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Abstract

Positioning and location estimation of targets either for mobile or stationary nodes is
very important, especially after the astonishing developments of the wired and/or
wireless communications, as well as the popularity of handheld devices. To assist in
accessing services or managing resources, numerous users, application developers,
and service providers require accurate position information. Owing to the boom of
multisensory systems, wireless technology, and autonomous systems, many
positioning systems have been proposed. These positioning systems differ based on
the adopted technology, type of sensory information, communication protocol,
algorithm, and accuracy level. These different approaches impose a non-negligible
amount of uncertainty and challenges; in such case, fuzzy-logic-based localization
systems offer an attractive and feasible approach to overcome some of the reported
challenges and handle uncertainties, depending on its proven mathematical
framework for handling vagueness and uncertainty. Intuitively, fuzzy sets and fuzzy
inference systems are initially intended to incorporate granularity and flexibility of
human knowledge, which characterize complex system behaviors without explicitly
requiring precise mathematical models or when a complete and exhaustive list of
comprehending factors are ill known.
This study demonstrates the benefits of fuzzy sets, fuzzy logic, and fuzzy inference
systems in wireless positioning problems. Notably, as a way to benefit both the
academic community and practitioners of system positioning, we review and
investigate various fuzzy-related techniques and methodologies. To the best of our
knowledge, this is the first comprehensive review that focuses solely on fuzzy-based
positioning systems.

Keywords: Fuzzy systems, Localization, Fingerprint, Fuzzy positioning, Location-based
services (LBS)

1 Introduction
While tracing the localization problems, the first significant study conducted on wire-

less positioning and localization could be traced back to the pioneering study of

Applied Physics Lab (APL) based on monitoring the radio transmission of Sputnik (the

first man-made satellite by the former Soviet Union 1957) [1]. In the sequel, the satel-

lite was approximately along its orbit by applying the microwave signals emanating

from the satellite and its Doppler shift effect. Afterward, this study led to the
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appearance of the TRANSIT, which was the first satellite positioning system, in 1961

[2]. In 1996 [2], the latter was obsolete because of the emergence of the Global Posi-

tioning System (GPS), which became the most popular and extensively applied posi-

tioning system in the world [3]. Subsequently, owing to the astonishing developments

in wireless technologies, several device-enabled positioning systems have been

developed.

The development of (wireless) positioning technology has been remarkable after the

US Federal Communication Commission (FCC) introduced the requirement safety ser-

vices, such as E-911 [4], which forced the cellular network operators to provide the

position of the wireless terminals at a predefined accuracy level. Thus, this has become

a significant driving force of research activities in localization technologies for almost

two decades. Moreover, this turned out to be central for other critical activities, e.g.,

location-sensitive billing information, fraud detection, intelligent transportation sys-

tems, and enhanced network performance [4–6].

The importance of localization in wireless sensor networks (WSNs) arises from sev-

eral factors, which include the identification and correlation of gathered data, node ad-

dressing, query management of nodes localized in a determined region, evaluation of

node density and coverage, energy map generation, geographic routing, and object

tracking. All of these factors make localization systems a key technology for developing

and operating WSNs. In this review, we view the localization problem from the per-

spective of a WSN by particularly focusing on fuzzy-based reasoning. Even though

wireless positioning systems are rooted back to earlier fifties as already pointed out and

the maturity of several GPS- and GSM-like positioning technologies [7], several reasons

motivate further developments in the field. First, since the achievements of satellite-

based location services in outdoor applications, the provision has shifted to the indoor

environment, where the improvements in indoor positioning have the potential to de-

velop unprecedented opportunities for businesses. Second, indoor positioning tech-

niques still encounter several technical issues that restrict their accuracy level. These

include multipath due to non-light-of-sight conditions and a higher density of obsta-

cles, which affect signal attenuation. Third, boosted by industrial applications, the de-

mand for millimeter to nanometer positioning emerged.

Moreover, this review is mainly motivated by the manufacturers’ research depart-

ments. Therefore, it contains, to a large extent, unpublished solutions. Fourth, owing to

the development of a 5G network, it becomes possible to establish multiple mobile re-

lays. For instance, device-to-device (D2D) communication can reach an unprecedented

scale to tap 30.6 Exabyte monthly by 2020 [8], which promotes the necessity of new

collaborative architectures in positioning schemes. Additionally, owing to the expo-

nential increase in data rate and diversity of mobile applications, big data analytics

are expected to play a vital role in subsequent location-related services. Therefore,

this ultimately opens the door for new positioning algorithms to address the new

challenges that were not encountered in the previous wireless systems. For ex-

ample, technology related to massive-multiple input–output with a rate order of

GB per second has been developed, such as Samsung or Huawei [9]. Fifth, the de-

velopment of the Internet of Things (IoT) technology enforces the need for new

system design and architecture, supporting reliability, mobility, and spectrum man-

agement [10].
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There are numerous review papers on wireless sensor positioning technologies and

techniques. Reference [11] performed an extensive survey of wireless indoor positioning

techniques and solutions, where state of the art up to 2005 of GPS, RFID, cellular-

based, UWB, WLAN, and Bluetooth technologies have been surveyed. The perform-

ance parameters of 20 systems and solutions were compared in terms of accuracy, pre-

cision, complexity, scalability, and robustness. In [12], a survey of mathematical

methods for indoor positioning was conducted, in which four categories were

highlighted: geometry-based methods, cost-function minimization, fingerprinting, and

Bayesian techniques. In [13], 13 different indoor positioning solutions were considered

by focusing on high-precision technologies that operate in the millimeter to centimeter

level. The evaluation is performed from the perspective of a geodesist and includes the

criteria accuracy, range, signal frequency, principle, market maturity, and acquisition

costs.

By specifying the methods for radio distance estimation, textbook [14] provides a

comprehensive review of radio navigation techniques. Some more up-to-date develop-

ments have been provided in the field of wireless positioning by focusing on algorithms

for moving receivers [15].

Owing to the success of fuzzy logic in various industrial and commercial applications

[16], there is no clear comprehensive review that would provide both the academic

community and practitioners with a global and detailed view regarding the implemen-

tation of fuzzy-based reasoning to wireless positioning, where the importance of this re-

view contributes to fill this gap and opens up a new perspective in applications of

fuzzy-based reasoning/soft-computing techniques and wireless positioning systems.

The rest of this paper is organized as follows. Section 2 introduces the terminologies

of positioning problems and properties of the positioning systems. In Section 3, we re-

view the design approaches and challenges from a modeling design viewpoint and

sources of uncertainties. Section 4 describes the classification criteria followed in this

study. Section 5 highlights the parametric models and evaluation criteria. Section 6 de-

scribes the surveyed fuzzy-based localization systems. Finally, the conclusion is pre-

sented in Section 7.

2 Terminology and background of the positioning systems
2.1 Terminology

We refer to an object whose position is unknown as the target object. The position or

location of the target is determined with respect to a predefined frame, which can be

defined on an absolute scale as a spatial Galilean frame or a relative scale (e.g., with re-

gard to neighboring objects). Moreover, the positioning algorithm is referred to as the

set of processes/steps or mathematical model(s) that establishes some spatial relation-

ships between the target and measurements, leading to an exact or approximate estima-

tion of the target location.

2.2 Location-based systems

Owing to the recent development in location-based services (LBS) [2], the positioning

technology can be applied in various fields of studies, including industrial, medical,

safety, and transportation, as well as many other commercial fields. Figure 1 gives an
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overview of the graphical description of LBS. Indeed, the positioning task answers the

following question: “Where am I”? Therefore, this contributes in answering the subse-

quent questions: “What is nearby”? “How to reach that location”? “How to optimize my

resources while achieving my task”?

As shown in Fig. 1, the positioning problem is mainly connected to the context,

sensory information, and perceived environment, which, in turn, substantially con-

strains the position estimation process and the accuracy level. For instance, some

mobile location services only attempt to know whether some predefined attractions

(e.g., hotel, shop, and fuel station) occur in the vicinity of the user location. More-

over, these services do not require the exact location of the attraction since it is

enough to indicate its presence or absence within the area. Similarly, in network-

based localization, one requires, for example, to identify the node that is respon-

sible for deteriorating the network service or subject to an initial attack. Therefore,

this may require a detailed review of the activity history of all candidate nodes. In

geo-data positioning, one often requires the latitude–longitude estimation of the

target object, which may involve advanced state estimation techniques. Moreover,

to achieve complex rendezvous tasks, industrial robotics-like applications regularly

necessitate very high precision that can reach the order of nano-technology.

Central to any positioning technology are the environmental constraints and the

quality of the available prior knowledge, also reflecting the level of autonomy on

the device(s) to be positioned. From this perspective, one can distinguish between

a fully known environment, a partially known environment, and an entirely un-

known environment. For example, in WSNs, the device-enabled emitter/receiver

wireless signal continuously senses its surrounding environment and searches for

event occurrences. Additionally, the latter may include changes in the received sig-

nal strength and other sensory information (e.g., temperature, pressure, lighting,

and humidity). This mainly requires full knowledge of the nodes in which each

piece of information is captured. Moreover, equipped with advanced cameras and a

range of other wireless sensory modalities, autonomous systems can properly map

Fig. 1 LBS system architecture
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a completely unknown environment and can execute complex navigation tasks. In

this case, the estimation process includes both target positioning and environment

map estimation. Techniques of simultaneous localization and mapping (SLAM) fall

in this category [17, 18].

2.3 Technological trends in positioning systems

For an outdoor positioning system with a meter-like accuracy, the GPS is the most

common and worldwide radio navigation system in the case of good satellite coverage.

However, in the presence of obstacles or in indoor environments, electromagnetic

waves are attenuated, drastically reducing the accuracy of the GPS signals [19]. For in-

stance, the global navigation satellite system (GNSS) signals are attenuated indoors by

20–30 dB (a factor of 100–1000) compared to outdoors. Nowadays, infrared radiation

(IR) technology is incorporated into most smartphones, PDA, and TV devices as a wire-

less positioning technology that utilizes the line-of-sight communication mode between

the transmitter and receiver without interference from active light sources [19]. Radio

frequency (RF) technology [20] has the advantages of penetrating through obstacles

and human bodies, offering broader coverage and (relatively) reduced hardware infra-

structure requirement. It also encompasses numerous (sub) technologies, including

narrow-band-based technology (RFID, Bluetooth, and WLAN (Wi-Fi and FM)) and

wide-band-based technology (UWB), achieving a centimeter-level accuracy. Further-

more, ZigBee technology is an emerging wireless technology standard, which provides a

solution for the short- and medium-range communications of 20–30 m, designed for

applications requiring low-power consumption and low-data throughput, where the

distance between two ZigBee nodes is measured using RSSI values.

