
Diguet et al. EURASIP Journal on Embedded Systems  (2015) 2015:1 
DOI 10.1186/s13639-014-0019-6

RESEARCH Open Access

Dedicated object processor for mobile
augmented reality - sailor assistance case study
Jean-Philippe Diguet1,2*, Neil Bergmann2 and Jean-Christophe Morgère1

Abstract

This paper addresses the design of embedded systems for outdoor augmented reality (AR) applications integrated to
see-through glasses. The set of tasks includes object positioning, graphic computation, as well as wireless
communications, and we consider constraints such as real-time, low power, and low footprint. We introduce an
original sailor assistance application, as a typical, useful, and complex outdoor AR application, where
context-dependent virtual objects must be placed in the user field of view according to head motions and ambient
information. Our study demonstrates that it is worth working on power optimization, since the embedded system
based on a standard general-purpose processor (GPP) + graphics processing unit (GPU) consumes more than
high-luminosity see-through glasses. This work presents then three main contributions, the first one is the choice and
combinations of position and attitude algorithms that fit with the application context. The second one is the
architecture of the embedded system, where it is introduced as a fast and simple object processor (OP) optimized for
the domain of mobile AR. Finally, the OP implements a new pixel rendering method (incremental pixel shader (IPS)),
which is implemented in hardware and takes full advantage of OpenGL ES light model. A GP+OP(s) complete
architecture is described and prototyped on field programmable gate-array (FPGA). It includes hardware/software
partitioning based on the analysis of application requirements and ergonomics.

Keywords: Processor Architecture; Communication/memory optimization; 3D graphics; Inertial sensors;
3D positioning

1 Introduction
Recent breakthroughs in augmented reality (AR) display
will bring a lot of new applications in the future. How-
ever, this also means an emerging challenge, which is
the design of low-cost, low-footprint, and low-power sys-
tems to be embedded in see-through glasses. On the one
hand, most of research works in related conferences (e.g.
ISMAR), do not focus on embedded system design but
on specific AR issues such as simultaneous localisation
and mapping or virtual object handling. On the other
hand, emerging see-through glasses are considered as a
new peripheral connected to smartphones, which can exe-
cute AR applications. The contributions of this work are
twofold. The first one is an in-depth study of algorithms
for the target AR application in the domain of sailor assis-
tance. The second one is the design of an architecture

*Correspondence: jean-philippe.diguet@univ-ubs.fr
1Lab-STICC, CNRS, Université de Bretagne Sud, 56100 Lorient, France
2The University of Queensland, 4072 Brisbane, Australia

that fits with application requirements. The application
domain is outdoor AR without any equipment in the
user environment. Such applications require the manage-
ment and the fusion, at runtime, of multiple information
flows (position/attitude sensors, points of interest, . . .)
and simultaneously the processing of graphical objects.
The paper is organized as follows. In Section 2, we present
our motivations for this research field and the specificities
of the target applications. In Section 3, we present cur-
rent technologies for AR and a state of the art of usual
implementations. Section 5 describes the main steps of
our original approach. Our solution is based on the adap-
tation of previous positioning solutions to the application
context, on algorithmic transformations to improve data
reuse and reduce processing load, and on a new architec-
tural solution for object drawing. Section 6 presents our
hardware/software architecture based on data locality and
bandwidth optimization. Our architecture is dedicated
but flexible and optimized according to AR applications;

© 2015 Diguet et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

mailto:jean-philippe.diguet@univ-ubs.fr
http://creativecommons.org/licenses/by/4.0


Diguet et al. EURASIP Journal on Embedded Systems  (2015) 2015:1 Page 2 of 17

we come up with a coprocessor-based solution that pro-
vide a possible IP for mass market products. In Section 7,
we present our prototyping results on field programmable
gate-array (FPGA) and discuss performances estimations.
Finally, we conclude and draw some overall insights.

2 Outdoor AR applications: case of sailor
assistance

AR by itself is not a new topic, but many challenges
remain unsolved. This is especially true in mobile and
outdoor contexts, where field markers are not applica-
ble and video-assisted model-based tracking is difficult
to implement in real-life luminosity conditions. The pro-
posed application set is based on the following observa-
tions. First, designers already have at their disposal a huge
amount of recorded and classified data of geolocalization.
Second, these data can be added to a user’s field of vision
by means of see-though glasses. Third, an embedded
system can compute 3D objects that fit with the land-
scape, if appropriate sensors can provide the user attitude.
Fourth, we consider an application-based distant objects
that do not require an extremely accurate positioning, so
no camera is needed for the pose estimation. Finally, basic
ergonomics rules for positioning applications require sim-
ple and meaningful objects in the user field of view. In
this context, many applications, in civilian and military
domains, can be designed to improve security and naviga-
tion decisions with different hands-free and low-footprint
devices. In this context, we consider the particular but
complicated case study of sailor assistance from which can
be derived various requirements for a generic embedded
system. This case study is illustrated in Figure 1.

On a boat, the understanding of the position is vital
when approaching sensitive environments such as coasts,
open sea reefs, high-density navigation zones, or harbor
channels. These situations are true not only for small sail-
ing or motorboats but also for large vessels where the
navigation crew is limited with respect to boat sizes. In
this kind of large ships, it is also recommended to com-
bine visual checking, based on real environment observa-
tions, and instrument piloting. Current methods consist
of going back and forth between map analysis and visual
observations. However, matching map indications with a
real environment can be tricky and error prone. It also
represents a loss of time that can be precious in case of
emergency. Finally, this matching can be simply impos-
sible when the visibility is very bad. This is a relevant
case study since a ship is a very unstable system. All the
continuing motions have various parameters depending
on boat speed, user moves, and ocean oscillations. Swell
periods can vary between 0.05 and 0.1 Hz. However, this
is also a domain where a lot of data are available. The
first category includes static seamarks objects. The sec-
ond one is dynamic but can be estimated, and in this

category, we find for instance the ocean streams and the
tide-dependent shallow areas. The third one is provided
by the automatic identification system (AIS) that broad-
casts the positions, the heading, and the ID of boats or
any maritime objects in the surroundings. All these data
can be added to the user fields of vision according to
position and attitude estimations. Then, we have boat-
positioning data, which include global positioning system
(GPS) measurements, speed, trim, heel, and heading. All
these data, which can be encrypted in sensitive or military
applications, can be obtained through a wireless network
that does not require high bandwidth capacities. However,
these data are useful but not sufficient since it is nec-
essary to know the user attitude, which is defined with
the head angular positions. These data have to be pro-
vided by embedded sensors that must be integral with the
glasses. Redundancy between boat and user data can also
be usefully combined to improve accuracy. For instance,
the on-glasses accelerometers can be combined with the
ship GPS to estimate local moves on a long vessel.

The intensity of the see-through device is also an impor-
tant constraint in such outdoor applications. It must be
compliant with the weather conditions such as rain, fog,
or intense light reflection in sunny conditions; moreover,
the system must also be usable at night.

Finally, ergonomics are of the greatest importance in
navigation applications where the objective is to provide
the user with useful and relevant information. Feedbacks
from potential users we are working with, in both civilian
and military domains, confirm that the number of objects
must be limited and that object forms must be simple.
These requirements let us consider that a graphics pro-
cessing unit (GPU) is actually not necessary, it also means
opportunities for implementation optimizations.

3 State of the art
Recent technology breakthroughs are enabling new kinds
of applications, hereafter we discuss this evolution in three
parts: display, applications, and embedded systems.

