75

50. D. G. Lowe, Distinctive image features from scale-invariant keypoints. Int.
J. Comput. Vis. 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.
0000029664.99615.94. http://arxiv.org/abs/0112017

51. A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet Classification with Deep
Convolutional Neural Networks. Adv. Neural Inf. Process. Syst., 1–9 (2012).
https://doi.org/10.1016/j.protcy.2014.09.007. http://arxiv.org/abs/1102.
0183

52. L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, R. Fergus, in Proceedings of the 30th
International Conference onMachine Learning (ICML-13), vol. 28, ed. by S.
Dasgupta, D. Mcallester. Regularization of neural networks using
DropConnect, (2013), pp. 1058–1066. http://jmlr.org/proceedings/
papers/v28/wan13.pdf

53. A. Krizhevsky, Learningmultiple layers of features from tiny images.
(University of Toronto, 2009), pp. 1–60. https://doi.org/10.1.1.222.9220.
http://arxiv.org/abs/arXiv:1011.1669v3

54. B. Graham, Fractional Max-Pooling. International conference on learning
representations, 1–10 (2014). http://arxiv.org/abs/1412.6071

55. D.-A. Clevert, T. Unterthiner, S. Hochreiter, in International Conference on
Learning Representations 2016 (ICLR 2016). Fast and accurate deep network
learning by exponential linear units (elus) (ICLR, San Juan, 2015), pp. 1–14.
https://arxiv.org/abs/1511.07289

56. I. Goodfellow, Y. Bengio, A. Courville, in Deep Learning. Convolutional
Networks (MIT Press, Cambridge, 2016), pp. 330–372. http://www.
deeplearningbook.org

57. S. Zafeiriou, G. Trigeorgis, G. Chrysos, J. Deng, J. Shen, in 2017 IEEE
Conference on Computer Vision and Pattern RecognitionWorkshops
(CVPRW). The Menpo Facial Landmark Localisation Challenge: A Step
Towards the Solution (IEEE, Honolulu, 2017). https://doi.org/10.1109/
CVPRW.2017.263. http://ieeexplore.ieee.org/document/8014997/

58. E. Zhou, H. Fan, Z. Cao, Y. Jiang, Q. Yin, in 2013 IEEE International
Conference on Computer VisionWorkshops. Extensive facial landmark
localization with coarse-to-fine convolutional network cascade
(Institute of Electrical and Electronics Engineers Inc., Sydney, 2013),
pp. 386–391

59. H. Fan, E. Zhou, Approaching human level facial landmark localization by
deep learning. Image Vision Comput. Online J. 47, 27–35 (2016). https://
doi.org/10.1016/j.imavis.2015.11.004

60. J. Yang, Q. Liu, K. Zhang, in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops. Stacked hourglass network for
robust facial landmark localisation, (2017)

61. A. Zadeh, T. Baltrusaitis, L. P. Morency, in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops. Convolutional experts
constrained local model for facial landmark detection, (2017)

62. Y. Sun, X. Wang, X. Tang, in Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. Deep
convolutional network cascade for facial point detection, (2013),
pp. 3476–3483. https://doi.org/10.1109/CVPR.2013.446

63. X. Chen, E. Zhou, Y. Mo, J. Liu, Z. Cao, in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops. Delving deep into
coarse-to-fine framework for facial landmark localization, (2017)

64. C. Zhang, Z. Zhang, in 2014 IEEEWinter Conference on Applications of
Computer Vision, WACV 2014. Improving multiview face detection with
multi-task deep convolutional neural networks, (2014), pp. 1036–1041.
https://doi.org/10.1109/WACV.2014.6835990

65. A. Newell, K. Yang, J. Deng, Stacked hourglass networks for human pose
estimation. Eur. Conf. Comput. Vis., 483–499 (2016). https://doi.org/10.
1007/978-3-319-46484-8. http://arxiv.org/abs/1603.06937

66. W. Wu, S. Yang, in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops. Leveraging intra and inter-dataset
variations for robust face alignment, (2017)

