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Abstract

The development of multimedia equipments has allowed a significant growth in the production of videos through
professional and amateur cameras, smartphones, and other mobile devices. Examples of applications involving video
processing and analysis include surveillance and security, telemedicine, entertainment, teaching, and robotics. Video
stabilization refers to the set of techniques required to detect and correct glitches or instabilities caused during the
video acquisition process due to vibrations and undesired motion when handling the camera. In this work, we
propose and evaluate a novel approach to video stabilization based on an adaptive Gaussian filter to smooth the
camera trajectories. Experiments conducted on several video sequences demonstrate the effectiveness of the
method, which generates videos with adequate trade-off between stabilization rate and amount of frame pixels. Our
results were compared to YouTube’s state-of-the-art method, achieving competitive results.
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1 Introduction
The availability of new digital technologies [1–8] and the
reduction of equipment costs have facilitated the genera-
tion of large volumes of videos in high resolutions. Several
devices have allowed the acquisition and editing of videos,
such as digital cameras, smartphones, and other mobile
devices.
A large number of applications involve the use of digital

videos such as telemedicine, advertising, entertainment,
robotics, teaching, autonomous vehicles, surveillance, and
security. Due to the large amount of video that are cap-
tured, stored, and transmitted, it is fundamental to inves-
tigate and develop efficient multimedia processing and
analysis techniques for indexing, browsing, and retrieving
video content [9–11].
Video stabilization [12–21] aims to correct camera

motion oscillations that occur in the acquisition process,
particularly when the cameras are mobile and handled by
amateurs.
Several low-pass filters have been employed in the sta-

bilization process [20, 22]. However, their straightforward
application using fixed intensity along all the videos is
not suitable, since the camera motion may be unduly
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corrected when it should not. Recent approaches have
used optimizations [23, 24] to control the local smoothing
intensity.
As a main contribution, this work presents and eval-

uates a novel technique for video stabilization based on
an adaptive Gaussian filter to smooth the camera trajec-
tories. Experiments demonstrate the effectiveness of the
method, which generates videos with proper stabiliza-
tion rate while maintaining a reasonable amount of frame
pixels.
The proposed method can be seen as an alternative

to optimization approaches recently developed in the lit-
erature [23, 24] with a lower computational cost. The
results are compared to different versions of Gaussian
filter, Kalman filter, and the video stabilization method
employed in YouTube [24], which is considered a state-of-
the-art approach.
This paper is organized as follows. Some relevant con-

cepts and related work are briefly described in Section 2.
The proposed method for video stabilization is detailed
in Section 3. Experimental results are presented and dis-
cussed in Section 4. Finally, some final remarks and
directions for future work are included in Section 5.
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2 Background
Different categories of stabilization approaches [25–32]
have been developed to improve the quality of videos,
which can be broadly classified as mechanical stabiliza-
tion, optical stabilization, and digital stabilization.
Mechanical stabilization typically uses sensors to detect

camera shifts and compensate for undesired motion. A
common way is to use gyroscopes to detect motion and
send signals to motors connected to small wheels so that
the camera can move in the opposite direction of motion.
The camera is usually positioned on a tripod. Despite the
efficiency usually obtained with this type of system, there
are disadvantages in relation to the resources required,
such as device weight and battery consumption.
Optical stabilization [33] is widely used in photographic

cameras and consists of a mechanism to compensate for
the angular and translational motion of the cameras, sta-
bilizing the image before it is recorded on the sensor.
A mechanism for optical stabilization introduces a gyro-
scope to measure velocity differences at distinct instants
in order to distinguish between normal and undesired
motion. Other systems employ a set of lenses and sensors
to detect angle and speed ofmotion for video stabilization.
Digital stabilization of videos is implemented without

the use of special devices. In general, undesired camera
motion is estimated by comparing consecutive frames and
applying a transform to the video sequence to compen-
sate for motion. These techniques are typically slower
when compared to optical techniques; however, they can
achieve adequate results in terms of quality and speed,
depending on the algorithms used.
Methods found in the literature for digitally stabiliz-