3.1 AR technologies
The first breakthrough occurred in the domain of sen-
sors for position, speed, acceleration, and attitude (yaw,
pitch, roll) measurements. For a long time, the size, and
cost of such devices have limited their use to navigation
instruments in aircrafts and satellites. However, micro-
electromechanical systems (MEMS) technologies are now
providing integrated and low-cost inertial measurement
unit (IMU) solutions [1,2] that make possible the design
of mobile consumer systems. The most widespread solu-
tion is based on the association of two kinds of MEMS
devices: a 3-axis accelerometer sensor and a 3-axis mag-
netometer sensor. The combination of these sensors can
provide the estimation of body translations and attitude, it



Diguet et al. EURASIP Journal on Embedded Systems  (2015) 2015:1 Page 3 of 17

Figure 1 Sailor assistance case study. Approaching a coast (a) can be dangerous and the map difficult to understand especially in case of bad
visibility (b), augmented reality (c) is used to improve the understanding of the seamarks and provide navigation information.

means 3-axis inclinations and so compass capabilities. ST
has introduced in 2010 a new single module solution inte-
grating these two kinds of MEMS sensors, with significant
improvements in terms of accuracy and linearity. More
recently, gyroscopes, that return angular velocities, have
also been proposed in integrated versions. InvenSense
has unveiled in 2010 an IMU including a 3-axis inte-
grated gyroscope (angular speed) combined with a 3-axis
accelerometer. In 2011, ST presented the iNemo engine
that includes 3-axis linear accelerometers, 3-axis angular
speed measures, a magnetometer (heading), and a barom-
eter (altitude). Like the InvenSense solution, the whole
device uses a 32 bit processor to filter motion sensor data
but the access to this processor is very limited. Moreover,
integrated gyroscopes consume one order of magnitude
more power than magnetometers and accelerometer. We
present solutions to these issues in Section 5, and we show
that gyroscopes are not needed in our context and that a
simple softcore processor synthesized on a FPGA can run
motion estimation algorithms.

The second key technology that opens new horizons
to AR applications comes from the domain of head
mounted displays (HMD). New see-through glasses (see
Figure 2) are now affordable. Companies like Vuzix, Opt-
invent, Laster, or Lumus have developed prototypes or
already commercialized some products with some lim-
itations. The arrival of Google on this market will also
boost AR-related applications. In [3], the authors present

an interesting overview that compares the different optic
technologies and patents. This type of device paves the
way to future AR reality applications on a mass market.
Moreover, in 2011, the first prototype of a single-pixel
lens has been demonstrated [4]. However, one of the main
issues in our context is the need of high luminosity, Laster
proposes a mask with a very important intensity based
on a backlight LCD, it offers 5,000 cd/m2 whereas usual
OLED-based solutions provide intensity around 200 to
400 cd/m2.

3.2 Outdoor applications
In our outdoor context, efficient marker-based solutions
[5] cannot obviously be used. Relevant markerless solu-
tions based on image processing [6,7] could be proposed
instead, and the solution described in [8] is for instance
promising on mobile platforms. However, it is not applica-
ble in our outdoor conditions and other issues such as the
important distance of targets and boat motions disqual-
ify this approach. For outdoor positioning and orientation,
some solutions based on data have been introduced but
are first based on handled devices (e.g., Android and iOS)
and secondly are not accurate enough to place an object
at the right place. A solution, based on a differential GPS,
was proposed in [9] with inclinometer and magnetome-
ter to display text information on campus buildings. The
authors noticed the acceptable inaccuracy with regard
to the application requirements, but they also indicated



Diguet et al. EURASIP Journal on Embedded Systems  (2015) 2015:1 Page 4 of 17

Figure 2 See-through glasses.

issues with visibility in sunny conditions and difficul-
ties with the inertial sensors. Sensors and related signal
processing have been improved since, but visibility and
integration still need to be solved.

3.3 Embedded system architectures
Miniaturization and power consumption are the first
constraints for the design self-content mobile AR sys-
tems. Object positioning and drawing require computa-
tion resources, but control capacities are also necessary
to handle data acquisition from sensors and communica-
tion protocols. The implementation of the first prototypes
for such applications was based on backpacked laptops
with 3D graphics cards [9,10]. Advanced mobile multi-
processor architectures are now available (e.g. OMAP5,
Snapdragon, Atom N2800, ST-Ericsson Nova, Apple
A5, ...), and they are typically based on cortex ARM
cores or Intel Atoms with specialized graphics and video
coprocessors. The main advantage of such architectures
is the availability of software development frameworks.
This kind of platforms is typically embedded in recent AR
systems that also integrate IMU sensors: OMAP3530 for
Optinvent and OMAP4430 for Vuzix and Google. How-
ever, they are mainly used to handle the video stream
and the wired or wireless communication with a smart-
phone that remotely runs the AR application. As a mat-
ter of fact, high-resolution video games and video and
image processing for object identification and complex
online 3D graphics computations would justify such pro-
cessing resources. However, the type of AR applications
we are targeting requires simple objects instead. Sec-
ondly, they do not need cameras and complex pose com-
putation that requires image processing. So we believe
and we demonstrate that such general-purpose proces-
sor (GPP)+GPU solutions are actually oversized regarding
power autonomy constraints. We present in Section 4
an implementation of such a solution based on the
Nova system-on-chip (SoC). Another possible solution

is provided by reconfigurable architectures that enable
specifically optimized and low-frequency designs. These
rely on hardware/software design methodologies and
recent high-performance FPGAs. These FPGAs are often
power-hungry; however, the roadmap of FPGAs is clearly
focused on this power issue with the aim to address
the embedded system market. Recent hybrid ARM/FPGA
architectures such a Xilinx/Zynq open new perspectives.
On-chip memory capacity is also a key issue where sig-
nificant progress has been made. For example, the Artix
Xilinx low-power, low-cost family embeds up to 12 Mbits
of block RAM. Regarding GPUs on FPGAs, Xylon has
added a 3D graphics module to the Logibrick library
available under license in an early access version for eval-
uation. The architecture relies on a three-stage pipeline.
This solution is a simplified version of the usual graph-
ics pipeline and is designed for general purpose OpenGL
embedded system (ES) applications. It shows that low-
frequency dedicated architectures can be designed for
this purpose. In [11], the authors present a GPU-inspired
and multi-threaded softcore architecture, which is pro-
grammable with the NVIDIA Cg language. The aim is
to simplify the use of FPGA-based acceleration boards
for high-performance computing. Our approach is differ-
ent, it is dedicated and designed for embedded systems
and AR applications with a high focus on data locality
optimization for minimizing data transfers.

4 Mobile platform-based standard
implementation

We have designed an AR system based on standard plat-
form and software to evaluate the impact of the embedded
system compared to the AR display device.

4.1 AR display
As presented in Section 2, our class of applications
requires optical see-through displays 2. Considering
weather conditions (light reflection, fog, humidity), it



Diguet et al. EURASIP Journal on Embedded Systems  (2015) 2015:1 Page 5 of 17

turned out that Laster was providing the better solution
for our outdoor conditions. The maximum light intensity
of the product (ski mask) is about 5,000 cd/m2 in color
mode and monochrome is even higher. The resolution
and the field of view are suitable for a see-through device:
800 × 600 and 40°×30°, respectively, which is better for
light intensity (×10) and field of view (×2) than other
solutions. The display technology is based on a LCD panel
with LED backlight to reach expected high luminosity that
cannot yet be delivered with AMOLED technologies.