67. Z. He, M. Kan, J. Zhang, X. Chen, S. Shan, in 2017 12th IEEE International
Conference on Automatic Face & Gesture Recognition (FG 2017). A fully
end-to-end cascaded CNN for facial landmark detection (IEEE,
Washington, D.C, 2017), pp. 200–207. https://doi.org/10.1109/FG.2017.33

68. Z. He, J. Zhang, M. Kan, S. Shan, X. Chen, in 2017 IEEE Conference on
Computer Vision and Pattern RecognitionWorkshops (CVPRW). Robust
FEC-CNN: A high accuracy facial landmark detection system (IEEE,
Honolulu, 2017). http://doi.org/10.1109/CVPRW.2017.255. http://
ieeexplore.ieee.org/document/8014989/

69. J. M. Saragih, S. Lucey, J. F. Cohn, Deformable model fitting by regularized
landmark mean-shift. Int. J. Comput. Vis. 91(2), 200–215 (2011). https://
doi.org/10.1007/s11263-010-0380-4

70. M. Kowalski, J. Naruniec, T. Trzcinski, in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR)Workshops. Deep alignment network:
A convolutional neural network for robust face alignment, (2017)

71. C. Sagonas, S. Zafeiriou, Facial point annotations (2017). https://ibug.doc.
ic.ac.uk/resources/facial-point-annotations/ Accessed 18 May 2017

72. S. Milborrow, T. E. Bishop, F. Nicolls, in Proceedings of the IEEE International
Conference on Computer Vision. Multiview active shape models with SIFT
descriptors for the 300-W face landmark challenge, (2013), pp. 378–385.
https://doi.org/10.1109/ICCVW.2013.57

73. X. Glorot, Y. Bengio, Understanding the difficulty of training deep
feedforward neural networks. Proc. 13th Int. Conf. Artif. Intell. Stat.
(AISTATS). 9, 249–256 (2010). https://doi.org/10.1.1.207.2059

74. Y. LeCun, G. Montavon, G. B. Orr, K. R. Mülle, Y. LeCun, in Neural Networks:
Tricks of the Trade. Lecture Notes in Computer Science, vol. 7700, ed. by
.G. Montavon, G. B. Orr, and K. R. Müller. Efficient BackProp (Springer, Berlin,
Heidelberg, 2012), pp. 9–48. https://doi.org/10.1007/978-3-642-35289-8

75. R. Gross, I. Matthews, J. Cohn, T. Kanade, S. Baker, in 2008 8th IEEE
International Conference on Automatic Face Gesture Recognition. Multi-PIE,
(2008), pp. 1–8. https://doi.org/10.1109/AFGR.2008.4813399

76. S. Milborrow, J. Morkel, F. Nicolls, The MUCT landmarked face database.
Pattern Recog. Assoc. S. Afr. (2010)

77. K. Messer, J. Matas, J. Kittler, J. Luettin, G. Maitre, in Second International
Conference on Audio and Video-based Biometric Person Authentication, vol.
964. XM2VTSDB: The extended M2VTS database (AVBPR, Washington, D.C,
1999), pp. 965–966

78. S. Zafeiriou, M. Pantic, G. Chrysos, G. Trigeorgis, J. Deng, J. Shen, 2nd facial
landmark localisation competition - The Menpo benchMark (2017)

79. M. Koestinger, P. Wohlhart, P. M. Roth, H. Bischof, in 2011 IEEE International
Conference on Computer VisionWorkshops (ICCVWorkshops). Annotated
facial landmarks in the wild: A large-scale, real-world database for facial
landmark localization, (2011). https://doi.org/10.1109/ICCVW.2011.
6130513. http://ieeexplore.ieee.org/document/6130513/

80. A. Kasinski, A. Florek, A. Schmidt, The PUT face database. Image Process.
Commun. 13(3-4), 59–64 (2008)

81. M. Fink, R. Fergus, A. Angelova, Caltech 10,000 web faces (2007). http://
www.vision.caltech.edu/Image_Datasets/Caltech_10K_WebFaces/

82. O. Jesorsky, K. J. Kirchberg, R. W. Frischholz, in International Conference on
Audio-and Video-Based Biometric Person Authentication. Robust face
detection using the hausdorff distance (Springer, 2001), pp. 90–95

