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1  Introduction
The rapid development of mobile cellular communication technology will completely 
reshape and change the world [1]. As one of the most important foreseen application 
scenarios of the fifth-generation cellular wireless network (5G) and beyond, ultra-reli-
able and low-latency communication (URLLC) has attracted increasing attention [2, 3]. 
Examples include the Industrial Internet of Things (IIoT), the Tactile Internet, the Inter-
net of Vehicles (IoV), industrial automation, interactive telemedicine, emergency rescue, 
and so on [4]. The real-time and reliability of data transmission services in these appli-
cations are directly related to operational safety, production efficiency, and Quality of 
Service (QoS).
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It is a challenge to implement URLLC as a result of its two mutually exclusive features 
of high reliability and low latency [5, 6]. Also, the actual service requirements in dif-
ferent scenarios have different constraints on latency and reliability. For example, it is 
mentioned in Release 16 of the 3rd-Generation Partnership Project (3GPP) that in an 
IoV scenario, for data packets with a length of 5220 bytes, a block error probability (BEP) 
of less than 10−5 and an air interface delay of up to 3 ms need to be guaranteed; in a fac-
tory automation scenarios with periodic, deterministic business, for data packets with a 
length of 32 bytes, a BEP of less than 10−6 and an air interface delay of up to 1 ms need 
to be guaranteed [7].

As a key technology of the physical layer in the access network, radio resource allo-
cation is the focus of URLLC. Especially with a resources shortage (such as spectrum 
and power), efficient URLLC resource allocation methods are particularly important. 
Current technologies, such as power amplification and millimeter-wave (mmWave), can 
temporarily alleviate the dilemma caused by the shortage of radio resources [8–10]. But 
for the rapid growth of communication data, even mmWave with abundant spectrum 
resources still faces a shortage of spectrum.

Also, factors such as sporadic idle resources, irregular or sudden real-time commu-
nication requests, and unpredictable behavior of high-speed mobile users exist in wire-
less communication networks. These make the resource and channel requirements often 
change according to spatial or temporal factors. But the traditional wireless communica-
tion resource management typically depends on the determination allocation method, 
which cannot predict and deal well with these problems [11]. Compared to Long-Term 
Evolution (LTE) cells, the number of spectrum resource units and the amount of traffic 
processed simultaneously in mmWave cells have increased dramatically [12, 13]. If tradi-
tional resource allocation is used for mmWave resources, a huge resource mapping form 
will increase the mapping delay.

Reinforcement learning (RL) is a type of machine learning that explicitly consid-
ers the entire problem of the interaction between goal-oriented agents and uncertain 
environments. Resource allocation in wireless networks can be viewed as a collection of 
highly repetitive decisions, for which RL is considered appropriate. These repeated deci-
sion data provide RL with much training data. Therefore, it is possible to express a goal, 
which is difficult to optimize directly, as a reward function without precise modeling.

Most of the current research on RL methods in wireless resource allocation is based 
on the action-value function to approximate the optimal action selection [14–16]. In 
[14], the authors present a software-defined satellite-terrestrial network framework, 
which jointly considered the networking, caching, and computing resources in satellite-
terrestrial networks. A deep Q-learning was used to approximate the optimal expected 
utility of each resource. The authors in [15] proposed a multiagent Q-learning resource 
management algorithm, which reduced the packet loss rate and power oscillation in the 
device-to-device (D2D) network. In [16], a Q-learning cooperative power allocation 
algorithm was proposed to increase the capacity of two-tier dense heterogeneous net-
works (HetNets).

A model-free deep-RL power allocation framework was proposed in [17] for URLLC 
in the downlink of an orthogonal frequency division multiple access (OFDMA) system. 
The authors formulate the URLLC optimization problem as minimizing power under 
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constraints of delay and reliability. The framework can support higher reliability and 
lower latency without the actual underlying model. The authors in [18] studied the chan-
nel allocation of URLLC services in multiuser multichannel wireless networks and pro-
posed a risk-sensitive Q-learning algorithm. In the risk-sensitive Q-learning algorithm, 
the agent needs to consider the total expected reward and QoS requirement violation 
probability. In [19], a joint optimization method of spectrum and power based on effi-
cient transfer actor-critic learning is proposed to ensure the URLLC constraints of IoV 
and maximizing network capacity. The authors of [20] studied the radio resource opti-
mization of the age of information aware in IoV. To adapt to the high-speed mobility of 
IoV, the original Markov decision process (MDP) was decomposed into a series of vehi-
cle user equipment-pair MDPs.