The ultrasound system is a cheap technology based on the nature of bats, and it oper-

ates in a lower-frequency band, where ultrasound signals are applied to estimate the

position of the emitting tags from the receivers. These signals have relatively lower ac-

curacy than many IR technologies, but they suffer from interference of reflected

sources, such as walls, metals, or obstacles [21].

The availability of cheap accelerometers and odometer sensors enabled the devel-

opment of internal mode positioning technology, wherein the location is deter-

mined through the integration over the traveled path from the initial position of

the target. Over long distances, accumulation of errors obviously constitutes a se-

vere challenge to such technology. However, the method is promising whenever it

is possible to update the target position using external sensors (to reduce the effect

of error accumulation) [22].

Moreover, the use of magnetic function and map has emerged as a promising posi-

tioning technology with the availability of compass sensors in many mobile handheld

devices [23].

Finally, numerous hybrid models that utilize more than one technology also emerged,

where various sensor technologies were applied in the same platform, offering the pos-

sibility to test many hybrid schemes. For instance, nowadays, numerous smartphones

are already embedded with odometer sensors (internal positioning), proximity sensors,

Wi-Fi, and Bluetooth sensors. Various available sensors and measurement modalities

(e.g., signal strength, angle of arrival (AOA), time of flight (TOF) and its difference, and
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cell ID) have led to several localization schemes such as triangulation, trilateration,

hyperbolic localization, and data matching. Figure 2 (from [24]) depicts some of these

technologies regarding the accuracy level.

Moreover, numerous commercial hybrid positioning systems are currently used in

various services from Combain Mobile, Navizon, Xtify, PlaceEngine, SkyHook, Devices-

cape, Google Maps for Mobile, and OpenBmap for applications in smartphones.

An FCC report [25] highlighted three primary location technologies currently in use:

cellular sector/base ID, GPS technology, and Wi-Fi. First, in the cellular sector-like lo-

cation, the location of the handset is associated with the coverage area of the service

base station. Thus, the radius covered can vary from several miles to a city block or

even an individual business or residence depending on the cell density and network

architecture. Increased resolution can be achieved by triangulating among the overlap-

ping cell sectors, and it is often used by service providers to improve the accuracy of

emergency response and monitor coverage. Second, to obtain maps or other informa-

tion based on a device’s location, the GPS-like location provided in the form of a simple

coordinate (e.g., latitude and longitude) is often transmitted to third parties. Third, in

Wi-Fi-based technology, the handheld device scans its surroundings for public or open

networks. Wi-Fi LBS depends on active surveys of an area to consider the unique iden-

tifier and location of each Wi-Fi-based station, including everything from hotspots in

coffee shops and hotels to residential and business networks. When a Wi-Fi-enabled

device accesses a location service, the browser or application may send to the service

the coordinates of Wi-Fi networks it is currently “seeing,” thereby allowing the current

location to be triangulated.

2.4 Constraints on positioning algorithms

As shown in Fig. 3, any positioning algorithm heavily depends on the available re-

sources, time constraints, computational costs, accuracy, and precision requirements,

Fig. 2 The accuracy of various technologies [24]
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among others. However, there is no clear favored positioning system and algorithm

across the spectrum.

Moreover, several other aspects contribute to the choice of the appropriate position-

ing algorithm. In addition, these aspects are reported in many generic surveys [10–12,

26, 27]. We are mainly interested in showing the classes in which fuzzy theory tools

have been employed. For example, through our review, we observed that there were al-

most no fuzzy-based approaches that explored the type of location information (e.g.,

physical, symbolic, absolute, or relative), despite the fact that symbolic and relative

localization provides a very coarse-grained position [3], which impose a vague descrip-

tion of the position information. Therefore, this would essentially provide a rationale

for applying fuzzy-reasoning-like analysis, and this is due to its appealing framework in

modeling linguistic descriptive of human knowledge regarding the symbolic position in-

formation or the defining coarse-grained position information.

Moreover, according to the fuzzy literature, only a few studies considered localization

problems from network-based [11, 23, 28–31] or handset-based perspectives [32–35].

A fewer number of studies considered the type of environment [36–39]. Regarding the

measurement methodologies, numerous conducted studies investigated the received

signal strength (RSS) [37, 40–42], whereas almost no study investigated other types of

measurements such as time-of-arrival (TOA), time-difference-of-arrival (TDOA), AOA,

received signal phase-of-arrival (POA), RSS, hops count, and RF. Moreover, fuzzy tools

can be intuitively handy to model radio propagation for addressing the uncertainties

imposed on the radio wave from the available and variable objects in the environment,

for example, using specific communication protocols [26, 43–47]. The amount of pro-

cessing performed by each node has been considered through either centralized or

decentralized architectures [40, 48, 49]. Some previously conducted studies [43, 50] in-

vestigated the cooperative and non-cooperative aspects of the communication between

nodes in the WSN architecture.

Among all of the classes, the calculating algorithm exhibited the maximum amount

of investigations, such as geometric calculations (literation, multi-literation, triangula-

tion, and area calculations), proximity (NN, KNN, and ID-CODE), and scene analysis

(fingerprint). Moreover, each of these algorithms has its pros and cons, thereby motiv-

ating hybrid schemes to increase performance [51, 52]. Merging the knowledge from

various algorithms also seems to be an attractive field of application of fuzzy-related

tools by utilizing their flexibility at both modeling and aggregation stages. In this class,

Fig. 3 Positioning system architecture
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several subclasses can be distinguished, e.g., range-based versus range-free methods

and deterministic versus non-deterministic methods.

To estimate locations using one or more measurement techniques, the range-based

scheme needs either node-to-node distances or angles [20, 38, 53, 54]. Moreover, the

range-free scheme includes fingerprinting, where an initially constructed map or grid is

mapped to the actual measurement set [30, 53] or hop count from each anchor using a

dedicated routing protocol [55, 56].

In deterministic methods, the location information is driven by a solution to some

analytical or approximate problems through some deterministic mappings without a

precise account of any uncertainty as opposed to probabilistic, fuzzy, or statistics-based

models, which encounters the first class, k-means like-matching in fingerprint associ-

ation, or deterministic range intersection method [55]. Moreover, non-deterministic

methods include Bayesian-like reasoning for fingerprint matching, Kalman filtering, be-

lief propagation approaches [57–62], joint probability distribution using factorization

on a graphical model [36, 63, 64], and various soft-computing related techniques [65–

67]. In general, if knowledge regarding the distribution is available, then the probabilis-

tic techniques outperform the deterministic ones and are preferred.

2.5 Challenges of positioning systems

The indoor location market includes indoor positioning-based services (and thus posi-

tioning systems) and solutions designed to support use cases around (indoor) location-

based analytics (e.g., understanding customer traffic), indoor navigation, and real-time

tracking. In addition to mobile technology, these services and solutions can transform

the user’s experience for customers and travelers. Similarly, for enterprises and corpora,

leveraging indoor location data can result in improved business insights and new en-

gagement models with customers. These new indoor location-based business opportun-

ities are estimated at approximately $10B by 2020 [66]. In the retail domain, indoor

localization use cases can increase customer loyalty and thus the sale revenues. It is ex-

pected that retail businesses that can employ such targeted messaging combined with

indoor positioning systems may yield a 5% increase in sales revenues, and customer

traffic analysis is expected to optimize the human resources in the enterprise. Overall,

although the indoor LBS can transform the retail as well as Travel and Transportation

(T&T) industries in a way that would optimize their internal resources and gain new

market opportunities, this emerging area suffers from shortcomings such as complex

maintenance tasks of the corresponding indoor sensing platforms, the lack of data qual-

ity assessment tools, and limited accuracy. In addition to the continuous challenges of

the positioning systems caused by the presence of numerous facets of uncertainty, these

shortcomings make the design of a universally accepted solution beyond reach. These

challenges include data access restrictions and technological difficulties, especially when

handling disparate data sources of distinct reliability and methodological limitations

due to potential sub-optimality and approximation employed as part of the preprocess-

ing/postprocessing of data. This, in turn, helps in the application of new uncertainty

theories that enable wireless positioning systems.

For example, IBM suggested a set of data smoothing algorithms for cleaning noisy in-

door data [67]. These algorithms reveal new market opportunities by supporting new
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indoor use cases, such as detection of common customer paths, targeted/wanderer cus-

tomers, and queue length. This study is motivated by the FCC report [68], which clearly

stated the LBS trends, challenges, and requirements.

3 Motivation grounds for the fuzzy-logic-based reasoning
3.1 The uncertainty pervading conventional wireless positioning systems

Uncertainty is always observed as an inherent operational aspect of any wireless system ir-

respective of the technology employed. In particular, when the types of uncertainty in sen-

sor networks are identified and quantified, more effective and efficient data management

strategies, which simply influence the quality of the positioning systems, can be developed.

In this regard, several aspects of the uncertainty can be distinguished [15, 49, 69, 70].

i) Communication uncertainty where mobile sensor networks can exhibit

intermittent connection patterns. Therefore, quantifying the communication

uncertainty of communication links contributes to better-rooting decisions.

ii) Sensing uncertainty in which sensor range and coverage are dominantly affected by

environmental interferences, noise, and other systematic physical limitations of the

sensor hardware. The consideration of such information by applying statistical,

soft-computing, or other models that can capture sensor behavior would facilitate

effective sensor deployment strategies.

iii) Data uncertainty caused by inherent imprecision affects sensor readings. Therefore,

in networked sensor systems, assigning confidence values or distributions to sensor

readings can basically provide better quality results and decision-making.