4.2 SoC and development board
We have implemented a first version of the application
on a ST-Ericsson Snowball board, which includes the
A9500 SoC (see Figure 3). It is a GPP+GPU architec-
ture that implements a double cortex A9 with a flexible
clock frequency between 200 MHz and 1.0 GHz and a
GPU Mali-400 MP. It also includes a wireless communi-
cation chip that provides Bluetooth (BT), WiFi, and GPS.
Head tracking can be performed with the MEMS available
on the board, which are an accelerometer/magnetometer
3-axis (LSM303DLHC from ST) and a gyroscope 3-axis
(L3G4200D from ST). The GPS data are supposed to
be available from the boat or user throughout the low-
bandwidth wireless (BT) connection, so the GPS and the
WIFI are switched off.

4.3 OS and software
The mobile OS is Android; it offers a large amount
of application programming interfaces (APIs) that sim-
plify GPU programming with OpenGL ES 2.0 API [12]
and allows to control and acquire MEMS data (sen-
sorManager) to get position data from a GPS (Loca-
tionListener) and some managers to handle wireless
connectivity (BT, WiFi). As a proof of portability, we

have also implemented the application on a Galaxy S3
smartphone, which is based on the same GPU. In AR
applications, the main functionality is the graphic ser-
vice and the system has to draw 2D or 3D objects
with different colors and textures. The second service
is the attitude computation or head tracking, and this
step is needed to place right objects in right orien-
tation on the display. A special task with MEMS is
implemented and it is mainly based on a standard 7-
states extended Kalman filter [13]; we come back on
this type of filter in Section 5. The MEMS data rate is
set to 50 Hz. Finally, a wireless service was developed
to acquire data from the boat network (GPS, AIS, map
sea-marks, wind and stream grids) when those data are
available from a PC on the boat. We used the NMEA
protocol commonly used in marine electronics and BT
for wireless communications, that do not require high
bandwidth.

4.4 Power measurements
We measured the power consumption of the Snowball
board and the Laster mask with different configurations,
and the results are given in Table 1. The mask has five
levels of luminosity, and the highest one consumes 130
mA. We then observe that the power consumption of the
embedded system is much larger than the AR display,
and it consumes 310 mA with a basic kernel and reaches
500 mA with Android, BT, MEMS (without gyroscope),
and the application running with a set of simple objects.
Expressed in watts, the SB board consumed 2.5 times
more power than the mask with the highest luminosity.
We note that the Bluetooth connection (version 2.1-EDR)
significantly increases the power consumption (110 mA),
in practice, this overhead can be drastically reduced with
a low-power version (e.g., 4.0).

Figure 3 A9500 application processor ST-Ericsson.



Diguet et al. EURASIP Journal on Embedded Systems  (2015) 2015:1 Page 6 of 17

Table 1 Power measurements: Snowball 1 GHz (SB), Laster AR Mask, Androïd (OS), BT ( 7 Kb/10s), no background, simple
objects

MASK SB SB SB, OS SB, OS SB, OS
uboot OS BT BT, EKF BT, EKF

MEMS MEMS
objects

Power (mA)

[100−130] 310 350 460 470 500

Voltage (V)/Power (W)

7.2/[0.72−0.94] 5/1.55 5/1.75 5/2.30 5/2.35 5/2.5

4.5 Conclusion and optimization opportunities
We can draw the following conclusions from this experi-
ment. First, contrary to common beliefs, the power con-
sumption of the embedded system is dominant even if a
high-intensity AR LCD display is used. It means that the
embedded system represents real opportunities for power
optimizations. From a general point of view, 3D graph-
ics represent complex and greedy tasks but optimizations
and simplifications are possible if we consider ergonomics
constraints and requirements of the most promising AR
outdoor applications with see-through glasses. Consider-
ing the application context (orientation and notifications),
we can point out three of them. Firstly, object distance
means that we can relax the accuracy constraint since the
size of the objects is decreasing with distance. Secondly,
there is no background and a limited number of simple
objects; the background is the real world, and ergonomics
impose that a few simple objects can be drawn at the
same time. Finally, useful orientation objects are static or
move slowly if they are far away. All the previous fea-
tures provide a rationale for a simplified implementation
of 3D graphics that may be usefully exploited to optimize
and specialize the design of the embedded system. Our
solution follows this approach and is demonstrated on
FPGA devices.

5 Application: algorithm and optimizations
In the following sections, we present the design choices to
specify and implement the application flow described in
Figure 4. We address the three following points: i) object
positioning according to sensors and application context,
ii) object drawing, and iii) some optimizations that have
been introduced according to the application context.

5.1 User attitude modeling
The aim of stage I in Figure 4 is to compute user ori-
entation and position. Our objective was to develop a
robust and gyro-free solution based on magnetometer,
GPS, and accelerometer. The choice of a gyro-free solu-
tion is motivated by the cost, the footprint, and the power
consumption, which is one-order of magnitude larger

compared to magnetometers and accelerometers. There
were two difficulties. The first one was the state of the art
that was mainly related to aircraft, automotive systems,
or AR applications with computer-based implementation
without great concerns about size and power consump-
tion issues [14]. The second point is related to the filtering
and estimation problem, actually determining position,
speed, and attitude from a set of noisy sensors is a non-
linear problem that cannot be solved with traditional
Kalman filters. We have studied various kinds of alter-
native solutions for non-linear filters, which were based
on EKF (extended Kalman filter) [15], UKF (unscented
Kalman filter) [16], or UPF (unscented particle filter)
[17]. According to the current project environment and
constraints, it turned out that applying Wahba’s method
can solve the question of the gyroscope. This technique
has been applied in aeronautics and avionics domain in
[18] and considers gravity and magnetic field as the two
required non-collinear vectors. It is based on the quater-
nion modeling, that also offers interesting properties such
as the computation complexity for rotations, the stabil-
ity in the presence of coding and rounding errors and the
inherent robustness regarding the gimbal lock problem.
Our complete solution for position and attitude estima-
tion is described in Figure 5. It is finally based on a low
complexity 6-states EKF (I-B(2)) algorithm for speed and
position estimations. This EKF is loosely coupled with a
low-frequency GPS and gets the body attitude data, as
a quaternion vector, from a 6-states KF algorithm that
implements Wahba’s method (I-B(1)) and used a linear
acceleration derived from the GPS speed (I-B(4)). The
proposed EKF-6 algorithm was previously applied in [19]
with gyroscope data that are removed in the proposed
version. Moreover, the acceleration data are combined
with data from GPS after filtering. The complete solution
also relies on a robust method for the auto calibration of
the magnetometer [20]. It leads to a complex 14-states
EKF algorithm; however, it is used only once at start time
or with a very low frequency if the environment is chang-
ing. Note that the solution can easily be augmented with
new data. It means that if gyroscope data are available with



Diguet et al. EURASIP Journal on Embedded Systems  (2015) 2015:1 Page 7 of 17

Figure 4 Global application flow.

reasonable cost and footprint, they can be added to the
model.

5.2 Virtual object: geometry stage
The objective is to select only objects of interest in the
context of the user. The definition of interest is a real ques-
tion we study with different categories of users, but it is
out of the scope of this paper. In this work, we consider
three configurable parameters but various rules could be
introduced as well. The first one is obvious; this is the
position in the user field of view. The second is the min-
imum size of object after 2D projection. The third one
is the choice of accessible objects stored in the object

memory. This selection is implemented in software and
can be configured according to confidentiality issues or
contextual search criterions. Hereafter, we summarize the
steps of the geometry stage.