ing videos are usually classified into two-dimensional (2D)
or three-dimensional (3D) categories. Sequences of 2D
transformations are employed in the first category to
represent camera motion and stabilize the videos. Low-
pass filters can be used to smooth the transformations,
reducing the influence of high frequency of the camera
[20, 22]. In the second category, camera trajectories are
reconstructed from 3D transformations [34, 35], such as
scaling, translation, and rotation.
Approaches that use 2D transformations focus on con-

tributing to specific steps in their stabilization process
[36]. By considering the estimation of camera motion,
2D methods can be further subdivided into two cate-
gories [32]: (i) intensity-based approaches [37, 38], which
directly use the texture of the images as motion vector,
and (ii) keypoint-based approaches [39, 40], which locate
a set of corresponding points in adjacent frames. Since
keypoint-based approaches have a lower computational
cost, they are most commonly used [22]. Techniques such
as the extraction of regions of interest can be used in this
step, in order to avoid cutting certain objects or regions
that are supposed to be important to the observer [41].

Many methods have employed different motion fil-
tering mechanisms, such as motion vector integration
[39], Kalman filter [42, 43], particle filter [44], and reg-
ularization [37]. Such mechanisms aim to remove high-
frequency instability from camera motion [36]. Other
approaches have focused on improving the quality of the
videos, often lost in the stabilization process. The most
commonly used techniques include inpainting to fill miss-
ing frame parts [22, 41, 45], deconvolution to improve the
video focus [22, 41], and weighting of stabilization metrics
and video quality aspects [36, 45].
Recent improvements in 2D methods have made them

comparable to 3D methods in terms of quality. For
instance, the use of an L1-norm optimization can gener-
ate a camera path that follows cinematographic rules in
order to consider separately constant, linear, and parabolic
motion [24]. A mesh-based model, in which multiple tra-
jectories are calculated at different locations of the video,
proved to be efficient in dealing with parallax without the
use of 3D methods [23]. A semi-automatic 2D method,
which requires assistance from the user, is proposed to
adjust problematic frames [46].
On the other hand, 3D methods typically construct a

three-dimensional model of the scene through structure-
from-motion (SFM) techniques for smoothing motion
[47], providing superior quality stabilization but at a
higher computational cost [27, 47]. Since they usually
have serious problems in handling large objects in the
foreground [36], 2D methods are in general preferred in
practice [36].
Although 3D methods can generate good results in

static scenes using image-based rendering techniques
[34, 48], they usually do not handle dynamic scenes
correctly, causing motion blur [49]. Thus, the con-
cept of content preservation was introduced, restrict-
ing each output frame to be generated from a single
input frame [49]. Other approaches address this prob-
lem through a geometric approximation by abdicating to
be robust with respect to the parallax [35]. Other diffi-
culties found in 3D methods appear in amateur videos,
such as lack of parallax, zoom, and use of complemen-
tary metal oxide semiconductor (CMOS) sensors, among
others [47].
Although not common, 3D methods can fill missing

parts of a frame by using information from several other
frames [48]. More recently, 2D and 3Dmethods have been
extended to deal with stereoscopic videos [29, 50]. Hybrid
approaches have emerged to obtain the efficiency and
robustness of 2D methods in addition to the high qual-
ity of 3D methods. Some of them are based on concepts
such as trajectories subspace [47] and epipolar transfer
[51]. A hybridmethod for dealing with discrete depth vari-
ations present in short-distance videos was described by
Liu et al. [31].
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3 Adaptive video stabilizationmethod
This section presents the proposed video stabilization
method based on an adaptive Gaussian smoothing of the
camera trajectories. Figure 1 illustrates the main stages
of the methodology, which are described in the following
subsections.

3.1 Keypoint detection andmatching
The process starts with the detection and description of
keypoints in the video frames. In this step, we used the
speeded up robust features (SURF) method [52]. After
extracting the keypoints between two adjacent frames,
their correspondence is performed using the brute-force
method with cross-checking, where the Euclidean dis-
tance between the feature vectors for each pair of points
xi ∈ ft and x′

j ∈ ft+1 is calculated for two adjacent frames
ft and ft+1. Thus, xi corresponds to x′

j if and only if xi is the
closest point to x′

j and x′
j the closest to xi.