For example, in outdoor urban environments that employ the cellular network to es-

timate the exact position of a mobile client, the signal attenuation radio propagation

model (RSS) can provide means of analysis concerning the receiver’s (mobile client) lo-

cation. Such a model remains jeopardized to the NLOS and multipath, which, in turn,

negatively affect the accuracy level. Therefore, both sensing uncertainty, which ac-

counts for the signal propagation affected by environmental constraints as well as up-

date rate limitation, correlated errors from the receiver’s clock offset lag, and so on,

and data uncertainty due to fluctuations of sensor reading overtime should be

accounted for through appropriate uncertainty modeling. Similarly, the use of

odometer-like sensors, such as a wheel encoder that provides incremental position

measurements, has an unbounded accumulation of estimation errors over long travel-

ing distances, triggering both non-negligible sensory and data uncertainties.

Therefore, to improve the accuracy of location estimates in network-based systems,

clarifying such uncertainty is very important.

3.2 Inherent characteristics of fuzzy systems for handling uncertainty

Fuzzy logic, which was introduced by Zadeh in the 1960s, is a form of multivalued logic

that addresses approximate reasoning [69]. The base of FL is a fuzzy set, which is basic-

ally a prolongation of the classical set. It aims to model human reasoning, which is ap-

proximate by nature instead of precise and allows inferring a possible imprecise

conclusion from a collection of imprecise premises. For example, using knowledge “IF
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Node A is CLOSE to Node B, THEN mobile accuracy is HIGH,” AND “IF Node A is

FAR from Node B, Then mobile accuracy is MEDIUM;” we may want to infer the state

of mobile accuracy if Node A is VERY FAR from Node B. In the sequel, the meaning

of imprecise proposition is presented as an elastic constraint on (linguistic) variables,

and the inference is derived using propagation of these elastic constraints, which extend

the domain of inference systems of propositional/predicate/multivalued logic. The fact

that fuzzy logic provides a systematic frame for tackling fuzzy quantifiers (e.g., very,

high, and most) enables the underlying theory to subsume both the predicate logic and

probability theory, which, in turn, makes it possible to handle various types of uncer-

tainty within a single conceptual framework.

In addition to the aforementioned approximate reasoning view, the concept of lin-

guistic variables, fuzzy quantifiers, fuzzy rules, canonical forms, and connectives plays a

key role, and another significant fuzzy logic development arises from mathematically

developing the fuzzy set theory [71, 72], which is quite vast. Indeed, fuzzy logic is a

branch of the fuzzy set theory, and other branches are fuzzy arithmetic, fuzzy mathem-

atical programming, fuzzy topology, and so on [73, 74]. Therefore, the development of

the fuzzy set theory produced fuzzy estimation, fuzzy optimization, fuzzy pattern

matching, fuzzy classification, and so on, eventually having robust potential applications

in wireless positioning systems.

From a mathematical perspective, any linguistic variable is a variable with values of

words (its values are linguistic instead of numerals) [75–77]. For example, “height” is a

linguistic variable with values “short,” “tall,” and “very tall.” On the basis of the fuzzy

sets, these values are employed to them as labels, in which each of them can be defined

by its membership function, e.g., μshort(u) is associated with a numerical value u. The

value of the degree of membership is in the interval [0, 1]. For instance, μshort(u) can be

defined as follows:

μshort uð Þ ¼
1ifu≤50

1
u
if 50≤u≤100

0ifu > 100

8><>: ð1Þ

An example of rules where this can be applied is “IF distance is ‘short’ AND elapsed

time is ‘high’ THEN weight is ‘high’.”

Since fuzzy logic can systematically handle approximate information, it is ideal for

controlling nonlinear systems, modeling complex systems, or drawing inferences from

expert-like rules. Developing fuzzy logic components, which include determining the

optimal number of fuzzy rules, as well as parameters of underlying fuzzy sets and con-

nectives, is often arguable, and several contributions are nowadays available in the field.

Examples of available fuzzy software can be found in the following references: [78, 79].

The development of fuzzy logic is based on IEEE 1855–2016, which is a standard

concerning the fuzzy markup language (FML) [80] developed by the IEEE Standards

Association. Moreover, FML ensures the modeling of a fuzzy logic system in a human-

readable and hardware-independent way.

As a result of their capabilities to solve various problems through the provision of a

notational platform for knowledge representation and inductive reasoning based on im-

precision and uncertainty, fuzzy systems have become an important area where the
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fuzzy set theory can be applied. Additionally, they have been extensively and success-

fully applied in various disciplines and at diverse levels. In particular, fuzzy sets can in-

corporate human knowledge, granular computing, and deterministic and crisp

information to describe complex system behaviors without requiring any precise math-

ematical models; notably, the positioning problem with the aforementioned imprecise

knowledge and the lack of confidence and mathematical models establishes a rich

ground for such application.

Another perceptible advantage of the fuzzy systems is their ability to work as standa-

lone, or they are easy to combine fully or partially with other systems and techniques.

Moreover, this can augment or hybridize other systems (e.g., neural network, genetic

algorithm, and stochastic and statistical systems), yielding various hybrid modes of esti-

mation theory. Further, it is extendable to tackle data representation and manipulation

(e.g., the arithmetic of fuzzy numbers and operations), reasoning (fuzzy implications

and inferences), statistics, classification, clustering, and estimation (fuzzy Bayesian,

fuzzy Kalman, etc.) (for more details, see [76]).

4 An overview of principal fuzzy-based methodologies linked to wireless
positioning systems
In this section, we propose a classification criterion for using fuzzy logic in the

localization problem, and then we summarize the key fuzzy-related methodologies

employed in most of the surveyed wireless fuzzy-based positioning systems.

4.1 Classification of fuzzy systems in localization

The main finding of our survey analysis concerns the level of application of the fuzzy-

based methodology in the positioning system. On the basis of this perspective, one distin-

guishes two main streams. First, the fuzzy methodology is a part of the core estimation

process of target positioning. Second, the fuzzy methodology plays only a secondary role

as an assistant to some overall positioning systems in which a non-fuzzy-based algorithm

is employed for the estimation process, and fuzzy reasoning is used to initiate a kind of

support to the decision maker. We shall refer to the second class as incorporated fuzzy

positioning (IFP), as depicted in Fig. 4, and the first class as assisted fuzzy positioning

(AFP), as depicted in Figs. 5 and 6.

Fig. 4 IFP
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In the IFP, the fuzzy system is integrated into the positioning algorithm, as demon-

strated in Fig. 4. Within this class, various directions could also be identified based on

the way and level that the fuzzy tools have been employed.

In the AFP, the fuzzy system assists the positioning algorithm to enhance the result

of the position estimation. For example, to detect uncertainty in the readings of sen-

sors/receivers and eliminate noise in the signal, pre-AFP (Fig. 5) is used to fine-tune

the measurements taken from the environment. In particular, this was considered when

data fusion techniques were included, in which more than one source was applied for

the measurement in the system.

Moreover, post-AFP (Fig. 6) is utilized to calculate errors or uncertainties in the loca-

tion estimation, as well as to provide feedback to the position algorithm or user to carry

fine positioning tasks or maintain the positioning consistency, especially when com-

bined with another estimator, such as the Kalman filter.

Alternatively, some other previously conducted studies focused on hybridizing the

IFP and AFP to increase the uncertainty handling features of the positioning system,

for example, [81–83].

Table 1 presents the fuzzy system usage within the localization problem based on the

aforementioned classification. A light reading of the table indicates the dominance of

IFP-like usage in the localization systems.

Fig. 5 Pre-AFP

Fig. 6 Post-AFP
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4.2 The fuzzy inference system

Fuzzy inference appears to be, by far, the most fuzzy-based reasoning incorporated into

the examined fuzzy-based positioning systems. As shown in Fig. 7, the conventional fuzzy

inference system involves three stages: (i) fuzzification, where the fuzzy sets concerning

the linguistic variables are constructed, (ii) fuzzy rule base aggregation, and (iii) defuzzifi-

cation, which produces a potentially non-fuzzy output to be used in subsequent reasoning.

The fuzzy rules comprehend the general knowledge concerning the problem domain and

ultimately link antecedents to consequences or premises with conclusions.

For instance, let X1, X2, …, Xn be the input domain variables and Y be a single output

variable. Let Aj
i ; i ¼ 1; 2;…; n be the fuzzy input sets over the n input domains and Bj,

j = 1, 2, …, m be the output fuzzy sets over the single output domain. Then, a system of

m fuzzy if-then rules can be constructed as follows:

R1 : if X1is A
1
1∧…Xn is A

1
n Then Y is B1;

Rj : if X1 is A j
1∧…Xn is A

j
n Then Y is B j;

Rm : if X1is A
m
1 ∧…Xn is A

m
n Then Y is Bm :

To illustrate the functions of the various stages of the fuzzy inference system, first, the given

(crisp) input Xi is fuzzified to obtain a fuzzy set ~Xi based on the corresponding input space.

Second, input fuzzy sets ð~x1; ~x2;…:; ~xnÞ are matched against the corresponding if-part sets

of their input spaces in each of the rule antecedents in the fuzzy system (fuzzy rules), i.e.,

aj
i ¼ S Aj

i ;
~Xi

� �
: ð2Þ

Typical S operators include max or any alternative t − conorm connectives [110].

Third, various matching degrees aj
i of the n input fuzzy sets to the antecedent of a

fuzzy if-then rule are combined to:

μ j ¼ T aj
1;…; aj

n

� �
: ð3Þ

Typical T operators include min, product, or more general t-norm connectives [110].

Table 1 A fuzzy system with the localization classification

IFP [21, 34, 36–39, 41, 47, 50, 51, 64, 79, 82–99]

Pre-AFP [26, 53, 90, 100–106]

Post-AFP [59, 61, 63, 67, 107–109]

Hybrid [79–81]

Fig. 7 An example of the fuzzy inference system
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Fourth, the combined value μj fires the rule consequent or the output fuzzy set Yj. In

numerous models of the fuzzy system, this Yj is taken as its centroid Yj, i.e.,

f j ¼ f μ j;Y j

� �
: ð4Þ

Fifth, the fired output fuzzy sets (or crisp sets), fj, j = 1, 2, …, m, are then aggregated

to obtain the following final output fuzzy set:

y ¼ g f 1; f 2;…; f mð Þ: ð5Þ

The most commonly employed aggregation functions are the center of the gravity

defuzzification rule in the case of a Mamdani-type fuzzy inference system and weighted

average (based on membership grade) in that of a Takagi–Sugeno fuzzy inference sys-

tem [111].