From GPS to ENU coordinates. Given the GPS coordi-
nates, two successive transformations are applied to posi-
tion and orientation data (stage II-1). The first one is the
step from GPS to earth-centered, earth-fixed (ECEF) and
then from ECEF to east north up (ENU).

Object rotation based on user attitude. The user attitude,
namely the three angles that define user head orientation,

Figure 5 Position and attitude estimation.



Diguet et al. EURASIP Journal on Embedded Systems  (2015) 2015:1 Page 8 of 17

is modeled with the quaternion formalism (q = q0 +q1.i+
q2.j + q3.k). Then, a rotation (from V to V ′) is applied in
stage II-2 to every point of every visible object according
to the following operation:

V ′ = qVq−1 where q−1 = q0 − q1i − q2j − q3k. (1)

In-viewing frustum test, 3D→2D. The objective of the 2D
projection step is firstly the selection of visible points and
objects within the user field of vision and secondly the
computation of 2D coordinates after a perspective pro-
jection as shown in Figure 6. An object is considered as
visible if it is in the field of vision, which is defined with
horizontal and vertical angles. It must also have a size big-
ger than a minimum sphere, which is defined by a ray R.
The viewport operation is based on these bounding values
and requires, for every point of all relevant objects, four
multiplications and four tests. Then, the projection can be
computed with three divisions per object and then four
products for every point of all visible objects.

5.3 Virtual object drawing
Three visibility tests. The two first tests are applied in
stage II-3 before drawing any object. The first one has
been described in the previous section. The second test
addresses the sign of polygon normal vectors. Considering
opaque surfaces, if the Y’ value Ny of the polygon nor-
mal vector in the user coordinates system is negative, then
the polygon is not visible. Based on vertices’ coordinates,
this value is computed for each polygon and requires three
multiplications and four additions. The third test is the
well-known Z-buffer test (Y-buffer with our conventions)
in implemented. The aim is to avoid drawing polygons,
which are hidden by some closer ones. It is based on an
array A[i,j] that stores the smaller Y value of the closer
polygon point located at the address (i,j), where i and j
correspond to the ith line and jth column of the display.
We have implemented this test in stage II-5 with a dedi-
cated module that computes the address and performs the
comparison and update;, details are given in Section 7.

Light modeling and optimization. Models used in stage II-
4 are based on the barycenter method from OpenGL ES.

The light model for each vertex of the triangle polygon is
given in Figure 7. Once the three vertex lights are com-
puted (L1, L2, L3), the barycenter method can be applied
to fill the triangle A,B,C and compute each vertex light as
follows:

Lc(x, z) = A(x, z)L1
c + B(x, z)L2

c + C(x, z)L3
c (2)

where: c = R, G, B, A(x, z) = F23(x,z)
F23(x1,z1)

, B(x, z) = F31(x,z)
F31(x2,z2)

,
C(x, z) = F12(x,z)

F12(x3,z3)
, and Fij(x, z) = (

zi − zj
)

x+(
xj − xi

)
z+

xi.zj − xjzi.
The implementation of this method has been optimized

as follows: Fij can be computed only once for each trian-
gle and Kpx(c) and Kpz(c) can be defined as unique color
increments on X and Z axes, respectively:

− Kpx(c) = L1(c)((z2 − z3)

F23(x1, z1))
+ L2(c)((z3 − z1)

F31(x2, z2))
+ L3(c)((z1 − z2)

F12(x3, z3))

− Kpz(c) = L1(c)((x3 − x2)

F23(x1, z1))
+ L2(c)((x1 − x3)

F31(x2, z2))
+ L3(c)((x2 − x1)

F12(x3, z3))

where 1/Fij is computed only once per polygon to remove
divisions. Finally, we obtain a simple algorithm based on
fixed increments on both X and Z axes:

Lc(x + 1, z) = Lc(x, z) + Kpx(c) (3)

Lc(x, z + 1) = Lc(x, z) + Kpz(c). (4)

This reorganization of computation has a strong impact
on complexity since 3 DIV, 21 MULT, and 12 ADD are
required once per visible polygon and then only 3 addi-
tions per polygon point.

Scan-line and incremental pixel shading. The process of
rasterization (stage II-5) consists of mapping the real pixel
addresses on the discrete display grid. The idea of the
method is based on the use of the well-known Bresenham
algorithm [21] for line drawing that eliminates divisions.
In our particular case, we consider triangles so the algo-
rithm first sorts out the three triangle vertices (yellow
point in Figure 8) on the X-axis. Then, it simultaneously
runs two Bresenham algorithms and draws two of the
three segments (Pt1-Pt2 and Pt1-Pt3) and fills the tri-
angle with Kpx and Kpz color increments (dotted lines:

Figure 6 From user 3D coordinates to 2D view plan.



Diguet et al. EURASIP Journal on Embedded Systems  (2015) 2015:1 Page 9 of 17

Figure 7 Light modeling.

pixel coloring order). Once a triangle point is reached,
the two remaining segments are considered and the same
method is applied (Pt3-Pt2 and Pt3-Pt1). The main algo-
rithm is the control of the pixel-shading method that also
calls three key procedures. InitDrawPolygon() computes
the three triangle vertex colors, InitCoeffPolygon() com-
putes Kpx(c) and Kpz(c) color increments, and IncDraw()
writes the pixel value in the RGB format.

6 Embedded system architecture
In this section, we present our design choices based on our
analysis of the applications requirements.

6.1 Data locality and bandwidth optimization
opportunities

Data transfer optimization. The correlation between data
locality or data reuse and power consumption and per-
formance is a well-identified point [22] in the domain
of embedded systems and data flow applications. Data
transfers have a major impact on both performances and
power optimization. So the scarcity of on-chip storage
compared to off-chip capabilities imposes different kinds
of optimizations. The first one addresses the problem of

Figure 8 Incremental pixel shading principle.

algorithm organization and transformation so that the
life spans of temporary variables are minimized. The sec-
ond aspect is related to the architecture, and it includes
local memory storage capacities, bandwidth, and memory
access parallelism. The last point is the mapping of data
on available memories and the scheduling of read/write
operations. We have developed a precise model of the data
transfers in the application described in Figure 4. This
model is based on a complete set of parameters including
the number of object and polygons for instance. Results
for a typical case are presented in Section 7.1 and show
that the update of the pixel memory represents more than
90% of the data transfers in practice (see Figure 9). It
means that the computation of pixels has to be done so
that data reuse is optimized. However, it does not mean
that other transfers can be neglected, and the efficiency of
computations strongly depends on the availability of data.
In the following, we detail each step.

Sensor data and coordinates ((0),(1),(2) in Figure 4). Sen-
sor data (accelerometers and magnetometers) as well as
computed position and attitude coordinates before and
after transformation are read only once at a rate of 50 Hz,
and the amount of data is limited but of major importance
since these data are used to compute all visible objects. In
the application context, the required bandwidth is around
20 kB/s.

Access to object definition data (3). A set of typical objects
can be stored in a local RAM memory and read when they
appear in the user field of view. The content of the mem-
ory can be updated from servers, through a wireless net-
work connection with contextual and application-related
objects, but this transfer is very punctual and object mem-
ory can, in practice, benefit from a very high degree of
data reuse. In this study, we consider that data are available
in memory. Regarding memory accesses, the objective is
to optimize the reuse rate of object data. We will see in
the following how object data (position, colors and light



Diguet et al. EURASIP Journal on Embedded Systems  (2015) 2015:1 Page 10 of 17

Figure 9 Performance summary considering: 8 objects, 16 vertex/Obj., 13 triangles/Obj., VGA display, average 2D object size: 1/20 VGA,
IMU acquisition rate: 50 Hz, GPS rate: 5 Hz.

vectors of polygons points) are organized; it is depicted in
Figure 10.