Figures 2 and 3 show the detection of keypoints in a
frame and the correspondence between the points of two
adjacent superimposed frames, respectively.

3.2 Motion estimation
After determining the matches between the keypoints,
it is necessary to estimate the motion performed by
the camera. For this, we estimate the similarity matrix,
that is, the matrix that transforms the set of points in
a frame ft to the set of points in a frame ft+1. Since
we consider the matrix of similarity, the parameters
of the matrix transformation take into account camera
shifts (translation), distortion (scaling), and undesirable
motion (rotation) for the construction of a stabilization
model.
In the process of digital video stabilization, oscillations

of the camera that occurred at the time of recording
must be compensated. The similarity matrix should take
into account only the correspondences that are, in fact,
between two equivalent points. In addition, it should not
consider the movement of objects present in the scene.
The random sample consensus (RANSAC) method is

applied to estimate a similarity matrix that considers only
inliers in order to disregard the incorrect correspondences

and those that describe the movement of objects. In
the application of this method, the value of the residual
threshold parameter, which determines the maximum
error for a match to be considered as inlier, is calcu-
lated for each pair of frames. Algorithm 1 presents the
calculation to determine the final similarity matrix.

Algorithm 1 Similarity matrix computation
1: procedure FINALMATRIX
2: Generate the similarity matrix M by considering

all matches.
3: Let MSE(M) be the mean square error of matrix

M.
4: Apply the RANSAC considering the MSE(M) as

residual threshold value.
5: Generate the similarity matrix M′ considering

only the inliers obtained previously.
6: Let MSE(M′) be the mean square error of matrix

M′.
7: Apply the RANSAC considering the MSE(M′) as

residual threshold value.
8: Generate the similarity matrix Mfinal considering

only the inliers obtained for the second execution of
RANSAC.

In cases of pairs of frames with spatially variant motion,
the correct matches also tend to have certain variation.
Thus, the residual threshold is calculated so that its value
is low enough to eliminate undesired matches and high
enough such that the correct matches are maintained.

3.3 Trajectory construction
After estimating the final similarity matrices for each pair
of adjacent frames of the video, a trajectory is calculated
for each of the factors of the similarity matrix. In this
work, we consider a vertical translation factor, a horizon-
tal translation factor, a rotation factor, and a scaling factor.
Each factor f of the matrix is decomposed, and the trajec-
tory of each of them is calculated in order to accumulate
its previous values, expressed as

Fig. 1Main steps of the proposed digital video stabilization method
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Fig. 2 Detection of keypoints between adjacent frames

tfi = tfi−1 + �
f
i (1)

where ti is the value of a given trajectory in the i-th
position and�

f
i is the value of the factor f for the i-th sim-

ilarity matrix previously estimated. The trajectories are
then smoothed. The equations presented in the remain-
der of the text are always applied to the trajectories of each
factor separately. Thus, the factor index f will be omitted
in order to not overload the notation.

3.4 Trajectory smoothing
Assuming that only the camera motion is present in the
similarity matrices, the calculated trajectory refers to the
path made by the camera during the video recording.
To obtain a stabilized video, it is necessary to remove
the oscillations from this path, keeping only the desired
motion.
Since the Gaussian filter is a linear low-pass filter, it

attenuates the high frequencies present in a signal. The

Fig. 3Matching of keypoints between adjacent frames

Gaussian filter modifies the input through a convolution
by considering a Gaussian function in a window of size
M. Thus, this function is used as impulse response in the
Gaussian filter and can be defined as