In the Mamdani-type fuzzy inference system, the output B is given by its membership

function μb as follows:

μb xð Þ ¼ ⋁mj¼1 ⋀
n
i¼1 aj

i⋀ μb j
wð Þ

� �
; ð6Þ

where aj
i ¼ Aj

i∧ eXi , μ j ¼ ⋀ni¼1a
j
i , and μb j

ðwÞ denotes the fuzzy output set bj of the jth

rule.

Various extensions of the above model (6) have also been considered in the literature

[112]. Moreover, the number of rules grows with that of premise part variables. As the

number of rules increases, the activity of the assembling rules can become very burden-

some, and sometimes, it becomes difficult to understand the relationships between the

premises and consequences.

The issue of optimizing the eliciting fuzzy sets (fuzzification stage) or optimal mem-

bership function identification that optimizes the number of fuzzy rules has attracted

significant research attention in the fuzzy community, and several approaches have

been investigated. These include expert-based eliciting, automatic classification, and

clustering-based approach to complex optimization-based approaches involving neural

networks, genetic algorithms, and so on. Adaptive neuro fuzzy inference system

(ANFIS) based on a neuro-fuzzy learning mechanism is probably a commonly

employed tool in generating fuzzy partition and optimizing the fuzzy rule database

[113]. Another related development in this field is the emergence of the type-2 fuzzy

logic system.

4.3 Type-2 fuzzy logic system

The concept of the type-2 fuzzy logic system is motivated by the uncertainty pervading

the assignment of membership grade value [114]. Therefore, it was indicated to allow the

membership grade between upper and lower value states for any element in universe of

discourse, the membership grade can take any value within that interval. Figure 8 illus-

trates the type-2 fuzzy inference system. Output processing constitutes the type reduction

that generates the type-1 fuzzy set and the defuzzifier that converts the generated type-1

fuzzy set to the crisp output.
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4.4 Fuzzy clustering

Clustering is always employed to assign a category to unknown observations. In general, it

proposes a broad spectrum of methods that try to subdivide a data set, X, into c subsets

(clusters), which are pairwise disjoint, are all nonempty, and reproduce X via union. Then,

the clusters are termed hard (i.e., non-fuzzy) c-partition of X. Numerous algorithms with

their mathematical clustering criteria for identifying “optimal” clusters have been dis-

cussed [58, 115]. A significant fact concerning the hard (non-fuzzy) algorithms is the de-

fect in the underlying axiomatic model. Each point in X is unequivocally grouped with

other members of “its” cluster, thus bearing no apparent similarity to the other members

of X. One of such soft (fuzzy) clustering was introduced by Zadeh [69] to characterize an

individual point’s similarity to all of the clusters. By utilizing a function (termed the mem-

bership function) whose values (called membership degrees) are between 0 and 1, the

main point in fuzzy clustering is to represent similarity point shares with each cluster.

Each sample can have a membership in every cluster, and memberships close to 1 signify

a high degree of similarity between the sample and a cluster, whereas those close to 0 sig-

nify a little similarity between the sample and cluster. In addition, the net effect of such a

function employed for clustering is to produce fuzzy c-partitions of a given data set. A

fuzzy c-partition of X is one that characterizes the membership of each sample point in all

of the clusters by applying a membership function, which ranges in the unit interval [0, 1].

Additionally, the sum of the membership grades for each sample point must be 1.

Fuzzy c-means (FCM) algorithm, which is proposed by Bezdek [116, 117], is one of

the most extensively applied fuzzy clustering algorithms. Moreover, the algorithm in-

troduces a fuzzification parameter, for example, m, that determines the degree of fuzzi-

ness in a cluster—where m can be in the range of [1–N]—with N being the number of

data points in X. When m = 1, the effect is a hard clustering, and when m > 1, the de-

gree of fuzziness among the various points in the decision space increases. In every iter-

ation, the objective of the FCM is to minimize the objective function, F:

F ¼
XN

i¼1

XC

j¼1
umij xi−c j
�� ��2 ; ð7Þ

Fig. 8 An example of a type-2 fuzzy inference system
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where C denotes the number of clusters required, cj denotes the center vector of clus-

ter j, and umij denotes the degree of membership for ith data point xi in cluster j. The

norm ‖xi − cj‖ measures the similarity (or closeness) of the data point xi to the center

vector cj of cluster j.

In each iteration, note that the algorithm maintains a center vector for each cluster.

These data points are calculated as their weighted average, where the weights are given

by the degrees of membership as follows:

umij ¼
1PC

k¼1
xi−c jk k
xi−ckk k

� � 2
m−1

ð8Þ

Here, m denotes the fuzziness coefficient. FCM obviously imposes a direct constraint

on the fuzzy membership function associated with each point, so the sum of the mem-

bership grades for point xi in a decision space X must be 1. Moreover, cj can be calcu-

lated as follows:

c j ¼
PN

i¼1 umij : xi
� �

PN
i¼1 u

m
ij

ð9Þ

Although the FCM algorithm is slower than the hard clustering algorithm, it has been

shown that the former provides better results in cases where data are incomplete or un-

certain [117, 118].

4.5 Fuzzy optimization

From the very early stage of the fuzzy set theory, the application of fuzzy sets to

optimization problems was considered. One of the possible applications of fuzzy sets is

the idea of “optimization under fuzzy constraints.” In the suggested formulation, the

product of the objective function value and satisfaction degree (membership degree) of

fuzzy constraints is often maximized. The authors in [75] proposed a maximizing deci-

sion based on fuzzy constraints and fuzzy goals. Tanaka et al. [119] applied this idea to

a mathematical programming problem, in which they considered the study of [75]

using α-level sets and gave an algorithmic solution to the fuzzy mathematical program-

ming problem accordingly.

More specifically, let ~G be a fuzzy set, and let ~C be a fuzzy constraint defined over a

set X. A fuzzy goal is a fuzzy set whose membership function μ~G : X→½0; 1� shows the
degree of its goal achievement. Moreover, a fuzzy constraint ~C is a fuzzy set whose

membership function μ~C : X→½0; 1� shows the degree of its constraint satisfaction.

Thus, the fuzzy decision, ~D, can be defined as follows: ~D ¼ ~C∩~G or equivalently μ~DðxÞ
¼ minð μ~GðxÞ; μ~CðxÞÞ; ∀x∈X . Then, the decision-making problem is formulated as

follows: maximize
x∈X

μ~DðxÞ.
In [119], the authors showed that
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sup
x∈X

μ~D xð Þ ¼ sup
α∈ 0;1½ �

min α; max
x∈ ~Cj jα

μ~G xð Þ
 !

; ð10Þ

where α-level set j~Cjα of ~C is defined by j~Cjα ¼ fx∈X j μ~CðxÞ≥αg. They also demon-

strated similar results when the fuzzy constraint is given by multiple fuzzy sets ~Ci ¼ 1;

2;…;m, i.e.,

sup
α1;α2;…;αm

min α1; α2;…; αm; max
x∈ eC1

�� ��
α1
∩ eC2

�� ��
α2
∩…∩ eCm

�� ��
αm

μ~G xð Þ

0B@
1CA ð11Þ

¼ sup
α

min α; max
x∈ eC1

�� ��
α
∩ eC2

�� ��
α
∩…∩ eCm

�� ��
α

μ~G xð Þ
0@ 1A:

Therefore, this implies that multiple fuzzy constraints can be aggregated to a single

fuzzy constraint. By assuming that X ¼ Rn and the objective function f is given by its

normalized form, they applied their results to a mathematical programming problem

with fuzzy constraints, f, so f(x) takes a value in [0, 1] for any x∈clðSuppð~CÞÞ , where
Suppð~CÞ ¼ fx∈X j μ~CðxÞ ¼ 1g , and cl denotes closure. Moreover, they assumed the

continuity of μ~CðxÞ and f, as well as the normality of ~C , i.e., ð∃x∈X; μ~CðxÞ ¼ 1Þ and

the existence of x ∈ X such that maxx ∈ cl(Supp(C))f(x) = 1. On the basis of these assump-

tions, the problem reduces to finding a solution (α∗, x∗) such that

min α�; f x�ð Þð Þ ¼ sup
α∈ 0;1½ �

min α; max f xð Þ
x∈ ~Cj jα

0@ 1A: ð12Þ

In the sequel, this mathematical programming with fuzzy constraints and/or goals is called

“flexible programming” [120]. Now, the question is whether the solution of the above for-

mula is good or not when α∗ < 0.5. Moreover, the optimization process is performed by up-

dating the fuzzy goals and constraints together until it converges to an appropriate solution.

4.6 Fuzzy arithmetic and analytics

In numerous fields of sciences, such as systems analysis and operations research, a

model can be constructed using approximately known data. Fuzzy set theory can

make this possible provided that these fuzzy sets are defined over the universal set

ℝ. Then, on the basis of certain conditions (semi-continuity, convexity, and

normalization), these fuzzy sets can be considered as fuzzy numbers as well. There-

fore, this approach may be of practical interest only if we can smoothly perform

algebraic operations on them.

More formally, using a membership function μ~n , a fuzzy set ~n (Fig. 9) defined on the

real line ℝ. μ~n is said to be a fuzzy quantity (fuzzy number) if it satisfies the following

conditions:

i.) ~n is normal i.e., hgtð~nÞ ¼ 1.

ii.) ~n is convex.

iii.) There is exactly one �x∈ℝ with μ~nð�xÞ ¼ 1⟹coreð~nÞ ¼ �x.
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iv.) The membership function μ~nðxÞ; x∈ℝ is at least piecewise continuous.