However, there have been few studies on radio resource allocation for high-load 
URLLC services. Motivated by radio resource optimization in the high load of URLLC 
services, we are concerned with an RL scheme of the hybrid spectrum and power 
resource allocation that uses policy parameterization and the policy gradient [21] to 
approximate the optimal allocation.

The policy gradient is a parameterized policy update method for RL. In the policy 
gradient, the action selection does not depend on the action-value function but on 
the updated direction of the policy parameters. And the desired parameterized form 
of the policy can be introduced into the RL system as a priori knowledge. Compared 
with the optimization based on the action-value function, the parameter change in the 
policy gradient is smoother. Therefore, the policy gradient has a stronger guarantee of 
convergence.

1.1 � Contribution

In this paper, we focus on the radio resource allocation optimization problem of the 
mmWave access network with a high load of URLLC data. The main contributions of 
this work are as per the following.

•	 For the shortage of radio resources in mobile networks, a hybrid spectrum and 
power resource allocation scheme is proposed for variable resource profile URLLC 
data communication. The mmWave bands are divided into licensed and unlicensed 
spectrums. URLLC data preferentially occupy the unlicensed spectrum and share the 
licensed spectrum with ordinary data.

•	 To back this up, we employ a Greedy hybrid spectrum and power allocation scheme 
that takes into account the maximization of resource utilization and dynamic delay 
constraints. In addition, we present an RL-based hybrid spectrum and power alloca-
tion scheme, which can effectively guarantee the URLLC delay constraint in a high-
load network environment.

•	 In the communication simulation of URLLC data with variable resource configu-
ration, two extreme cases of preferential transmission of short or long data have 
occurred, both of which will increase the delay. For this problem, the design of the 
reward function takes into account the time overhead of all data received by the 
roadside base station (BS). This enables the RL-based scheme to get rid of work-con-
serving and to foresee, that is, to reserve resources for short data that may arrive 
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soon. The URLLC delay of the whole system is thereby optimized while ensuring 
resource utilization.

•	 A large amount of URLLC data makes the state space and the action space larger. 
Therefore, to reduce the state space, we limit the length of the URLLC cache queue 
and temporarily dump the overflowed URLLC data. To reduce the action space, we 
decouple the radio resource allocation process from the time step.

•	 To obtain a smoother policy update, we use the policy gradient method to update the 
parameterized policy. And to speed up the parameter learning, we use the deep neu-
ral network (DNN) to approximate the best policy. Because of the limited computing 
capability of the roadside BS, it is difficult for the RL agent deployed in it to support 
the URLLC delay constraint. A multipath DNN that can dynamically exit according 
to delay constraints is used to approximate the action preference function to reduce 
unnecessary computational load and training time.

•	 Finally, we analyzed and evaluated the performance of the RL-based scheme and the 
Greedy scheme and compared them with other resource allocation schemes. We 
analyzed mainly the convergence of the RL-based scheme and compared the delay 
and reliability performance of each scheme under different loads. The experimen-
tal results show that the delay performance of the RL-based scheme and the Greedy 
scheme is better than that of other schemes. Even under strict URLLC delay con-
straints, the RL-based scheme can still maintain reliability under a high load.

1.2 � Organization

The remainder of this paper is organized as follows: Section  2 describes the system 
model of the hybrid spectrum and power allocation model for URLLC in mmWave cell. 
The two radio resource allocation schemes, Greedy and RL-based with time-variant 
resource state transition, are given in Sect. 3. Section 3 also presents the policy gradi-
ent method based on multipath DNN. Section 4 presents the experimental results and 
analysis, including the convergence, delay, and reliability of different resource allocation 
schemes at various loads. Finally, the conclusions are summarized in Sect. 5.

2 � System model
In the complex road environment shown in Fig. 1, the dedicated resources originally in 
the roadside BS reserved for URLLC cannot carry such a large amount of critical data 
communication well. In this scenario, the delay of URLLC data will increase by insuffi-
cient communication resources, and even the loss rate will increase by timeout.

The hollow arrows in Fig.  2 indicate the processing of URLLC data in the BS. The 
URLLC data, such as a road safety state of emergency in Fig. 1, arrive in an independ-
ent and identically distributed (i.i.d.) manner to the roadside BS. The road safety state of 
emergency will be stored in the URLLC cache queue Q after it is received by the road-
side BS.