G(x) = ae−
(x−μ)2
2σ2 (2)

where a is a constant considered as 1 so that G(x)
has values between 0 and 1. The constant μ is the
expected value, considered as 0, whereas σ 2 represents the
variance.
The parameterM indicates the number of points of the

output window, whose value is expressed as

M = n
3

− 1 (3)

where n is the total number of frames in the video.
Since different instants of the video will have a distinct

amount of oscillations, this work applies a Gaussian filter
adaptively in order to remove only the undesired camera
motion.
The smoothing of an intense motion may result in

videos with a low amount of pixels. Moreover, this type of
motion is typically a desired camera motion, which should
not be smoothed. Therefore, the parameter σ is computed
in such a way that it has smaller values in these regions.
Thus, the trajectory will be smoothed by considering a
distinct value for σi at each point i. To determine the value
of σi, a sliding window of size twice as large as the frame
rate measure is applied, so that the window information
lasts for two video seconds. The ratio ri is expressed as

ri =
(
1 − μi

max_value

)2
(4)

where the max_value corresponds to either width in the
horizontal translation trajectory or height in the vertical
translation trajectory. In this work, we consider θ = π

6 as
the angle (in radians) in the rotation trajectory. Thus, the
motion will be considered large based mainly on the video
resolution. Value μi is calculated in such a way to give
higher weights to points closer to i, where μi is expressed
as

μi =
∑

j∈Wi, j �=i G(|j − i|, σμ)�j∑
j∈Wi G(|j − i|, σμ)

(5)

where j is the index of each point in the window of i,
whereas G() is a Gaussian function with σ calculated as

σμ = FPS(1 − CV) (6)

where FPS is the video frames per second, and CV
is the coefficient of variation of the absolute values of
the trajectory that are inside the window. As the value
of CV is between 0 and 1, its final value is limited
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to 0.9 in order for σμ not to have null values. There-
fore, σμ makes the actual size of the window adap-
tive, such that the higher the variation of motion inside
the window, the higher the weight given to the central
points.
The coefficient of variation can be expressed as

CV = std(∀ti | i ∈ Wi)

avg(∀ti | i ∈ Wi)
(7)

where Wi is in the same window as in Eq. 5 and ti
the trajectory value. Therefore, the coefficient of vari-
ation corresponds to the standard deviation std to the
average avg.
Assuming that ri ranges between 0 and 1, a linear trans-

formation is applied to obtain a proper interval to the
Gaussian filter. This transformation is given as

σi = σmax − σmin
rmax − rmin

(ri − rmin) + σmin (8)

where σmin and σmax are the minimum and maximum
values of the new interval (after linear transformation),
respectively. In this work, these values are defined as 0.5
and 40, respectively. Values rmin and rmax are the min-
imum and maximum values of the old interval (before
linear transformation). In this work, value rmax is always
set to 1. To control whether a motion is desired or not, a
value in the interval between 0 and 1 is set to rmin. The
same rmin is used as a lower limit to ri, before applying the
linear transformation.
An exponential transformation is then applied to σi val-

ues to amplify their magnitude. After calculating σi for
each point of the trajectory, its values are lightly smoothed
by a Gaussian filter with σ = 5, chosen empirically.
This is done to avoid abrupt changes in the value of σi
along the trajectory. Finally, the Gaussian filter is applied n
times (once for each point in the trajectory), generating a

smoothed trajectory (indexed by k) for each σi previously
calculated. The final smoothed trajectory corresponds to
the concatenation of points for each of the generated tra-
jectories, and the k-th trajectory contributes with its k-th
point. Thus, an adaptive smoothed path is obtained. This
process is applied only to the translation and rotation
paths.
Figure 4 shows the trajectory generated by considering

the horizontal translational factor (blue) and the obtained
smoothing (green) using the Gaussian filter with σ = 40
and the adaptive version proposed in this work. It is pos-
sible to observe that the smoothing is applied at different
degrees along the trajectory.