The main objective of defining fuzzy quantities is to have a proper definition of arith-

metic operations as their counterparts of elementary operations, i.e., given fuzzy num-

bers ~n1 , ~n2 with μ~n1
ðx1Þ , μ~n2

ðx2Þ , where x1, x2 ∈ℝ. . The goal is to determine μ~qðzÞ

, z ∈ℝ of the fuzzy number ~q ¼ Eð~n1; ~n2Þ, where E denotes one of the elementary oper-

ations (addition, subtraction, division, and multiplication). Moreover, fuzzy set theory

generalizes tolerance analysis where the fuzzy arithmetic can be observed as an exten-

sion of the interval analysis and algebra of many values or quantities [69] as follows:

μ~q zð Þ ¼ sup
z¼E x1;x2ð Þ

min μ~n1 x1ð Þ; μ~n2 x2ð Þ� 	
∀x1; x2∈ℝ: ð13Þ

Subsequently, it was observed that the mathematics of fuzzy quantities can also

be considered as an application of possibility theory [121]. Thus, an effective defin-

ition of arithmetic operations requires a practical implementation. In general, one

can discuss three main streams for applying the extension principle. The first one

is based on the L-R representation of fuzzy numbers proposed in [122]. The sec-

ond one depends on the discretized fuzzy number proposed in [123]. Additionally,

on the basis of the reduced decomposition of the fuzzy number of level cut opera-

tions proposed in [71], the third one can be considered as a generalized version of

the second.

For simplicity’s sake and to stress on the sound mathematical ground of the

fuzzy set theory, only the definitions of the first method are mentioned herein.

The fundamental idea of the LR fuzzy number representation is to split the mem-

bership function μ~ni
ðxiÞ of fuzzy number ~ni into two curves μLiðxiÞ and μRi

ðxiÞ, cor-
responding to the left and right of the modal value xi , respectively (which can be

either a single point or an interval). Then, μ~ni
ðxiÞ can be represented by the pa-

rameterized reference functions or shape functions L and R in the following form:

Fig. 9 Fuzzy number (it can be observed as a fuzzy interval)
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μ~ni xið Þ ¼
μLi xið Þ ¼ L

xi−xi
αi


 �
; xi < xi

μRi
xið Þ ¼ R

xi−xi
βi


 �
; xi≥xi

8>><>>: ; ð14Þ

where αi ∧ βi denotes the spreads corresponding to the left-hand and right-hand

curves of μ~ni
ðxiÞ , respectively. Using the following abbreviated notations, ~ni

¼ xi; αi; βiL;R , where the subscripts L and R specify the type of reference function. The

operations on such fuzzy numbers can be represented as follows:

– Addition: x1; α2; β2L;R þ x2; α2; β2L;R ¼ x1 þ x2; α1 þ α2; β1 þ β2L;R.

– Subtraction: x1; α2; β2L;R−x2; α2; β2L;R ¼ x1−x2; α1 þ β2; β1 þ α2L;R.

– Multiplication is a bit more approximation technique dependent, and two well-

known techniques were utilized [70]:

Tangent approximation:

x1; α2; β2L;R � x2; α2; β2L;R ≈ x1x2; x1α2 þ x2α1; x1β2 þ x2β1L;R ðandÞ

Secant approximation:

x1; α2; β2L;R � x2; α2; β2L;R ≈ x1x2; x1α2 þ x1α2−α1α2; x1β2 þ x2β1−β1β2L;R:

– The division is performed similarly, except that the multiplication is performed

with the inverse of the divisor using again the same two approximation techniques.

If ~n ¼ x; α; βL;R, then we use the tangent approximation ð~nÞ−1 ≈ 1
x ;

α
x2 ;

β

x2
R;L

and

secant approximation ð~nÞ−1 ≈ 1
x ;

β

xðxþ βÞ ;
α

xðx−αÞR;L.

4.7 Hybrid-based approach

Hybridization of fuzzy-based reasoning with other approaches (e.g., stochastic, rule

base, neural network, and genetic algorithms) is quite common where several achieve-

ments can be distinguished. We remark that this survey is not aimed to explain the hy-

bridizing techniques of fuzzy systems.

First, the conventional fuzzy controls with Mamdani- or TSK-type inference engines are

applied to optimize the weights associated with measurements, for example, the weight esti-

mations for fingerprinting technique [70, 124] or nearest neighbor algorithm [35, 41, 93].

Second, the fuzzy systems can be combined with other estimation and approximation

tools, particularly the Kalman filter [83, 106, 125].

Third, on the basis of the power of fuzzy mathematics and probabilistic approaches, fuzzy

sets and systems are utilized to build customized estimators [27, 51, 52, 83, 106, 126].

Fourth, fuzzy systems are used along with other soft-computing techniques such as

neural networks and genetic algorithms to construct or simplify the rule base or main-

tain the weight calculation for the network in an adaptive manner [53, 108, 127–129].
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5 Historical background
Some authors ([130]) claimed to be the first to introduce fuzzy logic into tracking problems.

In their studies, the authors applied fuzzy logic to enhance the performance of the classical

tracking system. In particular, the model-free function approximation capability of fuzzy

logic was used to obtain high-resolution angle estimates from the spatial–spectral density.

Moreover, their main focus was to estimate and track the source angular positions from a

snapshot data vector. In the proposed system, the following two inputs were designed to ob-

tain the distance between two sources: the maximum spatial power density (periodogram)

and the main beam normalized bandwidth. The authors indicated that only fewer snapshots

are necessary to ensure a successful angle estimation when compared with their previous

studies. Even when the angle between the two users is less than the predefined resolution

value in the data vector, the proposed system could produce an accurate estimate for the

direction of arrival (DOA). Thus, the result was a robust tracking system that presents a low

computational burden and attains a resolution comparable to that of singular value decom-

position techniques.

At first glance, this study does not seem to be directly related to the positioning prob-

lem based on the definition introduced earlier. However, from another viewpoint, it dis-

cussed an angle position estimation problem that is mainly linked to positioning.

According to our review, in contrast to the above authors’ claims, numerous other earlier

studies could also be linked to the use of fuzzy systems in the positioning problem. For ex-

ample, we could pinpoint the “sketching” technique and experiment that was conducted in

the early eighties [82], to create a system for deriving symbolic position estimates for objects

from a relational scene (environment) description “layout problem,” the author utilized the

fuzzy relational database and inference system. In the so-called sketching algorithm, the au-

thor employed fuzzy logic at two levels. First, a fuzzy inference system was used to build a

relational database among various independent objects in the environment, which, in turn,

is utilized to construct a coarse resolution sketch that depends on the symbolic spatial de-

scriptive, i.e., left, right, above, below, distance, and bearing. This aimed to produce a two-

dimensional position estimate for the object position in the environment. Second, the truth

values were applied as a confidence interval to be associated with every symbolic descriptive

Fig. 10 ScienceDirect fuzzy tool stats
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rule, which was utilized for error analysis at a later stage. We can report several drawbacks

for their technique, which includes the use of a single interval fuzzy variable and the as-

sumption that the position of at least one fixed object must be known. In the case of an un-

known object position, fixing the position at some bad initial points could definitely lead to

poor performance because of the sequential nature of this technique. Despite such limita-

tion, the symbolic power of fuzzy logic enhanced the sketching results and effectively lever-

aged the tradeoff between spatial relations and coordinate positions. More interestingly, this

method performed well without much prior information concerning the environment pro-

vided that a relatively good initial position was fixed.

The use of fuzzy systems in the domain of positioning and localization gained momen-

tum because they can be easily designed and utilized. Moreover, the challenge is not in

pinpointing the earliest usage of fuzzy tools in the positioning problem but in coming up

with some proper classification criteria for all of these studies as we approached that in

Section 4. On top of that, to come up with evaluation criteria to assess the increasing

number of available solutions, we try to approach that in the next section.

6 Parametric measures and evaluations
To develop rigorous foundations, we examine the performance of different positioning

systems obtained from various perspectives in the literature. First, an intuitive study

question that has been investigated is the following: whether the classification pre-

sented in Section 4 is sufficient. In this regard, we found that it is difficult to cast every

piece of work in a single class. This is because a given proposal often attempts to ac-

commodate numerous identified deficiencies of the classical positioning system at dif-

ferent levels, thereby overlapping with more than one class. Thus, we mention the

following. First, the evaluation was investigated from a purely statistical perspective

based on the occurrence of the related fuzzy terminology in either the title, keyword, or

abstract of the papers. This mainly would exclude those papers in which the fuzzy rea-

soning has been part of the positioning methodology but this has been cited in neither the

title nor the abstract of the article or even the associated keywords list. Second, the investiga-

tion has primarily considered two commonly employed scientific databases: IEEExplore and

ScienceDirect, giving the popularity of positioning technology in such databases as well as

the multiplicity of scientific journals in the field that are hosted by these databases. Third,

using fuzzy logic, fuzzy arithmetic operations, and/or an inference system to come up with

an estimation solution for the positioning problem, one still distinguishes cases where a fuzzy

system was only employed as an aiding tool (closed box) to serve the positioning objectives

from situations where the fuzzy tools were utilized both to represent knowledge and manipu-

late it at the deepest level. Fourth, particular interest was devoted to the fuzzy-based method-

ology employed in the underlying (fuzzy) positioning system. Fifth, we distinguish among

various hybrid schemes where the fuzzy-based approach is employed along with a classical

approach or with another soft-computing-based approach. Sixth, the results presented in Fig.

10 and Fig. 11 summarize the proportion of the main fuzzy tools employed by the identified

fuzzy-based approach to tackle the positioning problem observed in ScienceDirect and

IEEExplore databases, respectively. Surprisingly, none of these databases produced results by

utilizing type-2 fuzzy in the problem of localization (of course using a specific set of keywords

for both). Some studies in the field have been reported in [131–134]. Thus, the absence of

such notification is justified from different viewpoints. First, histogram representation only
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reported the dominant methods, and we ignored those whose stats are below 1%. Second,

the fuzzy-2 methods sometimes depend on the clustering method class as well, hiding the

fine-grained distinction among the various clustering methods employed.

Interestingly, the results demonstrated similar patterns in both Figs. 10 and 11 in the sense

that optimization-based approaches are quite dominant in fuzzy literature related to position-

ing systems, followed by clustering-based approaches, then the classification and rule-base-

like approaches, while fuzzy arithmetic-like tools are less common in both databases.

Another viewpoint was to see if the fuzzy systems (tools) were used as the only

means for location estimation systems, or was ever combined with other soft-

computing tools, for example, neural networks or other classical estimators (e.g., Kal-

man filters). Moreover, the returned results from ScienceDirect and IEEExplore are

demonstrated in Fig. 12 and Fig. 13, respectively.