Normally, because of the high priority of URLLC traffic, queue Q will not overflow. 
That is, the total amount of received URLLC data NUMU ≤ |Q| . But if a special scenario 
in Fig.  1 is encountered, NUMU > |Q| results from the surge in URLLC data, which 
is the scenario with which this paper is concerned. The overflowed part NUMU − |Q| 
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Fig. 1  A scenario example of complex road emergency safety. A roadside BS needs to handle multiple road 
emergency tasks at the same time

Fig. 2  The RL-based hybrid spectrum and power resource allocation model for URLLC. The overall framework 
of figure is an RL framework. There are control procedures (control flow) and data processing procedures 
(data flow) in this framework. The bottom of figure is the data flow in the external environment. Each 
step of the data flow is specifically completed according to the RL agent at the top of figure. The external 
environment processes data information into Status and Rewards and feeds back to the Agent. The Agent 
gets the Action after learning with the DNN and returns it to the environment
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will be temporarily stored in the non-URLLC queue ( M1 , M2 , and M3 ). When queue Q 
becomes non-full, the URLLC data temporarily stored in M1 , M2 , or M3 will be trans-
ferred to queue Q. The purpose of dumping the overflow part to the non-URLLC queue, 
instead of increasing |Q| , is to limit the size of the state space.

There are two schedulers in the BS: Scheduler1 and Scheduler2 . Scheduler1 selects 
URLLC data from other queues to queue Q, and Scheduler2 allocates radio resources for 
the URLLC data in queue Q according to a certain policy.

Compared with the 15KHz of LTE, the subcarrier spacing supported by 5G New Radio 
(NR) is more diverse. And different subcarrier spacing can be used by different commu-
nication services. According to the definition of 3GPP 38.211, a minimum schedulable 
resource block (RB) includes 12 consecutive subcarriers in the frequency domain. Given 
the large bandwidth of mmWave, we use the 480 kHz subcarrier spacing configuration to 
design the RB in resource scheduling. The length of RB in the time domain is not defined 
by 3GPP 38.211. So, for compatibility with the LTE system, we define the length of RB as 
7 OFDM symbols in the time domain.

We assume that the number of RBs required for each URLLC datum is known by 
the roadside BS. Without loss of generality, we consider spectrum and power radio 
resources. The resource profile of URLLC data j is given by

where sRB and pRB represent the required spectrum RB and power RB, respectively, and 
nj and mj are the numbers of sRB and pRB.

To improve the spectrum utilization rate and reduce the action space, the mmWave 
band is divided into the licensed spectrum and the unlicensed spectrum. So, there are 
three resource mapping forms: power, licensed spectrum, and unlicensed spectrum. A 
more detailed resource profile for URLLC data j is shown in Fig. 3.

The resource length required for data j in the time, frequency, and power domains is 
Lj , srj , and prj , respectively. Therefore, another formula of Eq. (1) is

(1)rj =
{

nj × sRB,mj × pRB
}

,

(2)rj =
{

Lj , prj , srj , δj
}

,

Power

jsr

jpr

Licensed or Licensed Spectrum 7 OFDM7 OFDM

The duration of resource: 

Fig. 3  The resource profile for URLLC data j. The size of the spectrum and power resources required for URLLC 
data j. The sRB and pRB represent a spectrum RB and a power RB, respectively. The length of an sRB or pRB is 
7 OFDM symbols. The total spectrum resource length required for URLLC data is Lj , and the width is srj . The 
length of the total power resource required for URLLC data is Lj , and the width is prj
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where the binary variable δj is used to mark the licensed spectrum or the unlicensed 
spectrum.

This means that a URLLC datum does not allow simultaneous use of the licensed and 
unlicensed spectrums. Assume that the resource rj allocated to the URLLC datum j is 
atomic. That is, once the radio resources are allocated to datum j until it is received, the 
allocated resources are not preemptible.

The RL agent in Fig.  2 resides in the roadside BS to avoid additional transmission 
delays to the core network. In this paper, the time interval for each resource allocation 
decision is defined as time step t. At each time step t, the RL agent selects one or more 
pending URLLC data to send according to the centralized view of the current radio 
resource state. Therefore, the roadside BS has to be a smart node with computational 
analysis capabilities.

It is assumed that all URLLC data have the same transmission weight. The resource 
size required for each URLLC datum varies. To avoid the resource allocation method 
favoring URLLC data with a large Lj , we use the Lj to normalize the total transmission 
delay Dj = Lj + Dj_q of dataj, where Dj_q is the queueing delay. The optimization goal of 
this paper is to minimize the average delay E[D] of URLLC traffic in the system,

To make the resource allocation method as far-sighted as possible, we also considered 
the delay constraint of the overflow part NUMU − |Q| . So, the average delay calculated 
in Eq. (4) applies to all NUMU URLLC data and not just the first |Q|.

