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Abstract

Target recognition and tracking is a hot research in image and video processing and is widely used in motion
analysis, behavior recognition, and so on. In this paper, we studied target recognition and tracking in a series of
images, and our approach is based on the multiple-instance learning technique. Firstly, we present a general
target tracking framework. Within the proposed framework, we use image frames to generate positive and negative
samples to train a classifier and use the classifier to differentiate target from its background. We use a set of weak
classifiers to construct a strong classifier. The experiments show that the proposed approach has better precision
and recall on two public datasets than related works.
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1 Introduction
Target recognition and tracking is applied in many
fields, such as motion analysis [1] and behavior recog-
nition [2]. However, occlusion, similar background,
lighting, surface, and etc. pose great challenges for tar-
get recognition and tracking, which will make target
shift or even tracking fail [3]. Appearance model-based
tracking algorithms [4,5] represent targets with scale-
invariant feature transformation or histogram of ori-
ented gradient, but these features cannot reflect the
basis of targets, and mismatches usually appear in the
process of tracking. Moreover, complex appearance
models lead to very high computation.
The combination of appearance model and traditional

machine learning techniques consumes target tracking
as a binary classification problem [6,7], and this method
can utilize background information effectively and thus
can improve the effectiveness of tracking. However, as
there are not enough training data to the classification
model, the recognition ability of target is very low and
thus misclassification usually occurs. Deep learning is a
hot research in image and visual processing. According
to construct deep non-linear network model [8,9], the
essential features of images can be learned with the

constructed model, and then, the classification accuracy
is improved.
Flock of tracker [10] combines local trackers with glo-

bal motion model and can handle the problem of occlu-
sion and local changes of non-rigid targets. Cell flock of
tracker [11] tracks targets with the selected optimal local
tracker and thus can handle the problem of target shift-
ing and is more robust in target tracking.
Multiple-instance learning is first proposed by Dietterich

et al. [12], and it is the fourth machine learning technique
besides supervised learning, unsupervised learning, and
reinforcement learning. Zhang et al. [13] propose to
embed multiple-instance learning into the AnyBoost algo-
rithm framework and construct the MILBoost classifier for
target detection. Babenko et al. [14] use multiple-instance
learning for target tracking, which gets a good tracking
effectiveness, so multiple-instance learning becomes a hot
research in target tracking. Zeisl et al. [15] apply the semi-
supervised multiple-instance learning for target tracking,
in which the target and background of the first frame is as-
sumed to be tagged sample, and targets of the subsequent
frames are assumed untagged samples. When the first
frame comes, the tagged sample and untagged samples,
which are tracked correctly, are priors for the following
frame, and this improves the stability of target tracking
[16]. In addition, Babenko et al. [17] has analyzed the vis-
ual tracking with online multiple-instance learning, butCorrespondence: jiangqinxz@sina.com
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they aim to track the predefined target, and our method
can recognize any target from its background.
However, the original multiple-instance learning has

the weaknesses of low classification effectiveness and
real-time ability. In order to handle these weaknesses,
we propose a new weak classifier, which assigns different
positive samples, different weights and assigns, different
weak classifiers, and different weights. In addition, we
propose a strong classifier to improve the accuracy and
real-time ability of target tracking.
The rest of the paper is organized as follows. In

Section 2, we present our proposed target tracking algo-
rithm based on multiple-instance learning. Experiments
and conclusion are given in Sections 3and4, respectively.

2 Multiple-instance learning target tracking
algorithm
The flowchart of a tracking system is in Fig. 1, where we
use all previous frames as training data to train a classi-
fier and use this classifier to classify thet + 1-th frame;
once thet + 1-th frame is classified, we add it into the
training data for future prediction. The classifier evolves
as time goes on.