3.5 Motion compensation and frame cropping
After applying the Gaussian filter, it is necessary to
recalculate the value of each factor for each similarity
matrix. In order to do that, the similarity matrix value
of a given factor is calculated by the difference between
each point of its smoothed trajectory and its predeces-
sor. With the similarity matrices of each pair of frames
updated, the similarity matrix is applied to the first
frame of the pair to take it to the coordinates of the
second.
Applying the geometric transformation in the frame

causes information to be lost in certain pixels of the frame
boundary. Figure 5 presents a transformed frame, where
it is possible to observe the loss of information at the bor-
ders. They are then cropped so that no frames in the stabi-
lized video hold pixels without information. To determine
the frame boundaries, each similarity matrix is applied to
the original coordinates of the four vertices, thus generat-
ing the transformed coordinates for the respective frame.
Finally, the innermost coordinates of all frames are con-
sidered final. Figure 6, extracted from [22], illustrates the
cropping process applied to the transformed frame.

a b

Fig. 4 Smoothing of camera motion trajectories. a Gaussian filter with σ = 40. b Adaptive Gaussian filter
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Fig. 5 Frame after application of geometric transformation

3.6 Evaluation metrics
The peak signal-to-noise ratio (PSNR) is used to evalu-
ate the overall difference between two frames of the video,
expressed as

PSNR(ft , ft+1)=10 log10
WHL2max

W∑
x=1

H∑
y=1

[ ft(x, y)−ft+1(x, y)]2
(9)

where ft and ft+1 are two consecutive frames of the
video, W and H are the width and height of each frame,
respectively, and Lmax is the maximum value intensity
of the image. The PSNR metric is expressed in decibel
(dB), a unit originally defined to measure sound intensity
on a logarithmic scale. Typical PSNR values range from
20 to 40. The PSNR value should increase from the initial

video sequence to the stabilized sequence, since frames
after transformation will tend to be more similar.
The interframe transformation fidelity (ITF) can be

used to evaluate the final stabilization of the method,
expressed as

ITF = 1
N − 1

N−1∑
k=1

PSNR(k) (10)

where N is the number of frames in the videos. Typically,
the stabilized sequence has a higher ITF value than the
original sequence.
Due to the loss of information in the application of the

similarity matrix in the frames, it is important to evalu-
ate and compare such rate among different stabilization
methods. For this, we report the percentage of pixels held
by the stabilized video in comparison to the original video,
expressed as

Rate of preserved pixels = 100
WsHs
WH

(11)

whereW andH correspond to the width and height of the
frames in the original video andWs and Hs correspond to
the width and height of the frames in the video generated
by the stabilization process, respectively.

4 Results and discussion
This section describes the results of experiments con-
ducted on a set of input videos. Fourteen videos with
oscillations were submitted to the stabilization process
and evaluated, where eleven of them are available from the

Fig. 6 Frame after boundary cropping
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Table 1 Video sequences used in our experiments

No. Video Source Resolution (pixels) FPS

1 gleicher1 GaTech VideoStab 640 × 360 30

2 gleicher2 GaTech VideoStab 640 × 360 30

3 gleicher3 GaTech VideoStab 640 × 360 30

4 gleicher4 GaTech VideoStab 640 × 360 30

5 greyson_chance GaTech VideoStab 640 × 360 30

6 hippo nghiaho.com/uploads/hippo.mp4 480 × 360 30

7 lf_juggle GaTech VideoStab 480 × 360 25

8 new_gleicher GaTech VideoStab 480 × 270 30

9 sam_1 GaTech VideoStab 640 × 360 30

10 sam and cocoa youtu.be/627MqC6E5Yo 540 × 360 30

11 sany0025 GaTech VideoStab 640 × 360 30

12 shake_pgh_1 GaTech VideoStab 640 × 360 30

13 shaky_car MatLab 320 × 240 30

14 yuna_long GaTech VideoStab 640 × 360 30

GaTech VideoStab [24] database and the three others col-
lected separately. Table 1 presents the videos used in the
experiments and their sources.
In the experiments performed, we compared the val-

ues of the ITF metric as well as the amount of pixels
held for different versions of the trajectory smoothing. In
the first version, we used the Gaussian filter considering
σ = 40. In another version, the Gaussian filter is used in a
slightly more adaptive way, choosing different values of σ

for each trajectory according to the size of the trajectory
range with respect to the size of the video frame. Higher
values of σ are assigned to paths with smaller intervals;
we then denominate this version as semi-adaptive. The
locally adaptive version of the Gaussian filter proposed in
this work is presented. A version using the Kalman filter
is also shown. In addition, the videos were submitted to
the YouTube stabilization method [24] in order to com-
pare its results against ours. The metric is calculated for