When Lj + Dj_q > DMAX , the data j will be dropped to ensure the low latency con-
straint of URLLC. DMAX is the maximum transmission delay acceptable for URLLC. It 
is assumed that the mobile terminal can decode without errors. Transmission reliability 
can be expressed by loss probability

where Nloss is the number of dropped URLLC data, and Ntotal is the total number of 
URLLC data received by the BS.

3 � Design of hybrid spectrum and power allocation
Reinforcement learning (RL) is an MDP that includes the agent and environment. The 
RL agent is a learning and decision-making machine. All external things that interact 
with the agent are called the environment. The agent learns interactively with the envi-
ronment and exchanges three types of control information: reward R , state S , and action 
A (the black solid arrows in Fig. 2). Therefore, Fig. 2 depicts in detail the process of data 
flow and control flow in the RL-based hybrid spectrum and power resource allocation 
method.

(3)δj =

{

0, unlicensed spectrum
1, licensed spectrum

.

(4)E[D] = E





NUMU
�

j=1

Dj

Lj



 = E





NUMU
�

j=1

Lj + Dj_q

Lj



.

(5)Dloss =
Nloss

Ntotal
× 100%,



Page 8 of 21Huang et al. J Wireless Com Network        (2020) 2020:250 

More specifically, at each discrete time step t , the RL agent observes a certain state 
St ∈ S of the environment and obtains a state-action probability (policy π ). Then, it 
makes an optimal action At ⊆ A(s) according to policy π . At the next time step, as a 
result of At , the agent receives a numerical reward, Rt+1 ∈ R ⊂ R , and observes a new 
state St+1.

According to the MDP property, the state transition probabilities and rewards depend 
only on St and At . Thus, this paper gives two resource allocation schemes: a Greedy 
hybrid spectrum and power allocation and an RL-based hybrid spectrum and power 
allocation. Since the state space S and the action space A(s) are large, the multipath 
DNN optimal approximator is used to train policy π . The details are in part C of this 
section.

3.1 � Time‑variant resource state transition dynamics

Figure  4 is an example of a time-variant state transition of the spectrum and power 
resource pool. Each small square represents an RB. Ideally, the duration of allocable 
resources in the resource pool is unlimited. Nevertheless, to limit the length of an epi-
sode in RL, it is desirable to have a fixed state representation. Therefore, we consider the 
duration of the resource pool image as Lrp . To reduce the state space S , only the first |Q| 
URLLC data are considered in the state function. The current system state in time step t 
is expressed as

where the matrix rrp_t = [·]Lrp×3 represents the current power and spectrum informa-
tion of the resource pool, and rj is given by Eq. (1). The three-column vectors in rrp_t rep-
resent power, licensed spectrum, and unlicensed spectrum, respectively.

Figure 4 visually shows the change of radio resource status from time step t to t + 1 . As 
can be seen from the resource pool image rrp_t (left side of Fig. 4), some RBs have already 
been occupied by different data (the colored squares). For example, the blue squares 
indicate that a URLLC data communication still occupies 3 pRBs and 6 unlicensed sRBs. 

(6)St =
{

rrp_t , r1, r2, . . . , r|Q|

}

,

Fig. 4  An example of a state transition. The change of radio resource status from time step t to t + 1. Each 
small square represents an RB. The two-dimensional coordinates on the left side of figure represent the state 
of the resource pool at time step t. The two-dimensional coordinates on the right side of figure represent 
the state of the resource pool at time step t + 1. Some RBs have already been occupied by different data (the 
colored squares). For example, the blue squares indicate that a URLLC data communication still occupies 3 
pRBs and 6 unlicensed sRBs. There are 4 URLLC data resource profiles recorded in queue Q. For example, the 
first data (yellow) in queue Q require 4 sRBs and 2 pRBs. At time step t + 1, one or more data in queue Q will 
be allocated radio resources and sent to the mobile user. Since RBs before each time step have been used for 
data communication and released, the lowermost RBs (dotted squares) of the resource pool are released at 
time step t + 1 and added to the top
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At this time, there are 4 URLLC data resource profiles recorded in queue Q , as shown in 
Fig. 4. For example, the first data (yellow) in queue Q require 4 sRBs and 2 pRBs, and the 
second data (red) require 2 sRBs and 4 pRBs.