Similar to Figs. 10 and 11, we also observe substantial similarities between Science-

Direct and IEEExplore database findings. This includes the dominance of the fuzzy-

alone-based approaches, followed by hybrid fuzzy logic and neural-network-based ap-

proaches (although these have been ranked equal in the ScienceDirect database). Next,

the hybrid schemes of fuzzy tools with swarm optimization, followed by fuzzy tools

with Kalman filter, are particularly observed. Finally, a tiny proportion of the surveyed

papers (which is less than 5%) investigated ANFIS-based systems applied to the posi-

tioning problems.

Next, we introduce the performance criteria to compare the proposed methodologies.

6.1 System metrics

We divide these performance criteria and/or parametric measures into four major

parts: system metrics (Table 2), environment metrics (Table 3), fuzzy metrics (Table 4),

and positioning metrics (Table 5).

Fig. 11 IEEExplore fuzzy tool stats
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Since our study discriminates between the fuzzy tools employed as an augmentation

to other classical positioning approaches and that where a fuzzy system-like approach

lies at the core of the positioning technique, the performance criteria and parametric

measures are very important in our evaluation to enhance system performance or over-

come some of the deficiencies observed during the implementation of the position esti-

mation problem. Unfortunately, many of these measures were neither explicitly nor

implicitly mentioned in a number of review papers that we encountered. These per-

formance metrics can be summarized as follows.

– Accuracy and precision

Fig. 12 ScienceDirect stats

Fig. 13 IEEExplore stats
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Table 2 System metrics

Citation Accuracy and
precision

Scalability Robustness and adaptiveness Cost Complexity Latency

[82] Low Not
tested

Works without much prior
knowledge about the
environment

Low
computation
cost

Complex NaN

[89] Good (1–5 m) Yes Able to detect changes in the
local environment

Low
computation
cost

Easy Low

[103] 0–1 m Yes Not reported Low cost Easy Low

[90] Not reported No Able to detect changes in the
local map as long as a global
map is available

High
computation

Medium Low 1–
10 s

[107] Good 0.5–20
m on each
dimension

Yes Yes Low
computation
cost

Complex Very
low

[108] 2.5 (0–5) m Yes Yes Computation
time is low

Complex Medium

[84] 0–10 m Yes Yes Low Easy Low 1 s

[26] 5–15 m No Yes High
computation
and time

Complex High

[104] 0.1–0.8 m No No Low
computation
power

Complex Low

[88] 2 cm, 5 cm No No Low
computation
power

Complex Low

[105] 1–3 m No Yes Low
computation
power

Simple Very
low
5–15 m.
s

[79] 5–65 cm Yes Yes High
computation

Medium Low 1–3
s

[91] Yes Yes Very low Simple Not
reported

[37] 0.5–2 m No No Low
computation
power

Complex Not
reported

[87] 0.5–5 m Yes Yes Average
computation
power

Medium 0.5 s

[93] Not reported Yes Yes Not reported Not
reported

1–4 s

[135] 90% accuracy Yes Yes Very high Medium Not
reported

[95] 1–3 m No Yes Low
computation
power

Easy

[86] 0–200 m Yes Yes High
computation

Complex 1 s

[101] 0–200 m Yes No Low
computation
power

Simple 1–2 s

[96] 0.10–80 cm No Yes Low
computation
power

Simple Very
low

[39] 0–0.5 m No Yes Low Simple Low
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Accuracy and precision are two of the most important performance metrics in a posi-

tioning system. Position accuracy is defined as the numerical distance (in meter or cen-

timeters) between the actual target position and that of the estimated. Moreover,

precision tests the extent to which the provided estimation agrees when it can be re-

peated under the same circumstances.

– Scalability

In general, position systems need to be scalable in terms of geographical space and

density of client users or terminal devices. Generally, a system tends to be scalable if it

can be deployed in a larger geographical space and if it can serve a larger size of the

population with the same quality of service.

– Robustness and adaptiveness

Robustness and adaptiveness are related to the ability of the positioning systems to

handle any unforeseen circumstances or accidental changes in the environment. This

includes, but not limited to malfunctioning of sensory nodes, APs, inherent perturb-

ation of the system, inclusion, or exclusion of new obstacle bodies that may increase

the noise and uncertainty levels of the testbed.

– Cost (computation, labor, and implementation)

Naturally, computationally fast and plausible algorithms that can serve numerous

localization queries within a given time frame are more attractive. Moreover, the cost

Table 2 System metrics (Continued)

Citation Accuracy and
precision

Scalability Robustness and adaptiveness Cost Complexity Latency

[62] 0.5–2 m No Yes Low
computation
power

Medium Low

[51] 3–8 m Yes Yes High
computation
power

Complex High
40–60 s

[98] 2 m with 60% No No Very high Complex 5–10 s

[136] 0–4 cm 98% No No Very high Complex 1–3 s

[51] 35–80 m Yes Yes High
computational
power

Complex 60–70 s

[53] 40 cm 86% Yes No Medium cost Simple 50–60 s

[47] Not reported Yes No Medium cost Medium 1 s

[137] 95% Yes No Low cost Simple 3 s

[99] 2 m with 66% No No Low cost Simple NaN

[106] 1 m with 75% No No Medium Medium 1 s

[138] 0.35–1.70 m Yes Yes Low Low 2 s

[36] Not reported No Yes High Medium 2 s

[34] 0–0.5 m Yes Yes Low Low 50 ms
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Table 5 The positioning metrics

Citation Location
information

Absolute or
relative

Topology Communication
technology

Calculating
algorithms

Measurement
techniques

[129] Physical Relative Remote -
direct

Not reported Proximity NN DOA

[82] Symbolic Not reported Not
reported

Not reported Not reported Not reported

[89] Physical Absolute Self-direct Ultrasonic Proximity TOF

[103] Physical Absolute Remote-
direct

GPS Geometric-
Trilateration

TDOF

[90] Physical and
symbolic

Relative Self-direct Sonar Dead reckoning TOF

[107] Physical Absolute Self-direct GPS Geometric-
Trilateration

TOA

[108] Physical Relative Remote-
indirect

GPS Geometric-
Trilateration

TOA

[84] Physical Relative Remote –
direct

GSM-Radio KNN RSS

[26] Physical Relative Remote-
direct

GSM-Radio Geometric-
trilateration

TOA , TDOA

[104] Physical Absolute Self-direct Infrared Triangulation TOF

[88] Physical Absolute Self-direct Ultrasonic-
infrared

Triangulation TOF

[105] Symbolic Relative Self-direct Wi-Fi Proximity RSS

[79] Physical Relative and
absolute

Remote-
direct

Sonar and laser Proximity - dead
reckoning

TOF, AOD

[91] Symbolic Relative Remote-
indirect

Wi-Fi Fingerprint RSS

[37] Physical Relative Remote-
direct

ZigBee Weighted COO RSS

[87] Physical Relative Remote-
direct

Wi-Fi Proximity weighted
average

SNR

[93] Physical Relative Self-direct Wi-Fi Proximity average RSS

[94] Symbolic Relative Self-direct Wi-Fi Proximity average RSS

[135] Physical Absolute Wi-Fi Fingerprint RSS

[95] Physical Relative Remote-
direct

ZigBee Proximity weighted
average

RSS

[86] Physical Absolute Remote-
indirect

GSM-Radio Generalized mean
value

RSS, TOA, AOA

[101] Physical Absolute Self-direct GSM-Radio Cell of origin RSS

[96] Not reported Relative Self-direct Wi-Fi Not reported RSS

[39] Physical Relative Remote-
direct

ZigBee Fingerprint + KNN RSS

[62] Physical Absolute Remote-
direct

ZigBee Fingerprint +
weighted average

RSS

[51] Physical Absolute Remote-
direct

GSM-Radio Weighted average RSS + TOA

[98] Physical Relative Self-direct Wi-Fi Fingerprint RSS

[136] Physical Relative Self-direct Sonar Triangulation AOA

[147] Physical Absolute Remote-
direct

GSM-Radio Triangulation RSS

[53] Physical Relative Remote-
direct

Infrared Hop count RSS

[47] Physical Relative Self-direct Radio Multi-lateration RSS
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criterion often includes energy and processing resource system efficiency, which are

considered to be important in the case where the estimation is performed using

limited-capability devices. As part of the positioning approach, labor intervention and

system interaction are also considered as part of the cost factor.

– Complexity (the type of measuring devices, mobile devices, and other network

components)

Complexity entails the type of measuring instruments and the required network in-

frastructures that are necessary for generating measurements or inputs to the position-

ing system as well as the complexity associated with the estimation process itself,

providing insights into the overall complexity of the underlined positioning system.

– Latency

Latency is usually employed to quantify the responsiveness of a system for position-

ing queries. It is better when faster.

6.1.1 Discussion

i) A careful observation of the surveyed papers illustrated in Table 2 indicates that

those in which fuzzy localization techniques were employed are related to mobile

robotics, manufacturing, cellular systems, indoor positioning using Wi-Fi, Blue-

tooth, RFID and laser scanning, vision system, and so on. Irrespective of the ap-

plied positioning methodology, various disciplines, expectations, and technologies

utilized trivially induce distinct accuracy and performance levels.

ii) When compared with the papers in positioning systems, a quick examination of

those identified in the area reveals that they have rather a low citation score.

Therefore, this shows the lack of involvement of the fuzzy community in

impacting the current International Organization for Standardization (ISO)

standards and even the known IEEE research groups on positioning systems.

Therefore, further studies should be conducted in this field to attain a reference

level.