Transformed, filtered objects (4),(5). The same kind of
optimization is applied to object data once they have been
transformed in the new coordinates system according to
user position and attitude. In our approach, all objects
are first transformed before pixel computation and draw-
ing, which are then applied to all objects. So the object
memory is used to store updated object data, after geo-
metric operations, and reused later. Again, the objective is
to optimize data reuse and avoid multiple read operations.
Another important aspect is object filtering; only visible
object and polygons are updated according to object pres-
ence in the user field of view and object allowed minimal
size.

Rasterization and pixel coloring (6),(7). Pixel computa-
tion is the greediest task in terms of bandwidth. Based
on polygon values and color increment described in
Section 5.3, pixels are updated in a specific video buffer.
In our implementation, the data memory is distinct from
the memory where this buffer is implemented. Another
important point relies on the optimization of write oper-
ations to the video buffer; the default value of pixels is
transparent, and only pixel related to visible objects is
updated. In AR application, the space occupied by objects
is very limited (e.g., 10%) compared to the display size
(e.g., 64 × 480 VGA) and so important savings can be
obtained. Another buffer is also required to store depths of
objects (usually called Z-buffer), and the size of this mem-
ory depends on the visibility distance to be considered in
the application. In our work, this buffer (called Y-buffer)
is implemented in a dedicated memory.

6.2 Design methodology
Considering the mobile AR with distant and simple
objects, the project objectives and the optimization
opportunities, the first step was the analytical estimation

of performances. The second one was a projection on
various architecture models on Xilinx FPGA that led
to hardware (HW)/software (SW) partitioning decisions.
The next step was the specification of the heterogeneous
architecture and the coding with a hardware-description
language (VHDL) at register-transfer level (RTL). We will
see in Section 7 that hardware implementations are neces-
sary. In the next section, we detail the final heterogeneous
architecture model.

6.3 Multiple OP heterogeneous architecture
The system architecture is fully specified and tested at a
cycle level, and the VHDL implementation is completed
and synthesized; moreover, HW/Linux interfaces have
been specified. The architecture, obtained after special-
ization and hardware/software partitioning, is described
in Figure 11. The result is compact and flexible. The
architecture is mainly built around a softcore, which is a
MicroBlaze (MB) in this study, running Linux (Petalinux)
to simplify the access to standard peripherals (I2C, UART,
Ethernet) used for network access and communications
with sensors. According to the specific AR context, we
made the choice to consider positioning and graphics at
the object level. So the processor is enhanced with some
instances of a new accelerator called object processor (OP)
that handles object positioning and drawing. The com-
plete OP specification represents 16,000 lines of original
VHDL code. Each OP is in charge of one or more objects.
Video buffers are stored in a DDR-SDRAM, and mem-
ory access is implemented with the multi-port memory
controller (MPMC) Xilinx fast memory controller. Each
OP can access the video buffer through a dedicated video
frame buffer controller (VFBC) port; each port is con-
nected to a 32 bits FIFO. The Xilinx MPMC component
allows for eight ports, which means that up to four OPs
can be implemented. The Y-buffer may not be necessary;
it actually depends on the number of simultaneously visi-
ble objects. However, if we consider a 8-km visibility along
the Y -axis with a 1-m resolution, which is a very good



Diguet et al. EURASIP Journal on Embedded Systems  (2015) 2015:1 Page 11 of 17

Figure 10 Graphic object processor architecture.

assumption according to [23] (5 km max), then a 4 Mbits
memory is required. Regarding the Artix low-cost, low-
power device (12 Mbits on-chip memory), this solution
can be implemented on a single reconfigurable chip.

6.4 OP architecture
Control Unit. The OP component is the main archi-
tectural contribution of the proposed design, and it is
described in Figure 10. Given new user attitude and posi-
tion from the processor where positioning algorithms are
implemented, each OP individually updates the position
and the drawing of the objects where it is in charge of. The
CPU stores object initial coordinates and features (poly-
gons geometry, colors, and so on) in the OP local memory
whose content is detailed in Figure 10. The CPU can
decide the load of each OP, and the choices of objects to be
drawn according to user priorities and field of vision. The
OP is a strongly optimized N bits architecture, where N
can be decided at design time according to accuracy con-
straints (e.g. N = 16 bits, 11 integer, and 5 rational). The
design has been focused on data locality and bandwidth
optimization, and the whole computation is controlled

with a 223-states finite state machines (FSM) organized in
five main stages (see Figure 12): 1) attitude and position
data acquisition and coordinate system transformations,
2) object scaling and 2D projection, 3) visibility tests and
vertex color computation, 4) polygon shape tests and color
increment computation, and 5) polygon drawing.

Processing unit. An OP implements two specific arith-
metic and logic units (ALU), which are designed according
to AR algorithm requirements. The first one has 3 inputs
and 13 specific but simple instructions (e.g., fast imple-
mentation of division or increment operations), and the
second one has 2 inputs and 7 instructions (e.g., decre-
ment with zero test). The architecture also includes two
multipliers, 13 general-purpose registers and a register file
with 16 places. This is an important point regarding data
bandwidth and concurrent access requirements. A new
component called the incremental pixel shader (IPS) is
introduced to apply the final step of the proposed method,
which is based on horizontal and vertical color increments
jointly with the double Bresenham method. It is mainly
composed of registers with X, Y , and Z increments, an



Diguet et al. EURASIP Journal on Embedded Systems  (2015) 2015:1 Page 12 of 17

Figure 11 Heterogeneous multi-OP MPSoC architecture.

ALU and a controller. Given Kpx and Kpz, IPS can incre-
ment polygon pixel values and this component directly
computes RGB values for each pixel with six increments
or move instructions.

Interconnections and memories. The OP architecture is
based on five concurrent communication buses to face
bandwidth requirements. The first bus is 32 bits wide; it
is connected to the local memory. The size of the mem-
ory is flexible according to application requirements (e.g.,
5 objects with 20 points and 10 polygons each and N =
16 bits requires 39 Kbits). Moreover, the bus controller
provides 1 × 32, 2 × 16, or 4 × 8 bits accesses. This flex-
ibility is intensively used to concurrently transfer 16 and
8 bits data. The local memory is depicted in Figure 10,
and it is organized in five regions. The first one contains
common data including ambient light direction, number
of objects, and numbers of polygons. The second region

contains point positions and light values, the static part
stores initial point positions, and the dynamic part is used
for updated positions in the user coordinate system. The
third region contains specification of polygons as a list of
point addresses. The fourth region stores the specification
of objects as a list of polygon addresses; it also includes
some specific coefficients for the object light modeling.
Finally, the last region is a buffer used for temporary data.
The second bus is 16 bits wide and connected to the
register file that can be accessed simultaneously with pro-
cessing unit registers. The register file length is 16, and it
is used for the storage of temporary data produced and
reused during processing. The third bus is the access to
the Y-buffer, which is interfaced through a specific mod-
ule designed to optimize the test of pixel depths. It works
as follows: during the execution of the fourth stage of the
processing flow (polygon shape test, color increments),
the Y values of polygons are transferred to the Y-buffer

Figure 12 OP five stage FSM.