Therefore, at time step t + 1 , one or more data in queue Q will be allocated radio 
resources and sent to the mobile user. Suppose the RL agent schedules only one datum 
in queue Q at each time step and determines whether to use the licensed or unlicensed 
spectrum. The size of the action space |A(s)| is up to 2Q+1 , which is a large learning 
space. |A(s)| can be reduced by decoupling the resource allocation process from the time 
step. Specifically, the agent performs the resource allocation of multiple data in a single 
time step. Therefore, the action space is defined as

The aj
(

δj
)

 is the operation of allocating resources for data j, where δj indicates that the 
licensed or unlicensed spectrum is selected as in Eq. (3). Action At is a subset of A(s) , 
which means that multiple URLLC data in queue Q are selected at time step t.

where qi ∈ [1, |Q|] is an integer, qi  = qj , and k ≤ |Q|.
For example, At = (r3, r1) in Fig. 4 indicates that the RL agent selects the third and first 

data (green and yellow) of queue Q in sequence. Combining this with Eq. (2), we can see 
that the time domain, power domain, and frequency domain width of the third URLLC 
data (green) are (3, 1, 1), and the licensed spectrum is selected.
At is ended when the agent selects an inappropriate datum. As shown in Fig. 4, after 

allocating resources to the third datum, the second and fourth (red and purple) are both 
inappropriate data. There are not enough resources for them to start from t + 1 . There-
fore, the condition for adding aj

(

δj
)

 to At =
(

rq1 , rq2 , . . . , rqk′
)

 is

where NUMpRB_t and NUMδj=0or1

sRB_t  are the available power and spectrum (licensed or 
unlicensed) of time step t , respectively.

Since RBs before each time step have been used for data communication and released, 
the resource pool will roll forward. More intuitively, as shown on the right side of Fig. 4, 
the lowermost RBs (dotted squares) of the resource pool are released at time step t+ 1 
and added to the top.

(7)A(s) =
{

a1(δ1), a2(δ2), . . . , a|Q|

(

δ|Q|

)}

.

(8)At =
(

rq1 , rq2 , . . . , rqk
)

,

(9)







j /∈ [q1, qk ′ ]

NUM
δj=0or1

sRB_t ≥ srj
NUMpRB_t ≥ prj

,
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In summary, according to the constraint Eq.  (9) and the time-variant process in Fig. 4, 
we can get a Greedy radio resource allocation algorithm without RL (Algorithm 1). This 
algorithm greedily allocates radio resources while taking into account the dynamic delay 
constraints of each URLLC datum.

3.2 � Policy gradient update

Algorithm 1 is a Greedy resource allocation method, expecting to transmit as many URLLC 
data as possible in a single time step. In the next task, we design a more far-sighted RL 
process to replace the main part of Algorithm  1. The purpose of RL is to maximize the 
expected discounted return

(10)E[Gt ] = E





K
�

k=t+1

γ k−t−1Rk



,
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where 0 ≤ γ ≤ 1 is a discount rate that determines the value of future rewards, K is the 
end time of an episode, and Gt is the cumulative discounted return.

Therefore, the successful application of RL depends heavily on how well the reward sig-
nal Rt meets the design goals. Although the frame scheduling process is decoupled from 
the time step, the minimum time unit of the reward is still a time step. For minimizing the 
average delay E[D] in Eq. (4) by maximizing the reward, the reward function at time step t 
is designated as

In the parameterized policy update method, the optimal action is selected according to 

the updated direction of the policy. The policy π(At |St ) = Pr

{

arg max
At

Rt

}

 is the proba-

bility of selecting action At under state St . Even if we compress state space S and action 
space A(s) , a multipath DNN with the parameter θ is used to approximate the optimal pol-
icy to speed up learning. So π(At |St , θt) is the probability of selecting action At through a 
multipath DNN with parameter θt under state St.

where A′

t ∈ A(s) , and h(St ,At , θt) is an action preference function that can be param-
eterized by multipath DNN.

The REINFORCE algorithm [22] is a policy gradient algorithm. It can learn state, action, 
and reward sequences sampled from the simulated environment, and it is as effective as the 
real environment. The policy gradient implemented through the REINFORCE algorithm is 
updated as follows

where α > 0 is the learning step size, bt is the baseline, and ∇π(At |St ,θt )
π(At |St ,θt )

 is the direction of 
the policy update, which is called the trace vector. Combined with Eq. (12), ∇π(At |St , θt) 
is expressed as follows:

The role of bt is to reduce the variance of the updated values and speed up learning. Simi-
lar to what happens with the multiarm bandits, the average cumulative discounted return is 
selected as the baseline

(11)Rt =

NUMU
∑

j=1

Lj + Dj_q

−Lj
.