2.1 Selection of positive and negative samples
During the process of traditional target tracking, the tar-
get is usually one candidate object. When the target
changes a lot or is occluded, the tracking frame shifts
easily. Taking the limit of single candidate target, we
consider multiple candidate targets. Here, we consider
the target as positive sample and consider the back-
ground as negative samples. The samples including both
positive and negative samples are denoted as X. Let the
location of a sample beltat timet, then the category of

sample isy ∈ {0, 1}, wherey = 1, ifXis the target, andy = 0,
if X is the background.Let the location of the target be
l�t−1 at timet − 1, then the sample set that is waited for
classification at timet is

Xs ¼ Xj l Xð Þ−l�t−1
�� �� < s

� �
; ð1Þ

where l(X) is the location of sample X and s is the
searching radius.
In order to acquire the location l�t of the target at time

t, compute the probability p(y = 1) that all samples X is a
positive sample. Let the probability that the target occurs
in a cycle region with radiussbe uniform, then we have

p l�t jl�t−1
� � ¼ 1 l Xð Þ−l�t−1

�� �� < s
0 otherwise

:

�
ð2Þ

Then, the new location of the target is

l�t ¼ l argmax
X∈Xs

p y ¼ 1jXð Þ
� 	

: ð3Þ

When the new location is calculated out, we need to
select new positive and negative samples to update the
classifier. While selecting the positive samples, the posi-
tive sample set X+contains N samples, which is a cycle
with l�t as its center, radius α, that is

Xþ ¼ X1ij l Xð Þ−l�t
�� �� < α

� �
: ð4Þ

The negative sample set X−contains L samples,
which is a cirque with l�t as its center, radius from β to
γ, that is

X− ¼ X0ijβ < l Xð Þ−l�t
�� �� < γ

� �
: ð5Þ

2.2 Training a classifier
While training the classifier, we use the selected posi-
tive and negative sample set, X+ and X−, and then,
the probability that a sample is a positive sample is
as follows [14]:

p y ¼ 1jXð Þ ¼ eH Xð Þ

eH Xð Þ þ e−H Xð Þ
¼ 0:5 tanh H Xð Þð Þ þ 0:5; ð6Þ

where tanh zð Þ ¼ eH Xð Þ−e−H Xð Þ
eH Xð Þþe−H Xð Þ , H(X) is a strong classifier of

the samples and consists of K weak classifiers.
The definition of H(X) is in the following equation:

H Xð Þ ¼
XK
k¼1

λkhk Xð Þ; ð7Þ

where hk(X) is the kth weak classifier and λk is its
weight. The weak classifiers are selected according to

Fig. 1 The flowchart of tracking system
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their classification ability. If a weak classifier is good
at classification, then we give it a big weight; other-

wise, we give it a small weight. Let λk ¼ e
1−k
K , then the

weak classifier is selected from the set of weak classi-
fier set Φ, where Φ = {h1,…, hM} and M > K. The weak
classifier set is generated with the following method:

let hk ¼ log
p y¼1j f k Xð Þð Þ
p y¼0j f k Xð Þð Þ

� 	
, where fk(X) is the Haar-like

feature [18]; let p(y = 0) = p(y = 1), then, with the Bayes

rule, we can havehk ¼ log
p f k Xð Þjy¼1ð Þ
p f k Xð Þjy¼0ð Þ

� 	
,

where p( fk(X)|y = 1) and p( fk(X)|y = 0) conform to the
Gaussian distribution [19], that is

p f k Xð Þjy ¼ 1
� �eN μ1; σ1ð Þ; ð8Þ

p f k Xð Þjy ¼ 0
� �eN μ0; σ0ð Þ; ð9Þ

where μ1, σ1, μ0, and σ0 are expectations and variances
of the two Gaussian distributions.
During the training of the classifier, we use the gradi-

ent descent method, and the iterations of μi and σi are as
follows:

μi ¼ ημi þ 1−ηð Þ 1
N

X
jjy¼1

f Xj
� �

; ð10Þ

σ i ¼ ησ i þ 1−ηð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
jjy¼1

f Xj
� �

−μi
� �2s

; ð11Þ

where i = 0, 1, η is the learning coefficient.