Diguet et al. EURASIP Journal on Embedded Systems  (2015) 2015:1 Page 13 of 17

interface that sends back a notification if the tested poly-
gon is hidden by closer ones. In such a case, the current
polygon processing is interrupted and a jump is executed
to the next polygon processing. Finally, the fourth connec-
tion is a RGB bus (24 bits pixel values), which is provided
to access the video buffer.

Security aspects. Some applications require the object
information to be kept secrets, if the softcore (CPU) is
hacked then the main weakness is the link between the
CPU and the OP local memory where objects are stored.
So the access must be designed carefully. The local mem-
ory can be updated in various ways. First, the memory
can be loaded at design time or at configuration time
(from a encrypted Flash file); in such cases, the architec-
ture does not implement any physical link between the
CPU and the local memory, and in that case, no read or
write access is possible from the CPU. When new objects
must to be loaded according to the user environment, the
Linux solution can provide the required secure network
access (SSL), and in this case, only write operations are
physically implemented and no program running on the
CPU can read local memory data. If the chip is considered
as a secure area, then this solution is efficient since no
sensitive data are stored on external memory except the
configuration that may be stored in on a encrypted flash
memory [24].

H-MPSoC reconfiguration. The architecture is such that
multiple OPs can run in parallel since each of them works
with a given collection of objects. The CPU and OPs
are quite independent, since they rely on shared memory
communications, so that the CPU can feed the OP local
memories with new position data. So the architecture can
be dynamically and partially reconfigured according to the
number of objects and real-time constraints. If new FPGA
devices can implement real low-power modes when the
power consumption is negligible for unconfigured areas,
then such a solution makes sense in terms of energy
efficiency. As described in Figure 11, each OP must be
placed in a dynamically reconfigurable area. Technically
speaking, this solution is viable, and the critical parts lie
in the implementation of the two bus interfaces (VFBC,
Y-buffer) that must be isolated from the reconfigurable
area.

7 Results
In this section, we provide and discuss results related to
performance estimations, bandwidth use, implementation
cost on FPGA, and power consumption.

7.1 Performances
First, the whole application flow has been described
with a parameterized performance model that enables

the counting of operations and transfers according to 25
variables such as the display format, the number and
size of objects, etc. Then, this model has been validated
with some real profilings carried out on the target MB
with and without floating point unit (FPU). The perfor-
mance model of the hardware implementation is straight-
forward since the number of steps of the FSM is fully
specified. Figure 9 gives the results with the following
configurations:

– ‘SW’: fully software implementation on a MB.
– ‘SW+FPU’: MB with a floating-point unit.
– ‘SW+FPU+OP IP’: MB with FPU and one OP unit.

In this example, we consider a case, which goes beyond
our case study requirements. Thus, in this configuration,
we consider 8 objects, 16 vertices, and 13 polygons per
object, a VGA display, an average 2D object size equal to
1/20 VGA and a sensor (IMU MEMS) acquisition rate of
50 Hz while the GPS acquisition rate is 5 Hz. If we con-
sider a 100 MHz clock (100.106 cycles), we observe that
the positioning/attitude control part of the application
requires 70% of available cycles with the SW solution. The
margin is too small to be safe within a Linux system where
additional user processes are necessary. Moreover, a FPU
unit is of real value for matrix operations that have high
precision requirements. The second solution ‘SW+FPU’
can also be considered for the object positioning (steps
1.1, 1.2, 1.3) that requires around 2 M of cycles, but the
quaternion-based rotation of objects will be too greedy
(66 M cycles) and would lead to a total of 80% of CPU
use. As expected, the graphic part of the application is
definitely out of the scope of any processor-based imple-
mentation, except for the 2D projection steps (3.8 M). But
combined with previous application requirements, this
operation cannot be mapped on the processor and the
improvement would not make sense in terms of data local-
ity. This means that the OP HW IP will handle all the
graphic steps with a clear interface to the software posi-
tioning part that can feed the OP with filtered attitude
and position data. The OP processor is then in charge of
adapting object drawing according to new data. Figure 13
gives the evolution of performances for the three config-
urations. They are linear with the number and the size of
objects, and the size is given as a ratio of VGA frame. We
observe that the performances of the OP implementation
remain three orders of magnitude better than SW ones.
These features can also be used to decide the number of
OP to be implemented if necessary. Based on the previous
assumptions, 40 M cycles are required for a complete exe-
cution of the graphics part. Tables 2 and 3 give the imple-
mentation results of the OP HW IP on different Xilinx
device families: Virtex 5 and 6 and Spartan 6. The last
one exhibits the lowest clock frequency (73 MHz), which



Diguet et al. EURASIP Journal on Embedded Systems  (2015) 2015:1 Page 14 of 17

Figure 13 Cycle count (log. scale) vs (a) object number and (b) object size (VGA ratio).

means 73 M available cycles and consequently a use rate
equal to 55%. In the two other cases, the clock frequency
is 120 MHz and the use rate drops to 33%. As a conclu-
sion, we observe that a viable solution is a MB with a
FPU, running an embedded Linux OS and enhanced with
a HW OP IP. This architecture offers the expected perfor-
mances to run augmented reality applications. We have
also tested the Zynq case, which is different since this is an
hybrid device based on a ARM dual-core Cortex A9 com-
bined with FPGA (Artix 7 or Kintex 7) on a single chip.
It means that a MB is not necessary anymore and only
OP IPs are synthesized; moreover, high-speed AXI links
and a shared L2 cache are available for A9/FPGA commu-
nications, and finally, the processor can handle the video
buffer.

Italicized (x) correspond to estimated data since the
architecture is different.

7.2 Bandwidth use
The main design constraint was the access to storage units
as well as the efficient ordering of computation so that
data reuse is optimized. Figure 14 shows the use of local
memory (RAM) and register file (RF) buses in each of the
five control stages. R, W, and total means read, write, and
read+write accesses. One corresponds to 100% use, mean-
ing that a transfer occurs every cycle. We observe that the
bandwidth use of the register file is over 50% in stages 1
and 2 and close to 100% in stages 3 and 4. It is not used in
stage 5 anymore, and this free slot can be used, if neces-
sary, to update the memory content with new objects. The
use of the register file bus demonstrates the efficiency of

the implementation, and it is very close to 100% in stage 5
and over 50% in all stages. RGB out is close to 100% as well
in stage 5, and it corresponds to the update of the video
buffer, implemented in DDR, with new values of object
pixels.

7.3 Implementation cost
The OP processor is specified as a VHDL code at RTL
level. This code has been synthesized, placed, and routed
for four Xilinx devices. Synthesis results are given in
Table 2, and projections on different FPGA devices and
families are given in Table 3. The MB configuration imple-
ments a 4 K I/D cache and usual peripheral controllers
(UART, MPMC, Flash, Ethernet, VGA). Table 2 gives the
number of slices and BRAM blocks required for MB+FPU
and OP implementation and the maximum frequency
clock after place and route. Figure 15 shows the required
size of local memory that grows linearly with the number
of objects and polygons. We observe that a OP is half the
cost of a MB+FPU and that all implementations can reach
100 MHz except for OP on Spartan 6 (73 MHz). Note also
that the results do not include the Y-buffer memory, which
are not synthesized on the FPGA in these cases. How-
ever, it can be implemented as a buffer in the DDR, and
the consequence is that the computation of hidden poly-
gons may be interrupted a few cycles later. Table 3 gives
the number of OP that may be implemented on the dif-
ferent targets according to the number of available slices
and BRAM blocks. It also gives a ratio that includes the
Y-buffer size considering a 12 bits depth (e.g., 5 Km, 1.25
m resolution) and a VGA display (3.68 Mb). The given

Table 2 MB+FPU and OP implementations: synthesis results on FPGA

Slices/Bram/F Virtex 5 Virtex 6 Spartan 6 Zynq (Artix)

Nb/Nb/MHz

MB+FPU 3,305 / 20 / 120 2,741 / 40 / 150 1,842 / 8 / 100 - / - / 866

HW IP OP 1,231 / 2 / 120 1,048 / 2 / 120 1,233 / 2 / 73 4,016 (LUTs) / 2 / 88

Number of slices or LUT slices/BRAM blocks/maximum frequency.