(12)π(At |St , θt) =
eh(St ,At ,θt )

∑

A
′

t
e
h
(

St ,A
′

t ,θt

) ,

(13)θt+1 = θt + α(Gt − bt)
∇π(At |St , θt)

π(At |St , θt)

(14)∇π(At |St , θt) = π(At |St , θt)






h(St ,At , θt)−

�

A
′

t

π

�

A
′

t |St , θt

�

h
�

St ,A
′

t , θt

�






.



Page 12 of 21Huang et al. J Wireless Com Network        (2020) 2020:250 

where Gi is given by Eq. (10).
From Eq. (13), it can be seen intuitively that the change of parameter θ is proportional 

to the discounted return Gt , is inversely proportional to the probability of the selection 
action π(At |St , θt) , and changes along the direction of the trace vector. Algorithm 2 is 
the policy gradient parameter training process.

3.3 � Multipath DNN training

In this part, the multipath DNN is used to parameterize the action preference function 
h(St ,At , θt) to quickly approximate the optimal policy. Because of the poor parameter 
redundancy and heavy computing load, DNN is difficult to deploy in a roadside BS with 
limited computing resources. The proposed multipath DNN optimizes the training path 
to reduce unnecessary computing load and training time. The multipath DNN with N  
hidden layers shown in Fig. 5 is used to train policy π(At |St , θt) . The multipath DNN 
based on a feedforward neural network is trained to predict radio resource allocation in 
the next time step.

As shown in Fig. 5, each hidden layer is composed of a fully connected (FC) sublayer 
and a rectified linear unit (ReLU) sublayer in series. The ReLU sublayer improves calcu-
lation speed and prediction accuracy by retaining the positive values and eliminating the 

(15)bt =
1

t

t
∑

i=1

Gi,
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negative values. Each hidden layer has an exit, and the probability of exiting at this layer 
is pi.

The appropriate exit is selected by transmission delay constraint DMAX and path cost. 
Thus, while meeting the requirements of delay-sensitive applications, the BS computing 
resources are fully utilized. Let parameter vector θ in multipath DNN be

where i ≤ N  is the number of layers, and wi and θ thi  are the weight vector and the thresh-
old vector of the i th hidden layer, respectively. The output of the i th hidden layer is

where xi is the input vector of the i th hidden layer.
The cumulative path cost of the i th layer is

where tn is the calculation time of the nth layer.
As mentioned earlier, data j will be allocated resources only if Lj + Dj_q < DMAX is 

satisfied. However, considering the delay caused by DNN in the resource allocation pro-
cess, the delay constraint needs to be further tightened.

The design goal of multipath DNN is to ensure reasonable accuracy while satisfying 
the low delay constraint of URLLC. Therefore, it is required that if Ti_COST exceeds the 
delay constraint DMAX −max

j

(

Lj + Tj_q

)

 , the output signal yi−1 is directly passed to the 

output layer. The normalized exponential function fsoftmax(x, θ) is selected as the activa-
tion function of the exit layer neurons. Hence, the exit function can be expressed as

Algorithm 3 is used to select the appropriate exit path, which is a variant of the forward 
propagation algorithm.

(16)θ =

{

pi,wi, θ
th
i

}

,

(17)yi = max
(

0,wixi − θ thi

)

,

(18)Ti_COST =

i+1
∑

n=1

(1− pn−1)tn,

(19)EXIT
(

yi
)

=
ewyi

∑K
k=1 e

wyki
.

Fig. 5  The multipath DNN architecture. A multipath DNN architecture with N hidden layers. In figure, each 
hidden layer is composed of a FC sublayer and a ReLU sublayer in series. Each hidden layer has an exit, and 
the probability of exiting at this layer is pi
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4 � Results and discussion
4.1 � Experimental environment and parameters

In this section, the performance of the hybrid spectrum and power resource manage-
ment scheme is verified in the downlink transmission of the mmWave cell simulation 
platform.

We consider a roadside BS and 4 URLLC data receiving users. Assuming the total 
transmission power of BS is 30w, and the licensed and unlicensed spectrums in mmWave 
are 26.5–29.5 GHz and 37–40 GHz1 respectively; therefore, the maximum capacity of 
the resource pool in the BS is as follows: maxNUMpRB = 30w , maxNUM0

sRB = 3 GHz , 
maxNUM1

sRB = 3 GHz . URLLC data arrive at the BS in an i.i.d. manner with an arrival 
rate � . The URLLC cache load in the BS can be varied by adjusting � during training.

As mentioned in Sect. 2, an RB consists of 7 OFDM symbols. To facilitate implemen-
tation, the time step t is also set as the length of the RB, and the Lrp is set as 10t. 3GPP 
defines the end-to-end delay of URLLC as 1 ms. To observe more abundant experimen-
tal results, DMAX is set to 1 ms and 3 ms. The length Lj of data j is less than DMAX.