2.3 Selecting weak classifiers
As we can see from Eq. 7, target tracking needs to use
a set Φ of K weak classifiers, and then, the rule for the
selection of weak classifiers is to assure an optimal
strong classifier [20]. Babenko et al. [14] propose to ascer-
tain weak classifier h by maximizing the log-likelihood
function with both positive and negative sample sets,
that is

hk ¼ argmax
h∈Φ

L Hk−1 þ λkhð Þ; ð12Þ

whereL(H) is computed as follows:

L Hð Þ ¼
X1
s¼0

ðys log p y ¼ 1jXþð Þð Þ

þ 1−ysð Þ log p y ¼ 0jX−ð Þð ÞÞ;
ð13Þ

where p y ¼ 1jXþð Þ ¼
XN−1

j¼1
wjp y ¼ 1jX1j

� �
. As there

exists similarity between positive sample and nega-
tive sample, we define the similar coefficient as
follows:

wj ¼ 1
c
e−jl X1jð Þ−l X10ð Þð Þ; ð14Þ

where c is the normalization constant.
With the same reason, we can have

p y ¼ 0jX−ð Þ ¼
XNþL−1

j¼N
w

0
jp y ¼ 0jX0j
� �

¼ w
XNþL−1

j¼N
1−p y ¼ 1jX1j

� �� �
:

ð15Þ
In Eq. 15, the similarities between negative samples

are small, so we let w be constant.
Computing h with Eq. 12consumes a lot of computing

resources, so we use a more efficient approach. Unwrapping
L(Hk− 1 + λkh) with the first-order Taylor formula, we have

L Hk−1 þ λkhð Þ≈L Hk−1ð Þþ < λkh;∇L Hð Þ > j H¼Hk−1 ;

ð16Þ

where< λkh;∇L Hð Þ >¼ λk
NþL

XNþL−1

j¼0
h xij
� �

∇L Hð Þ Xij
� �

.

∇L Hð Þ Xij
� � ¼ ∂L H þ θ1Xij

� �
∂θ

jθ¼0

¼ ∂
∂θ

X1

s¼0

�
ys log

XN−1

j¼0
wj 0:5 tanh H X1mð Þ þ θ1Xij

� �þ 0:5
� �� �

þ 1−ysð Þ log
�XNþL−1

j¼N
1− 0:5 tanh H X0mð Þ þ θ1Xij

� �þ 0:5
� �� �

þ log c−ysw
1−ys

� �	
jθ¼0 ¼

∂
∂θ

X1

s¼0

�
ys log

�XN−1

j¼0
wj

�
0:5 tanh

�
H X1mð Þ

þθ1Xij þ 0:5þ 1−ysð Þ log
�XNþL−1

j¼N

�
1−

�
0:5 tanh H X0mð Þ þ θ1Xij

� �
þ0:5Þ

	
jθ¼0 ¼ yi

wj 1− tanh2 H X0mð Þð Þ� �XN−1

m¼0
wj tanh H X0mð Þð Þ þ 1ð Þ

− 1−yið Þ 1− tanh2 H X0mð Þð Þ� �XNþL−1

m¼N
1− tanh H X0mð Þð Þð Þ

;

where yi = i and i = 0, 1.
L(Hk − 1) is already known, so in order to compute

the maximum of L(Hk − 1 + λkh), we only need to com-
pute the maximum of < λkh;∇L Hð Þ > jH¼Hk−1 ; then,
the Eq. 12 can be rewrote as follows:

hk ¼ argmax
h∈Φ

< λkh;∇L Hð Þ > : ð17Þ

In the MIL algorithm proposed by Babenko et al. [14],
it needs to maximize Eq. 13, and this would compute
additional M probabilities belonging positive or negative
set for each sample, so the computing complexity is very
high. In this paper, we propose an algorithm for comput-

ing H Xð Þ ¼
XK

k¼1
λkhk Xð Þ, and the algorithm is in algo-

rithm 1. According to the first frame of a video, we find
the target to be tracked and generate positive and nega-
tive sample set {X+, X−}, where X+ = {X1j, y1 = 1, j = 0, 1,
…,N − 1}, andX− = {X0j, y0 = 1, j =N, 1,…,N + L − 1}.
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Next, according to Eqs. 8 and 9, we compute p( f (X1j)|y = 1)
and p( f (X0j)|y = 0) and then compute hk for k from 1 to M
to generate weak classifier set Φ = {h1,…, hM}.