Diguet et al. EURASIP Journal on Embedded Systems  (2015) 2015:1 Page 15 of 17

Table 3 Device choice and opportunities

Nb of available Nb of MB Nb of OP Used slices Used Bram Used Bram +Y-buff Nb of MPMC Used BW
ratio ratio ratio ratio

Slices Bram18

Virtex 5

Min(LX30) 4,800 64 1 1 0.95 0.34 3.86 1 0.08

LX50 7,200 96 1 2 0.80 0.25 2.59 1 0.15

LX85 12,960 192 1 4 0.63 0.15 1.32 1 0.30

LX110 17,280 256 1 8 0.76 0.14 1.02 2 0.60

17,280 256 1 4 0.48 0.11 0.99 1 0.30

LX155 24,560 384 1 12 0.74 0.11 0.70 2 0.90

Max(LX330) 51,840 576 1 12 0.35 0.08 0.47 2 0.90

Virtex 6

Min(LX75) 11,640 312 1 4 0.60 0.15 0.88 1 0.30

LX130 56,880 528 1 12 0.27 0.12 0.55 2 0.90

Spartan 6

LX25 3,758 52 1 1 0.82 0.19 4.52 1 0.08

LX45 6,822 116 1 3 0.81 0.12 2.06 1 0.23

LX75 11,662 172 1 6 0.79 0.12 1.42 2 0.45

Max(LX100) 15,822 268 1 8 0.74 0.09 0.93 2 0.60

Zynq (Artix)

XC7Z010 17,600 60 0 2 0.46 0.07 (3.82) (1) (0.15)

XC7Z020 53,200 140 0 6 0.45 0.09 (1.69) (2) (0.45)

ratios represent the used resources divided by the avail-
able ones on the chip. The used bandwidth metric takes
into account all transfers between OPs and the exter-
nal DDR memory including Y-buffer accesses, and this
metric is strongly dominated by pixel write accesses for
updates (>99%). Note that we assume a very high video
rate equal to the sensor rate, i.e., 50 Hz. The Xilinx mem-
ory controller (MPMC) can manage up to eight memory
ports with different protocols (FIFO, DDR, cache,...), four

ports are used by the MB, so four remain available for OP
accesses to the DDR.

7.4 Implementations discussions
We can draw several conclusions from these results. We
first observe that the smallest Virtex 5 could theoreti-
cally implement one OP, but a usage of 95% of slices puts
too much constraint on the routing step. However, the
next device (LX50) can implement two OPs. A LX110 is

Figure 14 Bandwidth use of local memory and register file buses.



Diguet et al. EURASIP Journal on Embedded Systems  (2015) 2015:1 Page 16 of 17

Figure 15 On-chip memory size vs number of objects (seven polyg./Obj) and polygons (three objects).

required to fully implement the Y-buffer on chip, such
a chip can implement four OPs. With the next genera-
tion of Virtex 6, we note that the smallest device (LX75)
is large enough to design a system with four OPs with
an on-chip Y-buffer. A LX 130 can theoretically imple-
ment 48 OPS but is limited to 12 according to the memory
bandwidth capacities. Virtex are expensive FPGAs while
the Spartan family has been designed for low-cost design
that fits the context of embedded systems. We observe
that a small LX25 Spartan 6 can implement one OP and
a LX45 provides enough resources for three OPs. The
first solution that allows for an in-chip Y-buffer is the
largest Spartan that can implement 12 OP according to
bandwidth constraints. So low-cost solutions with high
performances are possible and more can be expected.

Xilinx has released in 2011 a new device generation that
relies on a 28-nm technology and brings significant power
savings. This is especially true with the low-cost, low-
power Artix 7 family that opens interesting perspectives.
The positioning/control part of the application can be
mapped on one A9 core, while two OPs can be synthesized
on smallest Zynq device (XC7Z010).

7.5 Power and technologies considerations
Profiling-based power estimation shows that the power
consumption of an OP is 100 mA on a Zynq Z020 with
a maximum activity and a 88-MHz clock frequency. The
power consumption of the ARM processor running Linux
is 185 mA on the same device with the same voltage and
a 866-MHz clock frequency. It means that a total power
consumption remains lower than 300 mA with an OP
that fully occupy the available 88 Mcycles. In our case
study, only 40 M are necessary, so about 50% of power
savings could be obtained if power gating was efficiently
applied.

If we compare with the Snowball implementation, we
can consider that the BT and MEMS power consumption
remain identical. So the power difference is mainly due
the Zynq and GPP+GPU (A9+Mali) implementations and

corresponds to 95 mA, and it leads to power gains larger
than 200 mW.

We also made an estimation about a full implementation
of the application on the Zynq ARM processor, with the
best conditions, including no cache miss and no pipeline
stall, we obtain about 600 Mcycles to be compared with
the 40 Mcycles of the OP coprocessor, if we consider
the relative clock frequencies (866/88 MHz) and power
consumption only during computation, the OP energy
efficiency is finally 15 times better.

This short study show that FPGA offers credible solu-
tions. The power consumption of the OP coprocessor
synthesized on a small Spartan LX25 is 85 mA (0.111 W)
for instance while the MB with FPU consumes 1.12 W.
However, in the case of mass product devices, the OP
coprocessor will be delivered as an IP available in an
ASIC library. Then, the final architecture can be based on
a standard embedded (e.g. ARM) processor with a FPU
and one or more OP coprocessors. Without the overhead
of reconfiguration capabilities and the possibility to take
advantage of power gating, a gain of one order of magni-
tude can be expected compared to GPP+GPU solutions.
Such a solution would become viable in case of an explod-
ing demand of chips to design self-content and energy
efficient embedded systems for AR applications. Another
promising solution is the use of upcoming low-power
FPGA based on non-volatile memory with power gat-
ing capabilities [25]. This technology allows to switch-off
coprocessors when the computation is complete, which
means impressive power efficiency with reconfiguration
capabilities.

8 Conclusions
Few research work has been conducted in the domain
of embedded system design for mobile augmented reality
applications in the context of emerging light see-through
HMD. In this project, we have conducted an in-depth
algorithm/architecture study and designed a complete
system according to strong footprint constraints. The



Diguet et al. EURASIP Journal on Embedded Systems  (2015) 2015:1 Page 17 of 17

solution that has been developed is dedicated but flexible.
The approach has deliberately been focused on standard
protocols and interfaces; it can be interconnected with
usual inertial sensor and communication peripherals. This
work results in a new approach for the design of AR-
specific embedded and reconfigurable systems with three
main contributions. The first one is the choice and the
full specification of a gyroscope-free set of algorithms for
position and attitude estimation, and this solution relies
on the association and the adaptation, to the AR domain,
of different previous contributions. The second one is
the embedded system architecture, where it is introduced
as a fast and simple object processor (OP) optimized
for the domain of mobile AR. The architecture is espe-
cially optimized for data reuse and flexible since objects
can be distributed on a given number of OPs. Finally,
the OP implements a new pixel rendering method (IPS)
implemented in hardware and that takes full advantage
of OpenGL ES light model recommendations. The whole
architecture has been implemented on various FPGA tar-
gets. The results demonstrate that expected performances
can be reached and that a low-cost FPGA can implement
multiple OPs. This solution is viable when reconfigurable
architectures make sense, but the ultimate solution for
mass market products would be a chip including a GPP
and multiple OPs with power gating capabilities. Current
undergoing work focuses on the choice of objects to be
displayed in the user field of view. This study is made
jointly with ergonomists and based on user feedbacks. The
choice of objects to display will be implemented as a soft-
ware service that will be in charge of the local memory
content.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This work has been supported by the DGA (french defense department) and
has greatly benefited from discussions with Dr. John Williams about system
architecture and Linux implementation on FPGA.