Considering the processing delay and queueing delay, we specify 
Lj ∈ [2× RB, 40× RB] . Moreover, the URLLC data are mostly short control or emer-
gency information. Consequently, it is specified that 80% of Lj are randomly distrib-
uted in [2× RB, 20× RB] , and the rest are randomly distributed in [20× RB, 40× RB] . 

1  In Table 5.2–1 of the 3GPP 38.101–2 protocol, three TDD millimeter-wave bands are defined for the 5G NR FR2 band: 
they are N257 (26.5 GHz ~ 29.5 GHz), N258 (24.25–27.5 GHz), and N260 (37–40 GHz), respectively.
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In addition, the spectrum demand srj of each datum is randomly distributed 
at [2× |sRB|, 10× |sRB|] , and the power demand prj is randomly distributed at 
[10× |pRB|, 40× |pRB|] . Parts of the parameter configuration are shown in Table 1.

A multipath DNN with four hidden layers (20 neurons per layer) is used to approxi-
mate the best policy, wherein the initial exit probability of each layer is pi.

4.2 � Experimental results and discussion

Figure 6 shows the average and maximum total reward curves of the RL-based hybrid 
spectrum and power resource allocation scheme with different loads. The abscissa 
is the number of iterative trainings, and the ordinate is the total reward in Eq.  (11). 
Because we focus on scenarios in which radio resources are in short supply, the 

Table 1  Partial parameter settings

Parameter Value Description

t 0.015625 ms The time interval for each resource allocation decision

Lrp 0.15625 ms The duration of the resource pool

|sRB| 5760 KHz The length of an RB in the frequency domain

|pRB| 9 dBm The length of an RB in the power domain

DMAX [3 ms, 1 ms] Maximum delay constraint

|Q| 100 The length of the URLLC cache queue Q

NUMU 100 The total amount of received URLLC data

α 0.001 Learning step size of policy gradient

N 4 The number of hidden layers

pi 1/4 The initial probability of exit at the ith layer

0 500 1000 1500 2000 2500 3000
Iteration

-700

-600

-500

-400

-300

-200

-100

0

R
ew

ar
d

Load=0.86 Max
Load=0.86 Mean
Load=1.03 Max
Load=1.03 Mean
Load=1.28 Max
Load=1.28 Mean

Fig. 6  The reward curves at various loads. The average and maximum total reward curves of the RL-based 
hybrid spectrum and power resource allocation scheme with loads of 0.86, 1.03, and 1.28. The x-axis is the 
number of iterative trainings, and the y-axis is the total reward in Eq. (11)
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rewards with loads of 0.86, 1.03, and 1.28 are shown in Fig. 6. For such a high-load 
situation, the total reward can still be raised by increasing the number of trainings.

Additionally, when a training reaches 1000 times, the increase tends to become flat, 
and the gap between the average reward and the maximum reward become smaller. For 
example, the average and maximum reward curves at various loads almost overlap at 
1500 iterations. This shows that the RL-based hybrid spectrum and power resource allo-
cation scheme will eventually converge after a limited number of iterative learnings. The 
smaller the load, the faster the convergence speed.

Figure  7 shows the delay performance curves of the proposed RL-based resource 
allocation scheme at various loads. The total delay of URLLC data at various loads is 
decreased by the number of training increases and converges to a certain value after lim-
ited training. In Fig. 7, when iterating over 2000 times, the delay curve of the 1.28 load 
becomes relatively stable close to 1 ms. This indicates that when the overload does not 
exceed 30%, the delay constraint of URLLC can still be satisfied by the proposed RL-
based resource allocation scheme through fast learning.

The delay comparison of the RL-based, Greedy, Random, shortest frame first (SFF), 
and Tetris [23] schemes at varying loads is shown in Fig. 8. Among them, the RL-based 
scheme selected 500 times, 1000 times, and 10,000 times training data, respectively. We 
record the delay performance of each scheme with 9 sampling points from load 0.11 to 
1.28. It can be seen in Fig. 8 that the increase in load causes a scarcity of radio resources, 
thereby increasing the queueing delay of URLLC data.

It is noteworthy that as the load increases in Fig. 8, especially over 65%, the latency 
advantage of the RL-based scheme becomes more noticeable. This is because the 
Greedy, SFF, Random, and Tetris schemes send as much URLLC data as possible at the 
current time step. These schemes focus on instantaneous delay but ignore total delay. 