Table 5 The positioning metrics (Continued)

Citation Location
information

Absolute or
relative

Topology Communication
technology

Calculating
algorithms

Measurement
techniques

[137] Symbolic Relative Self-direct Wi-Fi Fingerprint RSS

[99] Physical Relative Remote-
direct

Wi-Fi Weighted kNN RSS

[106] Physical Relative Remote Wi-Fi Weighted KNN RSS

[138] Physical Relative Remote-
direct

Wi-Fi Weighted KNN +
fingerprint

RSS

[36] Physical Relative Self-direct Wi-Fi Fingerprint RSS

[34] Physical Relative Remote-
direct

Wi-Fi Fingerprint +
weighted kNN

RSS
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iii) At first glance, when observing the accuracy achieved by the studies reviewed in

Table 2, one observes an accuracy of around a centimeter. However, we should

also consider the sensory range of the applied sensors. From this perspective, one

notes that the range of the utilized sensors is also limited to around a centimeter

to a few meters since ultrasound, Wi-Fi, and laser scanner-like sensors have a trivi-

ally limited range.

iv) Concerning complexity, although most of the fuzzy-based positioning papers fo-

cused on low-cost sensory architectures, Table 2 demonstrates that they yield rea-

sonably low to medium computational cost, and very few studies reported high

computational cost as well. An investigation of such studies showed that they are

mainly related to methods where extra network infrastructure will be required to

trigger the associated measurement method to ensure synchronization between the

emitter and receiver, e.g., in the case of TDOA.

v) Regarding scalability, it turns out that most of the surveyed studies in Table 2 did

not consider such factors, especially when the approach applies only low-cost sen-

sors and does not require any infrastructural change. Otherwise, if additional hard-

ware is required to run the positioning system, the scalability of the approach is

trivially questioned. Similarly, approaches that subsume full or even partial know-

ledge of the environment to run the positioning system have limited scalability as

well.

vi) We distinguish among some papers, e.g., [29], which are only based on simulation

studies from hose that are based on real-time implementation. Notably, the

simulation-based analysis does not necessarily justify all of the constraints that can

be satisfied in a real-time implementation-related work. Therefore, their outcomes

should be considered with caution.

vii) Concerning latency, it is noteworthy that the quasi-majority of the surveyed papers

in Table 2 does have a low-latency value, and we note that only three papers re-

ported a latency value higher than 10 s. In fact, the analysis of such papers revealed

that high latency has been mainly linked to approaches in which an additional step

for environment mapping is required. Therefore, on the basis of the complexity of

the environment and frequency of activation of sensors, the mapping time can

thereby substantially increase, which, in turn, increases the latency of the overall

system.

6.2 Environment metrics

The environment metrics are explained in this section, and its results are shown in

Table 2.

– Map requirements

A typical localization scheme requires prior information regarding the environment.

Thus, this can be done through a site survey. For instance, in the fingerprint-based

schemas, the collected patterns are manually annotated with their physical or logical

fixes before the positioning algorithm is initialized. Moreover, other schemas may re-

quire a geographical map to obtain their absolute or relative estimates of the position.
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– Acquiring location fix

Some positioning systems may require the location fix from user devices. This could

be obtained via GPS or other means to offer reasonable accuracy, whereas others do

not. Positioning systems that can maintain the same level of accuracy without requiring

any location fix are trivially more attractive.

– Usage of the indoor/outdoor landmarks

An interesting feature of an ideal positioning system is its ability to process the target

estimation anywhere without any prior knowledge concerning the layout of the deploy-

ment environment. Numerous positioning systems, for example, the fingerprinting-like

approaches, require knowledge about the AP locations to approximate a distance for

the target object. Similarly, navigation-based approaches require predefined locations to

draw the trajectory to the destination place. Therefore, from a system autonomy per-

spective, the positioning systems without landmark requirements are considerably pre-

ferred over others.

– Need for additional sensor (or hardware)

Although numerous sensors are already embedded in the current handheld devices,

such as smartphones and tablets, some advanced positioning systems, such as in some

robotics and manufacturing applications, require advanced bandwidth, throughput, and

special sensory capabilities. Therefore, if the target mobile is not designed with such re-

quired devices or functionality, then the positioning systems may not function appro-

priately or, at least, would not be able to deliver the expected performance regarding

accuracy and precision.

– Addressing device heterogeneity

On the basis of the same network conditions, it has been found that the accuracy

of some positioning systems is significantly affected by the type of measurement

device, especially those that depend on RSS or TOA. Consequently, device hetero-

geneity is addressed as another metric parameter for evaluating the positioning

system.

– User participation

One of the fundamental ideas behind the calibration-free positioning systems

is to involve users to implicitly participate in constructing the training data-

base. For instance, any user having a wireless device may be expected to

contribute to the radio-map construction. This user participation is more at-

tractive when compared with the scenario where the professional deployment

personal explicitly inputs location fingerprint data as feedback to the system.

This allows building a more comprehensive and dense database, as well as scal-

able systems.
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6.2.1 Discussion continues

The results presented in Table 3 reveal the following points.

i) The application of fuzzy-system-based positioning systems equally focused on in-

door and outdoor positioning.

ii) Regarding the requirement of environmental knowledge, it is noteworthy that the

application of fuzzy systems follows roughly the development of the navigation

systems, where a clear difference between fully known, partially known, and fully

unknown environments is observed. This shows that the proposed fuzzy-based ap-

proaches are mainly connected to the approach employed in mapping and model-

ing the surrounding/perceived environment. It also includes the grid-based

approach, polygonal approximation, such as ultrasound beam or cellular grid net-

work modeling, integration over a traveled distance path as in odometer-like sens-

ing, and a straight line from known beacons. Accordingly, they derive a position

estimation.

iii) The examination of the free environmental knowledge constraint papers

demonstrated that most of such studies can be mainly grouped into three: GPS

positioning systems or differential GPS, local-based sensory strategies for

proprioceptive-sensor in mobile robotics, and sensor node positioning in a large-

scale WSN.

iv) Moreover, the classification in Table 3 indicates some subjectivity. For instance,

one may expect all of the fingerprinting-based approaches, e.g., construction of a

radio map using access points and RSS information to need “map requirement.”

However, the authors of such papers, e.g., [138], claim that the approach does not

require any map-related knowledge. Therefore, reproducing the authors’ claim

based on the environment knowledge requirements should be cautiously handled.

v) The choices of location fix and use participation are primarily connected to the

employed map-building approach. Most map-building approaches would typically

require some prior knowledge of the environment, modeling structures (e.g., grid,

straight line, polygonal cells, and cubic cells), and technologies employed. For in-

stance, in case of a cellular network that utilizes the RSS signal intensity to calcu-

late the mobile positioning, one requires information about the location of the base

stations, their heights, power, and the type of environment (e.g., rural, urban,

height of buildings, and wideness of streets) to tune the parameters of the radio

propagation models that turn the RSS intensity into a mobile-base station distance.

Similarly, to turn the RSS intensity to the distance or use any estimation-based

technique, the use of triangulation with the Wi-Fi signal in the indoor environment

would require at least the AP’s location. To apply vision-based techniques, for ex-

ample, determining the target position with respect to the identified beacons, the

beacon-like approach needs knowledge of the beacon locations, type, and shape. In

a WSN array, the location of the target node would require knowledge of the refer-

ence nodes that may be applied to obtain the target’s physical location.

vi) We distinguish among at least two types of user participation in the surveyed

papers. The first one follows the crowdsourcing-based approach, where the users

report their locations together with the observations (images, RSS, etc.). Then, it

will be used to build some mappings of the environment. The second one is
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employed as a training phase to generate a model for position estimation. It uses a

user interface as a part of the estimation process, where the user can intervene to

validate or prioritize some typical choices.

vii) The observation of the scalability result shows a quasi-majority of the indoor

fuzzy-based positioning systems, which act in medium- to small-scale environ-

ments, whereas the outdoor-based positioning systems act in a medium- to large-

scale environment. Reference [101] is an exception. It is related to the outdoor en-

vironment but considered as a small scale. This is motivated by the fact that this

paper examined a small-scale array of a WSN.

6.3 Fuzzy evaluation-based metrics

This section fully explains the employed fuzzy metrics, and the corresponding results

are presented in Table 4.

– Single versus hybrid scheme

This measure indicates whether the fuzzy-based approach was used alone or with (or

assisted by) another approach (e.g., Kalman filter or another soft computing, namely,

neural network, genetic algorithm, and ANFIS). This can be useful for researchers who

are interested in the relevance of specific hybrid schemes. For example, as far as this re-

view is concerned, no survey paper has investigated the use of swarm intelligence or

chaos theory related to the positioning problem.

– Level of implementation in the localization process

This criterion examines how the fuzzy tool is actually implemented within the overall

localization algorithm. For example, the fuzzy-based approach was used in many cases to

assign relative weights to some parameters that were employed in subsequent reasoning.

Some proposals explored the universal approximation ability of fuzzy reasoning to tackle

system nonlinearities, and some used fuzzy reasoning to enhance user–system interaction.

– Type of inference

Fuzzy inference is a vital application of the fuzzy set theory and fuzzy logic. The lit-

erature contains two common types of inference systems: Mamdani and Takagi–

Sugeno inference systems. The Mamdani inference system primarily has output mem-

bership functions, whereas the TKS inference system has a crisp output. The former

applies the defuzzification technique of a fuzzy output, whereas the latter applies a

weighted average to compute the crisp output. The former is suitable for capturing ex-

pert knowledge, but it requires a substantial computational burden because of the

defuzzification step. Moreover, the latter perfectly works with optimization and adap-

tive techniques, which customize dynamic nonlinear systems to the best data model. In

addition, it is computationally more efficient [140].

– Type of membership functions
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Each fuzzy set is characterized by its associated membership function (MF) that de-

scribes how each point of the input space is mapped to a degree of membership, par-

ticularly between 0 and 1. Triangular and trapezoidal MFs have been often employed.

The Gaussian or S-like MFs are more attractive when differentiation is involved. In

other systems, an optimization process is performed to identify the type and/or param-

eters of the MFs. Therefore, it is important to know the type of MFs employed as a part

of the fuzzy reasoning-based approach.

– Number of rules, variables, and sets

The number of the fuzzy “If.. then..” rules is completely connected to those of the in-

put variables of the fuzzy inference system or fuzzy controller and the fuzzy variables

employed at each input/output. Although a higher number of the fuzzy variables is

often claimed to enable the capturing of the fine-grained variations of the input/output

variable, this can mainly result in a substantial increase in the number of rules and the

overall complexity of the positioning system. Therefore, a tradeoff is often considered

[141, 142], which motivates research based on optimizing the number of fuzzy rules

and fuzzy variables to be employed.

– Type of defuzzification

Defuzzification critically blocks the implementation of a fuzzy inference engine. This

is due to several variations, such as execution time and instruction count, which basic-

ally affect the computational requirement and efficiency of the underlined algorithm.

