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attention of scholars extending to deep space. In this paper, a new SNR estimator
related to deep space scene is proposed. On the one hand, the time of essential data
transmission is limited in Mars exploration system. On the other hand, the relative
position and condition between orbiters vary quickly all the time, which makes it
difficult to obtain the accurate and significant information for Mars exploration.
Therefore, it is obvious that the information of SNR can promote the system to adjust
the signal transmission rate automatically. Subsequently, the estimation of SNR
becomes a fundamental research in automatic digital communications. In this paper,
an SNR estimation method based on non-data-aided (NDA) with maximum likelihood
(ML) estimation is proposed to enhance the accuracy and reliability of Mars exploration
process. Additionally, the Cramer-Rao lower bound (CRLB) related to the designed ML
algorithm is derived. Finally, the Monte Carlo simulation results demonstrate that the
proposed ML estimator algorithm obtains a superior performance when compared to
the existing SNR estimators.

Keywords: Signal-to-noise ratio estimate, Maximum likelihood, Cramer-Rao lower
bound

1 Introduction

Since the Earth and Mars are far away from each other, there is an attenuation of signal
and exists a delay of time for communication between them, both of which destroy the
signal quality in receivers [1, 2]. On the one hand, the time of essential data transmis-
sion is limited in Mars exploration system, and on the other hand, the relative position
and condition of orbiters vary quickly all the time, which makes it difficult to obtain the
accurate and significant information for Mars exploration [3, 4]. Therefore, it is obvious
that the information of signal-to-noise ratio (SNR) promotes the system to adjust the
signal transmission rate automatically [5]. The existing SNR estimation methods can be
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classified into two groups, namely data-aided (DA) and non-data-aided (NDA) [6, 7] esti-
mators, respectively, which apply to the cases that the transmitted signals are known to
the receivers for DA estimators and the receivers of the NDA estimators have no informa-
tion about the transmitted symbols, respectively [8]. Although DA estimation algorithms
outperform NDA-based methods in accuracy and effectiveness, it is at the expense of
lower transmission efficiency, which is extremely worthwhile for deep space exploration
[9]. Therefore, NDA-based estimators are considered for the deep space scene. Recently,
many new researches are also investigated [10-16].

Generally, NDA-based SNR estimators include signal-to-variation ratio (SVR) [17],
second- and fourth-order moments (MyM,) [18], squared signal-to-noise variance
(SNV), and subspace-based method [1]. SVR estimator, which can be applied to not only
fading channels but also additive white Gaussian noise (AWGN) channels, is developed
to monitor and evaluate the channel quality based on moment operations. It is noticeable
that SVR estimator is not applicable to other forms of digital modulated signals except
M-ary phase-shift keying (PSK) modulated ones. MM, estimator was first proposed to
estimate the strength of carrier and noise in real channels, and we further extended it
to complex domain. Due to its independence of the transmitted symbols, namely, it only
requires the estimation of the second and fourth order related to the received symbols,
MyMy, is also one of the NDA estimators. SNV estimator utilizes the first and second
moment of the received signals, which is the output of the matched filter (MF). Finally,
the subspace method is based on the singular value decomposition (SVD) theory.

This paper aims to develop a NDA SNR estimation method based on maximum like-
lihood (ML) method to improve the system performance of deep space model; at the
same time, it can achieve a higher accuracy than other estimators, such as SVR, SNV,
MyMy, and subspace-based method. The Cramer-Rao lower bound (CRLB) of this pro-
posed NDA estimation method is also derived to verify the effectiveness of the proposed
ML-based estimator.

The rest of this paper is organized by the following structure. In Section 2, we discuss
the system model. The maximum likelihood method based on data-aided is explained in
Section 3. Section 4 demonstrates the NDA SNR estimation algorithm through maximum
likelihood method. Section 5 shows the experimental figures. Section 6 concludes the
contributions made by this paper.

2 System model

We aim to find the best SNR estimator while consuming the least energy. Table 1 is the
notation of variables for this paper. Generally, the statistical properties are averaged to
generate the SNR estimate through a large amount of symbols. The discrete and com-
plex binary phase-shift keying (BPSK) [19] signal constellations are adopted to generate
the baseband-equivalent and band-limited transmit symbols in real AWGN channels as
illustrated in Fig. 1. The length of the transmitted symbols, which is upsampled to L =
16 samples in each symbol, is denoted as N. The root raised-cosine (RRC) filter, whose
rolloff R equals to 0.5, and number of tap coefficients Q equals to 65, is assumed [20]. The
binary source symbols can be calculated by [21, 22]:

Sy = ae®r, (1)
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Fig. 1 The system model