Fig. 7  The delay curves at various loads. The delay performance curves of the RL-based resource allocation 
scheme with loads of 0.86, 1.03, and 1.28. The x-axis is the number of iterative trainings, and the y-axis is the 
average delay. The total delay of URLLC data at various loads is decreased by the number of training increases 
and converges to a certain value after limited training
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Compared with the other schemes, the RL-based radio resource allocation becomes 
visionary through continuous learning. URLLC data are usually quite small. The reward 
function in Eq. (11) takes into account all NUMU URLLC data. Therefore, when allocat-
ing resources to the data in queue Q, some radio resources are reserved for the upcom-
ing small data so that the small data can be quickly scheduled.

In addition, in the other four schemes, when the load exceeds 60%, the Greedy radio 
resource allocation scheme has the best delay performance. This is because the Greedy 
scheme is a greedy resource allocation under the premise of ensuring the delay con-
straints of each URLLC datum as much as possible. Preprocessing the data according to 
its remaining available time makes the delay performance of Greedy better than that of 
the other three schemes.

It is obvious from Fig.  9 that blindly increasing the number of trainings does not 
continuously optimize the delay of the RL-based hybrid spectrum and power resource 
allocation scheme. Take the image of delay at 1.28 load in Fig. 9 as an example. Com-
pared to 1000 iterations, the delay under 10,000 iterations is only reduced by about 
24 µs. Compared to 500 iterations, the delay under 1000 iterations is reduced by about 
78  µs. Therefore, when implementing the RL-based radio resource allocation scheme 
in real scenarios, different iterations should be set for various loads to save computing 
resources while reducing delays.

Figures  10 and 11 show the loss probabilities of the different schemes with 
DMAX = 3 ms and DMAX = 1 ms , respectively. The abscissa is the load, and the ordi-
nate is the loss probability in Eq. (5). We appropriately relax DMAX to 3 ms in Fig. 10 
so that we can observe the loss probability of all schemes within 130% of the load. 
In this case, the RL-based scheme and Greedy have a lower loss probability than the 

Fig. 8  Delay performance comparison of different schemes. The delay comparison of the RL-based, Greedy, 
Random, SFF, and Tetris schemes at varying loads is shown in figure. Among them, the RL-based scheme 
selected 500 times, 1000 times, and 10,000 times training data, respectively. The x-axis is the loads, and the 
y-axis is the average delay. We record the delay performance of each scheme with 9 sampling points from 
load 0.11 to 1.28
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other three schemes. After relaxing DMAX , the RL-based scheme is not significantly 
better than Greedy.

In Fig. 11, we follow strictly the delay constraint of URLLC. When the load exceeds 
0.65, Tetris and Random cannot meet the 1-ms delay constraint, so there is no loss 

Fig. 9  The impact of the number of iterations on delay optimization. The effect of the number of iterations 
on the delay optimization with the data when the load is 0.86, 1.03, and 1.28. The three colors indicate 500 
iterations, 1000 iterations, and 10,000 iterations, respectively. The x-axis is the loads, and the y-axis is the 
average delay

Fig. 10  Loss probability with DMAX = 3 ms . The loss probabilities of the RL-based, Greedy, Random, SFF, and 
Tetris schemes with maximum delay constraint DMAX = 3 ms . The x-axis is the load, and the y-axis is the loss 
probability in Eq. (5)
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probability. For the same reason, when the load exceeds 0.86, the loss probability 
of SFF and Greedy cannot be detected. The RL-based scheme can effectively guar-
antee the URLLC delay constraint when the load does not exceed 130%. It is found 
that when the delay constraint is tightened, the loss probability of SFF is better than 
Tetris and Random. This is because URLLC data are relatively short, and SFF is biased 
toward short data.

5 � Conclusion
To carry critical data such as emergency rescue and road safety, the cellular mobile com-
munication network requires more sophisticated and faster resource allocation meth-
ods. In this paper, a novel RL-based hybrid spectrum and power resource allocation 
scheme has been proposed for the URLLC service in mmWave cell. This scheme guar-
antees the low latency characteristics of URLLC under high load and shortage of radio 
resources. We compressed the state space and the action space. The policy gradient and 
multipath DNN are used to update the policy. The design of the reward function consid-
ers all URLLC data to make the RL-based scheme more visionary. This process enables 
the RL-based scheme to be successfully installed in the roadside BS and to ensure con-
verge quickly. The experimental results show the RL-based scheme can achieve a higher 
overall delay performance than the conventional schemes, especially when the resource 
demand load of URLLC data is 85% to 130%. In future work, we will investigate the pre-
diction of high-speed mobile user behavior trends, the investigation of the optimal mul-
tipath DNN structure, and the impact of fading on URLLC.
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