83. V. Le, J. Brandt, Z. Lin, L. Bourdev, T. S. Huang, in European Conference on
Computer Vision - ECCV 2012, Lecture Notes in Computer Science), vol. 7574
LNCS. Interactive facial feature localization (Springer, Berlin, 2012),
pp. 679–692. https://doi.org/10.1007/978-3-642-33712-349. http://link.
springer.com/10.1007/978-3-642-33712-349

84. G. B. Huang, M. Mattar, T. Berg, E. Learned-Miller, inWorkshop on faces
in’Real-Life’Images: detection, alignment, and recognition. Labeled faces in
the wild: A database forstudying face recognition in unconstrained
environments, (2008)

https://doi.org/10.1109/ICCVW.2013.54
http://ieeexplore.ieee.org/document/6755919/
http://ieeexplore.ieee.org/document/6755919/
https://doi.org/10.5244/C.20.95
https://doi.org/10.1109/ICCVW.2013.126
https://doi.org/10.1109/CVPR.2013.75
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
http://arxiv.org/abs/0112017
https://doi.org/10.1016/j.protcy.2014.09.007
http://arxiv.org/abs/1102.0183
http://arxiv.org/abs/1102.0183
http://jmlr.org/proceedings/papers/v28/wan13.pdf
http://jmlr.org/proceedings/papers/v28/wan13.pdf
https://doi.org/10.1.1.222.9220
http://arxiv.org/abs/arXiv:1011.1669v3
http://arxiv.org/abs/1412.6071
https://arxiv.org/abs/1511.07289
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1109/CVPRW.2017.263
https://doi.org/10.1109/CVPRW.2017.263
http://ieeexplore.ieee.org/document/8014997/
https://doi.org/10.1016/j.imavis.2015.11.004
https://doi.org/10.1016/j.imavis.2015.11.004
https://doi.org/10.1109/CVPR.2013.446
https://doi.org/10.1109/WACV.2014.6835990
https://doi.org/10.1007/978-3-319-46484-8
https://doi.org/10.1007/978-3-319-46484-8
http://arxiv.org/abs/1603.06937
https://doi.org/10.1109/FG.2017.33
http://doi.org/10.1109/CVPRW.2017.255
http://ieeexplore.ieee.org/document/8014989/
http://ieeexplore.ieee.org/document/8014989/
https://doi.org/10.1007/s11263-010-0380-4
https://doi.org/10.1007/s11263-010-0380-4
https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/
https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/
https://doi.org/10.1109/ICCVW.2013.57
https://doi.org/10.1.1.207.2059
https://doi.org/10.1007/978-3-642-35289-8
https://doi.org/10.1109/AFGR.2008.4813399
https://doi.org/10.1109/ICCVW.2011.6130513
https://doi.org/10.1109/ICCVW.2011.6130513
http://ieeexplore.ieee.org/document/6130513/
http://www.vision.caltech.edu/Image_Datasets/Caltech_10K_WebFaces/
http://www.vision.caltech.edu/Image_Datasets/Caltech_10K_WebFaces/
https://doi.org/10.1007/978-3-642-33712-3 49
http://springerlink.bibliotecabuap.elogim.com/10.1007/978-3-642-33712-3 49
http://springerlink.bibliotecabuap.elogim.com/10.1007/978-3-642-33712-3 49

	Abstract
	Keywords

	Introduction
	Review
	Generic model construction
	Stage 1: objective definition
	Measuring performance

	Stage 2: dataset selection
	Ground truth reliability
	Landmark variability survey

	Stage 3: regions of interest
	`Off-the-shelf' face detector performance
	Methods
	Results
	Discussion
	Conclusion

	Stage 4: model definition
	Active shape models
	Active appearance models
	300W faces in-the-wild challenge
	Non-convolutional models
	Cascade shape regression models
	Convolutional neural network landmarking models
	Convolutional neural networks
	Benchmark model performance
	Methods
	Results
	Discussion
	Conclusion

	Stage 5: model training and evaluation

	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Authors' information
	Competing interests
	Publisher's Note
	References