Although standard defuzzification techniques, such as the center of gravity or modal

value, are commonly utilized in the fuzzy application, there is an increasing interest for

axiomatic and computationally effective methods of defuzzification. Moreover, some

comparative analyses of various defuzzification techniques have been reported [142], in-

cluding trapezoid median average (TMA), weighted trapezoid median average

(WTMA), and trapezoidal weighted trapezoid median average (TWTMA). Other stud-

ies focused on context-dependent defuzzification [136].

– Rule base construction and rule simplification

The rule base automatically generated from the data may not be often easily inter-

preted. This is because of an increased redundancy in the form of similar fuzzy sets that

can be driven from fuzzy models, resulting in poor transparency of the rule-based

model. Additionally, the size of the rule base increases almost exponentially whenever

the number of input increases. Several methods have been proposed to improve the in-

terpretability of the fuzzy models. Some of these methods focused on the tradeoff be-

tween numerical accuracy and linguistic interpretability, whereas others emphasized

the tradeoff between model accuracy and simplicity. To eliminate a redundant fuzzy set

by incorporating a similar linguistic fuzzy variable into a single linguistic meta-variable,

some authors introduced similarity analysis, set-theoretic similarity measures, orthog-

onal transformation-based methods, and so on [139].

To reflect on the results of Table 4, we mention the following points:
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i) The classification fuzzy alone versus the hybrid-based approaches bears some sub-

jectivities. Even though the classification is primarily guided by both the authors’

claims and our scrutiny of the underlined papers, it turns out that numerous

fuzzy-alone papers also apply some standard methods of regression analysis, simple

statistical mean, and/or standard deviation, which, in turn, would cast the under-

lined fuzzy-alone paper under that of the hybrid-based approach.

ii) The dominant majority of the fuzzy-alone methods unsurprisingly apply fuzzy in-

ference systems as part of their core methodology. However, one can distinguish

among various classes of application of fuzzy inference systems within the fuzzy-

based positioning systems. First, on the basis of the input–output perspective, one

distinguishes between the cases where the fuzzy inference system is applied at the

input level to handle the uncertainty pervading the inputs. For instance, the fuzzy

inference system refines the distance measurement/estimation so that the output

of the fuzzy system is a refined distance measure, which can then be employed as

an input to the core positioning estimation algorithm that may utilize triangulation,

regression, or any other estimation-based strategies. From this perspective, the

contribution of the fuzzy inference system can be compared to a filtering-like role

that could enhance the quality of the input of the positioning algorithm. Another

related class is based on the use of a fuzzy inference system to obtain a confidence

measure associated with the input parameters, e.g., confidence interval and reliabil-

ity (either as single-valued or functional). Therefore, to be utilized in the position

estimation algorithm through some weighted regression or probabilistic estimation

process, such a confidence estimate can be applied as complementary data to the

inputs. A third class is related to the cases where the fuzzy inference system is uti-

lized to estimate an entity that is directly related to the positioning system, e.g., the

angular position of the target and x–y position of the target. In this regard, the

fuzzy rules are elicited such that the consequent part of the rule contains variables

related to the components of the target. Moreover, these last two classes seem to

be the most dominant trends in the surveyed fuzzy optimization systems. In

addition, a fourth class involves cases in which the fuzzy inference system or fuzzy

entity is jointly employed with another estimator (Kalman filter, neural network,

and ANFIS). Regarding the Kalman filter, one distinguishes the cases where the

fuzzy inference system can be applied to generate (after defuzzification step) one

(crisp) input of the standard Kalman filter. In fuzzy literature, some proposals

based on what is called the fuzzy Kalman filter have also been considered, in which

a variance estimator under fuzzy constraints was investigated. Thus, to optimize

the parameters of the fuzzy inference systems (e.g., number of fuzzy rules, fuzzy

variables, modal values and spread of MFs, and connectives), hybridization with a

neural network or ANFIS is mainly employed. The fifth class corresponds to the

case where the localization approach involves map building either concurrently

with the estimation process or as a prior step of the localization process.

Therefore, we shall also mention the emergence of fuzzy clustering-based

approaches that are employed to identify appropriate landmarks or perform

suitable pattern matching. In general, fuzzy similarity measures and case-based

reasoning techniques are mainly employed to identify the most plausible pat-

terns and associative hypotheses.
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iii) Another result shown in Table 4 indicates that all fuzzy inference systems reviewed

in the surveyed papers utilize reasonably few input variables and rules (less than

nine variables). This is very common in fuzzy literature to ensure the

interpretability of the results and the computational efficiency of the implemented

algorithm. Moreover, to model fuzzy input variables considering their popularity in

the Mamdani-like fuzzy inference system, the review shows the dominance of a

trapezoidal- or triangular-like MF.

iv) Surprisingly, for the position estimation problem, there are no reviewed studies

that discuss the use of fuzzy arithmetic or fuzzy number-based approach. Although

this seems to be an area of interest to be discovered in the future, we also mention

the inherent properties of fuzzy arithmetic where the multiplicity of its operations

can result in some bias or drifts that would require an automatic update.

6.4 Positioning evaluation metrics

The last evaluation set is not considered as a measure. As demonstrated in Table 5, it

instead enumerates the positioning system properties based on the classification earlier

performed: the type of location information required, the nature of the localization sys-

tem (whether absolute or relative), the topology, the communication technology/proto-

col, the employed calculating algorithm, the signal measurement techniques, and the

type of the environment.

Numerous positioning systems and algorithms have been proposed in the literature.

However, owing to the discrepancy of the employed technologies, environmental con-

straints, and robustness of theoretical frameworks, it is still difficult to compare the

performances of these systems and algorithms, as illustrated in Table 5. Thus, we sug-

gested to evaluate their performances on categorical bases, which may provide some

bases for future studies or guidelines for further evaluations.

A simple reading of the results shows the following points.

i) The fuzzy-based approaches have been applied to various technology platforms, in-

cluding mobile robotics with dead-reckoning, sonar, infrared, laser, ultrasound-like

sensors, cellular network using GSM, cell ID, radio, differential GPS, indoor envir-

onment using Wi-Fi, Bluetooth, and ZigBee communication technology. Similarly,

both timing-based (TOF, TDOF, and TOA) and non-timing-based measurements

(AOA and RSS) have been investigated by researchers.

ii) The calculating algorithms also differ from a simple count and proximity-based cal-

culus to complex hybridization schemes passing through standard triangulation,

multi-lateration, weighted average, and geometric-based reasoning. Moreover, nu-

merous map-building-related positioning systems employ a fingerprinting-like

strategy as well as the nearest neighbor or KNN-like decision rule.

iii) Concerning the location description, it is also noteworthy that both the symbolic

and physical locations have been considered in the literature. Moreover, fuzzy

reasoning often allows us to also infer a symbolic description from a physical one.

However, if physical and exact locations are not required, one expects higher

accuracy of the fuzzy positioning system to only infer a symbolic description of the

target location.
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Similarly, except when GPS or GSN measurements are involved, it is often sufficient

to provide relative positioning of the target instead of an absolute scale.

7 Conclusion
This study discussed the use of fuzzy logic and fuzzy-set-based reasoning in the prob-

lem of mobile or system positioning. Its challenge was to determine some classification

criteria or common platforms for applying fuzzy sets in the positioning problem. More-

over, this is mainly due to the widespread problem under investigation and its inter-

leave with numerous other (sub) problems, e.g., tracking, motion control, and the

diversity of the environments it was implemented on. The authors briefly proposed two

major classes: the IFP and AFP.

Moreover, for evaluation purposes, we distinguished among four main classes:

system metrics, environment metrics, fuzzy metrics, and positioning metrics. In

particular, for example, irrespective of the scale of the implemented environment

in the system metrics, the accuracy of the proposed systems was enhanced based

on the costs of complexity and computation. Moreover, by utilizing the power of

reasoning and data extraction of fuzzy logic and fuzzy inference, it was observed

that the fuzzy-based solutions outperformed those of the other numerous alterna-

tives. In addition, when more variables were incorporated into the fuzzy inference,

the precision level substantially increased. Very few studies reported or considered

the rule base simplification problem. Our viewpoint on this needs to be thoroughly

investigated. In most of the reported positioning systems, specificity, consistency,

redundancy, and completeness of the rule base have not been sufficiently discussed.

Therefore, it is important to mention the numerous advantages of the fuzzy logic

in the context of mobile positioning, including its intuitive conceptual model, flexi-

bility, easy computation, multiple combination modes, accommodation of logic-

based reasoning, and hybridization with other (non) conventional techniques or

soft-computing tools.

Generally, fuzzy logic is not a universally accepted tool for practitioners. This is be-

cause of the lack of awareness regarding its potential benefits between both the re-

searchers and practitioner communities. Concerning performance, it requires further

testing and evaluation, especially using benchmark data sets to create awareness. An-

other reason is its poor performance in some cases when compared with conventional

positioning methods. Moreover, we believe that awareness of the context and metrics

underpinning the design and application of the fuzzy reasoning-based tool would pro-

vide useful insights to consider the proposal and seek further enhancements, especially

when the approach requires manual tuning of some critical parameters.

Finally, we highlighted some limitations that will guide future studies in this field and

that therefore require further investigation in the fuzzy community. This includes the

following points.

– The use of a fuzzy number and fuzzy arithmetic-like approach for devising the

fuzzy positioning system, especially investigating the effect of bias and propagation

of uncertainty, which can exponentially grow in the case of iterative calculus on

fuzzy entities.
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– In most of the surveyed papers, the asymptotic analysis of fuzzy positioning systems

is yet to be discussed. This seems to be of paramount importance to enhance the

theoretical foundations of the suggested techniques.

– The proposed hybridization schemes often lack solid theoretical foundations as

well.

– The fuzzy-based positioning systems compete with communications and wireless

communication studies. This seems to be a prerequisite to enforce other communi-

cation studies and would eventually yield enhanced hybridization schemes.

– Manufacturing, virtual reality, and telemedicine, as well as their specialized

constraints, have been far less explored in the fuzzy community.

– There are very few studies that focused on the growing area of 5G networks with

the substantial opportunities it offers in positioning systems.

– On the basis of the growing area of artificial intelligence explain-ability, there is a

need to greatly concentrate on the interpretability of the results of the underlined

fuzzy positioning system. Therefore, more studies are required in this field.
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