Table 1 Notations of variables

Notations

L Sampling points

N The number of simulation symbols

R Rolloff coefficient

Q Tap coefficients

o Signal amplitude

an The phase of signal

Sn The binary source symbols

Ck The upsampled information sequence
[ The Kronecker delta

hk The tap coefficients of the RRC filter
dk The signal after being sampled and pulse-shaped
Wy The additive white Gaussian noise

o’ The variance of AWGN

Ik The received signal

Yk The output of the MF

Yn The downsampled signal of yx

fy The samples of the full raised-cosine
fo The peak of fx

Zn The downsampled and filtered samples of noise
0 Signal-to-noise ratio

P() The probability density function

Ly The log-likelihood function

0 The estimated parameter vector

g (o) The decibel scale of 6

CRLB Cramer-Rao lower bound

K (0) Fisher information matrix

The estimate value of SNR
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where a represents the signal amplitude whose probability is equal by obtaining values
from {—A, A} and o, represents one of the two evenly spaced phases on a unit circle with
n € {1,2,...,N}. The upsampled information sequence can be shown as:

= ZSn5k,nN» (2)
n

where §;; denotes the Kronecker delta. The signal after being sampled and pulse-shaped
can be given as:

dk = anhkan» (3)

n
where h; is the tap coefficients of the RRC filter with & €
{(-R-1)/2,...,—1,0,1,..., (R — 1) /2} and Ay equals to zero for |k| > (R — 1) /2. The

received signal can be presented as:
1 = di + Wi (4)

where wy, denotes the complex and sampled AWGN with zero mean and variance of o 2.
The output of the MF is expressed as:

Yo =1k @M = hdi i+ Y hwiy, (5)
] I

where @ and * denote the discrete convolution and complex conjugation, respectively,
and i = h* can be attributed to the assumption that the impulse response of RRC
is real and even symmetric. Finally, the downsampled symbols at the receiver can be

expressed as:

Yn = Yk lk=nN= Sufo + Zn, (6)

where fy denotes the maximum impulse response of the full raised-cosine, the samples of
which can be written as:

fe=n o @he=) i, 7)
I
and the downsampled and filtered samples of noise z, can be expressed as:
Zn = 2k lk=an=Y_ MiWik—1 lk=nn (8)
!
Subsequently, the SNR is deduced as:
e[t

o= )

var{z,} ’
where E {-} represents the expectation and var {-} represents the variance. The SNR can be
independent of the channel by normalizing the corresponding square of tap coefficients
of the RRC; subsequently, the SNR can be solely related to A and o', namely:

A2

7 (10)

,0 =
3 Maximum likelihood estimation method based on NDA
In this section, we propose an NDA estimation method [23, 24] based on ML algorithm.
The probability density function (PDF) of y,, can be expressed as:

1 1 A A
P(yn) = 5 {P+ (n) + P— O/n)} = 271_06 202 cosh <y(:_12 >; (11)
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_on=A)? _ n+A)? 1 .
2 2 — 1 —
where Py (y,) = ” ij 27, and cosh (x) = 5 (¢* + 7).

Tz 7 P-Ow =
The joint PDF of the signal vector at the receiver [yl, Y2, es yn] is hence given by (due

to independence):

N N 242
1 YA
PN 192y = [ [P Ow) = e 27 cosh (2) ) (12)
n=1 n=1 "V 2ro o

The log-likelihood function is described as:

N
LN(yl,yz,...,yN|A,02) —Nln<v (7)—— (y,,—|—A2)
n=1

InA
2 ) . (13)

= 0, we implicitly obtain the ML estimate of A as the solution to

N
+ Z In cosh (
n=1

Setting W

the equation:

1 Y YA
n
=3 ;yn tanh (oz ) . (14)

We consider an iterative algorithm to explore the most suitable value of amplitude that
satisfies (13). According to the signal vector at the receiver with N samples of y,, it is
obvious to define the function:

N
F(x)=x— % ;yn tanh (%) . (15)

By solving the equation above, we can obtain the amplitude estimation of the maximum
likelihood method, namely, F (x) = 0 atx = A, where A represents the estimate of A. We
can determine the value of A by the following steps:

Step 1: The received vector is normalized as ﬁ Zﬁ[:l y2 = 1. Find the maximum and
minimum values of A,,;; and A,.x. At the same time, determine the total number of
iteration I. Let Ay = A, and Ay = Aux. Initialize i=0.

Step 2: Compute A, = A1J2“A2 and therefore, 02 = 1 — A2,

Step 3: Compute F (A;) = Ay — 3% SN yutanh (%)
Step 4: If F(A,,) > 0, then let Ay = A,,;; otherwise, let A} = A,,.

Step 5 Let i = i+1, if i = I, output A, A1+A2 as to the ML estimate of the amplitude

and m as the estimated SNR. Otherwise, go back to step 2.