Table 2 Comparison between Gaussian filter and Kalman filter

No. of videos Original Gaussian filter Kalman filter
σ = 40

ITF ITF Hold pixels (%) ITF Hold pixels (%)

1 18.793 27.738 69.276 25.888 71.000

2 20.390 29.331 71.750 27.201 74.771

3 16.186 22.559 72.972 22.122 73.003

4 19.965 33.380 48.958 26.298 54.903

5 23.277 28.660 2.540 25.991 4.958

6 19.681 29.804 67.891 25.576 73.507

7 24.109 28.510 60.495 28.063 57.167

8 17.881 25.448 70.648 24.081 72.287

9 19.248 23.251 25.797 21.426 33.818

10 12.972 18.453 17.519 16.680 27.204

11 21.487 26.826 43.599 25.704 52.875

12 15.081 0 0 20.219 2.686

13 23.841 30.621 70.312 28.200 71.875

14 18.065 20.265 7.448 20.902 7.642

Average 19.355 24.631 44.953 24.167 48.406
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Table 3 Comparison between semi-adaptive Gaussian filter and adaptive Gaussian filter

No. of videos Original Semi-adaptive Gaussian filter Locally adaptive Gaussian filter

ITF ITF Hold pixels (%) ITF Hold pixels (%)

1 18.793 27.620 70.745 27.455 74.500

2 20.390 29.331 71.750 28.914 75.781

3 16.186 22.559 72.972 22.090 76.056

4 19.965 33.380 48.958 27.931 62.465

5 23.277 27.814 8.312 27.360 53.385

6 19.681 29.804 67.891 29.077 70.838

7 24.109 28.510 60.495 28.876 73.667

8 17.881 25.448 70.648 25.182 73.284

9 19.248 21.845 35.750 21.435 57.139

10 12.972 17.465 27.907 16.381 70.296

11 21.487 26.826 43.559 25.659 57.260

12 15.081 19.827 16.611 17.895 59.847

13 23.841 30.621 70.312 29.987 71.719

14 18.065 19.759 39.045 19.773 54.146

Average 19.355 25.772 50.353 24.858 66.455

the video sequence before and after the stabilization pro-
cess. Table 2 shows the results obtained with the Kalman
filter and the Gaussian filter with σ = 40.
From Table 2, we can observe a certain superiority in

the use of the Gaussian filter, which achieves a higher
ITF value for all videos with basically the same amount
of pixels kept for most videos. Videos #5, #9, #10, #12,
and #14 keep a lower amount of pixels compared to
the other videos. This is due to the presence of desired

camera motion, which is erroneously considered as oscil-
lations by the Gaussian filter, if the value of σ used is
high enough. However, smaller values may not remove the
oscillations from the videos efficiently, since each video
has oscillations of different proportions.
In order to improve the quality of the stabilization

for these cases, Table 3 presents the results obtained
with the version of the semi-adaptive Gaussian filter,
where trajectories with greater difference between the

Table 4 Comparison between adaptive Gaussian filter and YouTube method [24]

No. of videos Original Locally adaptive Gaussian filter YouTube [24] Hold pixels

1 18.793 27.455 27.890 Superior

2 20.390 28.914 28.604 Superior

3 16.186 22.090 23.030 Comparable

4 19.965 27.931 33.711 Superior

5 23.277 27.360 27.599 Inferior

6 19.681 29.077 29.390 Superior

7 24.109 28.876 29.252 Comparable

8 17.881 25.182 25.908 Superior

9 19.248 21.435 20.922 Inferior

10 12.972 16.381 20.495 Superior

11 21.487 25.659 26.672 Comparable

12 15.081 17.895 19.283 Comparable

13 23.841 29.987 28.845 Comparable

14 18.065 19.773 20.128 Inferior

Average 19.355 24.858 25.837 –
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Fig. 7 Video #1. Amount of pixels hold through our method is superior than the state-of-the-art approach. a Adaptive Gaussian filter; b YouTube [24]