Received: 2 August 2014 Accepted: 7 November 2014

References
1. D Li, RJ Landry, P Lavoie, Low-cost MEMS Sensor-based attitude

determination system by integration of magnetometers and GPS: a
real-data test and performance evaluation. IEEE Position Location and
Navigation Symposium, 1190–1198 (2008)

2. S Nasiri, A critical review of MEMS gyroscopes technology and
commercialization status. Technical report, InvenSense (2010).
http://invensense.com/

3. K Mirza, K Sarayeddine, Key challenges to affordable see through
wearable displays: the missing link for mobilearmass deployment.
Technical report (2012)

4. AR Lingley, M Ali, Y Liao, R Mirjalili, M Klonner, M Sopanen, S Suihkonen,
T Shen, BP Otis, H Lipsanen, BA Parviz, A single-pixel wireless contact lens
display. J. Micromechanics Microengineering. 21(12), 125014 (2011)

5. A Herout, M Zacharias, M Dubska, J Havel, in Mixed and Augmented Reality
(ISMAR) 2012 IEEE Int. Symp. On. Fractal marker fields: No more scale
limitations for fiduciary markers, (2012), pp. 285–286

6. AI Comport, E Marchand, M Pressigout, F Chaumette, Real-time
markerless tracking for augmented reality: the virtual visual servoing
framework. IEEE Trans. Visualization Comp. Graph. 12(4) (2006)

7. J Karlekar, SZ Zhou, W Lu, ZC Loh, Y Nakayama, D Hii, in Mixed and
Augmented Reality (ISMAR), 2010 9th IEEE International Symposium On.
Positioning, tracking and mapping for outdoor augmentation, (2010),
pp. 175–184

8. X Yang, TT K-Cheng, in International Symposium on Mixed and Augmented
Reality (ISMAR). LDB: An ultra-fast feature for scalable augmened reality on
mobile devices, (2012)

9. S Feiner, B MacIntyre, T Hollerer, A Webster, in Wearable Computers, 1997.
Digest of Papers., First International Symposium On. A touring machine:
prototyping 3D mobile augmented reality systems for exploring the
urban environment, (1997), pp. 74–81

10. MA Livingston, LJ Rosenblum, SJ Julier, D Brown, Y Baillot, J Edward, S Ii,
JL Gabbard, D Hix, in In Interservice/Industry Training, Simulation, and
Education Conference. An augmented reality system for military, (2002),
p. 89

11. J Kingyens, JG Steffan, The potential for a GPU-like overlay architecture for
FPGAs. Int. J. Reconfigurable Comput. 2011 (2011). doi:10.1155/2011/
514581

12. A Munshi, D Ginsburg, D Shreiner, OpenGL(R) ES 2.0 Programming Guide.
(Addison-Wesley, Boston, 2008)

13. JL Marins, X Yun, ER Bachmann, RB Mcghee, MJ Zyda, in Intelligent Robots
and Systems, 2001. Proceedings 2001 IEEE/RSJ International Conference On.
An extended Kalman filter for quaternion-based orientation estimation
using marg sensors, vol. 4, (2001), pp. 2003–20114

14. A Waegli, J Skaloud, P Tome, J-M Bonnaz, in ION-GNSS 2007. Assessment
of the integration strategy between GPS and body-worn MEMS sensors
with application to sports, (2007)

15. KH Kim, JG Lee, CG Park, Adaptive two-stage extended Kalman filter for a
fault-tolerant INS-GPS loosely coupled system. Aerospace Electron. Syst.
IEEE Trans. 45(1), 125–137 (2009)

16. E-H Shin, N El-Sheimy, in Position Location and Navigation Symposium,
2004. PLANS 2004. An unscented Kalman filter for in-motion alignment of
low-cost IMUs, (2004), pp. 273–279

17. W Koo, S Chun, S Sung, YJ Lee, T Kang, in National Aerospace & Electronics
IEEE Conference (NAECON). In-flight heading estimation of strapdown
magnetometers using particle filters, (2009)

18. D Gebre-Egziabher, GH Elkaim, JD Powell, BW Parkinson, in Position
Location and Navigation Symposium, IEEE 2000. A gyro-free
quaternion-based attitude determination system suitable for
implementation using low cost sensors, (2000), pp. 185–192

19. J Bijker, W Steyn, Kalman filter configurations for a low-cost loosely
integrated inertial navigation system on an airship. Control Eng. Pract.
16(12), 1509–1518 (2008)

20. P-F Guo, H Qiu, Y Yang, Z Ren, in Position Location and Navigation
Symposium (PLANS). The soft iron and hard iron calibration method using
extended Kalman filter for attitude and heading reference system, (2008)

21. J Bresenham, Algorithm for computer control of a digital plotter. IBM Syst.
J. 4(1), 25–30 (1965)

22. S Wuytack, J-P Diguet, F Catthoor, H De man, Formalized methodology
for data reuse exploration for low-power hierarchical memory mappings.
IEEE, Trans. VLSI Syst. 6(4), 529–537 (1998)

23. M Franklin, in RTO Human Factors and Medicine Panel (HFM) Workshop.
The lessons learned in the application of augmented reality (NATO West
Point, NY, USA, 2006)

24. R Vaslin, G Gogniat, J-P Diguet, E Wanderley, R Tessier, W Burleson,
A security approach for off-chip memory in embedded microprocessor
systems. Microprocess. Microsyst. 33(1), 37–45 (2009)

25. D Suzuki, M Natsui, A Mochizuki, S Miura, H Honjo, K Kinoshita, H Sato,
S Ikeda, T Endoh, H Ohno, T Hanyu, Fabrication of a magnetic tunnel
junction-based 240-tile nonvolatile field-programmable gate array chip
skipping wasted write operations for greedy power-reduced logic
applications. IEICE Electron. Express. 10(23) (2013)

http://invensense.com/

	Abstract
	Keywords

	Introduction
	Outdoor AR applications: case of sailor assistance
	State of the art
	AR technologies
	Outdoor applications
	Embedded system architectures

	Mobile platform-based standard implementation
	AR display
	SoC and development board
	OS and software
	Power measurements
	Conclusion and optimization opportunities

	Application: algorithm and optimizations
	User attitude modeling
	Virtual object: geometry stage
	
	
	


	Virtual object drawing
	
	
	



	Embedded system architecture
	Data locality and bandwidth optimization opportunities
	
	
	
	
	


	Design methodology
	Multiple OP heterogeneous architecture
	OP architecture
	
	
	
	
	



	Results
	Performances
	Bandwidth use
	Implementation cost
	Implementations discussions
	Power and technologies considerations

	Conclusions
	Competing interests
	Acknowledgements
	References