4 Performance comparisons

4.1 Cramer-Rao lower bound (CRLB)

We consider CRLB [25, 26] to evaluate whether the estimators work effectively or not.
The definition of the SNR has been given in (10). We intend to estimate p by N observed
samples of y,. The estimation task involves two parameters. The estimated parameter
vector is denoted as:

o=[a o2]". (16)

Page 5 of 11
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Since the estimation of the SNR is generally expressed in decibel scale, the following form
of CRLB is adopted:

A2

2g©)"
a6
where K (0) is the Fisher information matrix, which can be shown as:

_E (32 In P(x;0) ) _E (32 1nP(x;9)>

CRLB (p) = g(e ) k-1 9) , (18)

B 9A2 9Adc?
K(©®) = _p(PPe)) _p(2nPeo)) | ()
90 20A 302

From (17), ag( ) is determined as:

ag (9) 20 10
96 :[lnuom ln(lO)az:I' (20)

According to the N observed symbols, the Fisher information matrix is described as:

N [o2 g2 A
forsion (9= ot [G A/G(p]) v 1-— ig[]))(p)]

(21)

w2

3_27 f Cos”hfu}) du. By substituting (21) to (17), the CRLB of the BPSK

signals can be expressed as:

where J (p) =

100 (% —J(p) + 1)
N(n (10)% (1 = (p) — 2p] (p))

CRLBgpsk—NDA (0) = dB)*. (22)
4.2 Normalized mean square error (NMSE)

For the above iterative SNR estimator, we provide the required experimental results.
To appropriately benchmark our proposed method, the results of SVR, MaMy, SNV,
and subspace-based methods are also included. According to the system model given
in Section 2, we obtain the NMSE of the aforementioned SNR estimators. The NMSE
represents the deviation between estimated and true values and can be calculated as
follows:

2
Flo- ]
p? '
where p describes the estimated SNR while p represents the true SNR value. The NMSE
of each estimator is calculated by using the Monte Carlo method as follows:

NMSE {5} = (23)

1 N (,O _ /3)2
NMSE {5t = — —_— 24
{'0} N }; p2 ( )
The number of symbols N should be large enough to promise the accuracy and objectiv-
ity of the experimental results. In terms of the ML estimator, the NMSE under different
simulation numbers is also shown to further compare the performance of the proposed

estimator.

5 Simulation results
In this section, the Monte Carlo simulation results of the NMSE performances of the
aforementioned estimators are presented. The CRLB performance, the ML estimator
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Fig. 2 The NMSE comparison of several SNR estimators. The NMSE of SVR, SNV, M, Ma, subspace method, and
ML under N = 1000

under several different simulation numbers, and the differences among perfect SNR, SNR
under subspace-based method, and SNR under ML-based method are also displayed.

Figure 2 shows the NMSE performance among SNV, SVR, M2M4, subspace method,
and ML-based estimator with the length of symbols N = 1000. From the simulation result,
we can make a conclusion that SNV-based method performs worse than all the other esti-
mators mentioned above. Subspace-based method outperforms SNV, SVR, and MM, in
a reasonable SNR region. However, when compared to the proposed ML-based estima-
tor, it suffers an SNR deficit under the same NMSE, which verifies the efficiency of the
proposed ML-based method.

Figure 3 describes the CRLB of the proposed ML-based estimator under two cases,
namely, N = 300 and N = 600, respectively. From the simulation result, we can find that
the CRLB with N = 300 is higher than that of N = 600. The reason of this phenomenon
can be easily understood by the essence that the larger simulation symbols lead to a higher
estimation accuracy.

Figure 4 demonstrates the NMSE performance under different lengths of simulation
symbols, which are N = 100, N = 200, and N = 500, respectively. It is obvious that with
the increase of simulation symbols N, the NMSE performance becomes better, which is
consistent with the theoretical analysis. This result is useful for engineering to choose the
appropriate length of symbols.

Figure 5 shows the differences among the perfect SNR, SNR under subspace-based
method, and SNR under ML-based method under N = 600. We can obtain from the
curves that compared to the subspace-based method, the ML-based method achieves a
higher estimation accuracy and the gap across the perfect SNR is smaller. Therefore, the
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Fig. 3 The CRLB of the proposed algorithm. ML under N = 300, ML under N = 600, CRLB under N = 300, and
CRLB under N =600
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Fig. 4 The NMSE under different length of simulation symbols. N = 100, N = 200, and N = 500, respectively
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Fig. 5 The difference comparison among the subspace method-based SNR, ML-based SNR, and perfect SNR
under N = 600. Perfect SNR (N = 600), subspace-based method (N = 600), and ML-based method (N = 600)

proposed ML-based method performs better than all the other estimators mentioned
above.

6 Conclusions

We proposed a novel NDA-based ML estimator, which is based on an iterative algo-
rithm and achieves a higher SNR transmission accuracy compared to several traditional
SNR estimators. The simulation results showed that the proposed new ML estimation
method achieves a superior NMSE performance compared to the existing ones, which is
significant for the researches of Mars exploration. The CRLB of the proposed ML-based
method was also derived. Furthermore, the NMSE of the ML-based method under differ-
ent simulation symbols was compared to further verify the effectiveness of the proposed
algorithm.
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