3 Experiments
3.1 Experimental setup
In the experiments, we use iCoseg [21] and MSRC [22],
the two public datasets. The iCoseg dataset consists a
series of related images for each object. For example, an
athlete moves on a horizontal bar. The MSRC dataset
monitors an environment in a forest. In this dataset, a
panda occurs and disappears in the camera. We test tar-
get recognition and tracking in these two scenes.
The baseline algorithms are MIL [14], OAB [23], and

SBT [6]. The MIL algorithm is a classical multiple-
instance learning approach for target tracking. The OAB
algorithm is a boosting approach for target classification
in image series. The SBT algorithm is a semi-supervised
machine learning approach, and it uses massive un-
tagged data to improve the accuracy of classification.

3.2 Experimental results
While evaluating the performance of the proposed algo-
rithm, we use precision and recall two metrics. Here, we
use “Jumping” to represent a woman moving on a hori-
zontal bar and ‘panda’ to represent a panda appearing in
a camera.
Firstly, we compare the precision of the four algorithms

on both two datasets, and the result is in Fig. 2. As we
can see from the figure, the OAB and SBT algorithms
have better precisions in Jumping than they are in
the panda dataset. Moreover, the MIL algorithm has

better precision in the panda dataset than it is in the
Jumping dataset. The above observation concludes
that different tracking algorithms would have differ-
ent precision in different scenes. However, as we use
multiple-instance learning while classifying target
from its background, it has the best precision in both
of the two dataset.
Secondly, we compare the recall of the four algorithms

on both of the two datasets, and the result is in Fig. 3.
As we can see from the figure, the OAB and SBT algo-
rithms have lower recalls in Jumping than they are in
the panda dataset. Moreover, the MIL algorithm has bet-
ter recall in the Jumping dataset than it is in the panda
dataset. The above observation also concludes that dif-
ferent tracking algorithms would have different recalls in
different scenes. However, as we use multiple-instance
learning while classifying target from its background, it
has the best recall in both of the two dataset.
Next, we illustrate the target recognition results on

these two scenes, and the results are in Fig. 4. The

Fig. 3 Comparison of recall

Fig. 2 Comparison of precision
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images in the first line capture the panda. Whenever the
panda sits down, walks, or crosses a river, it can be easily
recognized. Even some part of the panda is not in the
images, the panda can also be recognized. The images in
the second line illustrate the recognition of a woman
while she is moving on a horizontal bar. In this scene,
the backgrounds in the images are almost the same, and
the woman does different actions. This situation is much
easier than the last one, and classification accuracy can
be assured. In this dataset, even though some parts of
the woman are occluded, the woman can also be recog-
nized clearly.
Finally, we compare the performances of executing

time and memory usage of the algorithms on the two
datasets. Figure 5 illustrates the executing time com-
parison, and from the figure, we can see that our pro-
posed algorithm consumes the least executing time
under both datasets, the OAB algorithm is the second
least, and the other two algorithms take longer execut-
ing time. While comparing SBT and MIL, the MIL al-
gorithm takes the longest executing time under the
jumping dataset and the SBT algorithm takes the

longest executing time under the panda dataset. Figure
6 illustrates the memory usage comparison of the algo-
rithms under both datasets. From this figure, we can see
that our proposed algorithm consumes the least memory
usage while recognizing and tracking targets under the
two datasets and the OAB algorithm consumes the second
least memory on both datasets. In addition, for SBT and
MIL algorithms, SBT needs more memory than MIL
under the jumping dataset and MIL needs more memory
than SBT under the panda dataset.

4 Conclusions
In this paper, we studied target recognition and tracking
in a series of images, and our approach is based on the
multiple-instance learning technique. In the target track-
ing framework, we use image frames to generate positive
and negative samples to train a classifier, and use the
classifier to differentiate target from its background. We
use a set of weak classifiers to construct a strong classi-
fier. The experiments show that the proposed approach
has better precision and recall on two public datasets
than related works.

Fig. 6 Comparison of memoryFig. 5 Comparison of executing time

Fig. 4 Illustration of target recognition results in image series
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