minimum and maximum values will have a lower value
for σ . We used σ = 40 for trajectories with inter-
vals smaller than 80% of the respective frame size,
whereas σ = 20 otherwise. For the locally adap-
tive version proposed in this work, we experimen-
tally set rmin as 0.4, whose results are reported in
Table 3.
The semi-adaptive version maintains more pixels in the

videos in which the original Gaussian filter had prob-
lems, since σ = 20 was applied to them. However, the
amount of pixels held in the frames is lower than in the
other videos. This is because, in many cases, σ = 20 is
still a very high value. On the other hand, smaller values
of σ can ignore the oscillations that are present in other
instance of the video, thus generating videos not stabi-
lized enough and consequently with a lower ITF value.
Therefore, as can be seen in Table 3, the locally adap-
tive version, whose smoothing intensity is changed along
the trajectory, obtained ITF values comparable to the
original and semi-adaptive version, maintaining consider-
ably more pixels.
Table 4 presents a comparison of the results between

our method and YouTube approach [24]. The percentage
of pixels held was not reported since the YouTube method
resizes the stabilized videos to their original size. Thus, a
qualitative analysis is done through the first frame of each
video, whose results are classified into three categories:
superior (when our method maintains more pixels), infe-
rior (when the YouTube method holds more pixels), and

comparable (when both methods hold basically the same
amount of pixels). Figures 7, 8, and 9 illustrate the analysis
performed.
In Fig. 7, it is possible to observe that more infor-

mation is maintained on the top, left, and right sides
of the video obtained with our method. The difference
is not considerably large, and the advantage or dis-
advantage obtained follows these proportions in most
videos.
In Fig. 8, there is less information maintained on the top

and bottom sides in the use of the adaptive Gaussian filter.
On the other hand, there is a larger amount of information
held on the left and right sides.
Figure 9 illustrates a situation where our method main-

tains less pixels. Lower amount of information is held on
the every sides with our method.
From Table 4, we can observe a certain parity for

both methods in terms of ITF metric, with a slight
advantage of the YouTube method [24], while the main-
tained pixels are in general comparable and, when lower,
do not differ much. This demonstrates that the pro-
posed method is competitive with one of the meth-
ods considered as current state-of-the-art, despite the
simplicity of our method. Notwithstanding, the method
still needs to be further extended to deal with some
adverse situations, such as the treatment of non-
rigid oscillations in the video #10, the rolling shut-
ter in the video #12, and the parallax effect, among
others.

Fig. 8 Video #3. Amount of pixels hold through our method is comparable to the state-of-the-art approach. a Adaptive Gaussian filter;
b YouTube [24]
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Fig. 9 Video #12. Amount of pixels hold through our method is inferior than the state-of-the-art approach. a Adaptive Gaussian filter; b YouTube [24]

5 Conclusions
In this work, we presented a technique for video stabi-
lization based on an adaptive Gaussian filter to smooth
the camera trajectory in order to remove undesired oscil-
lations. The proposed filter assigns distinct values to σ

along the camera trajectory by considering that the inten-
sity of the oscillations changes throughout the video and
that a very high value of σ can result in a video with a
low amount of pixels, while smaller values generate less
stabilized videos.
The results obtained in the experiments were compared

with different versions for the smoothing of the trajec-
tory: Kalman filter, Gaussian filter with σ = 40, and a
semi-adaptive Gaussian filter. The approaches achieved
comparable values for the ITF metric while maintaining a
significantly higher amount of pixels.
A comparison was performed with the stabilization

method used in YouTube, where the results were compet-
itive. As directions for future work, we intend to extend
our method to deal with some adverse situations, such as
non-rigid oscillations and effect of parallax.
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