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Abstract

Future large-scale network function virtualization (NFV) environments will be based on hundreds or even thousands
of NFV infrastructure installations, the so called points of presence (PoP). All their resources and the services deployed
on top of them will be controlled by management and orchestration (MANO) systems. Such large-scale scenarios
need to be automatically tested during the development phase of a MANO system. This task becomes very
challenging because large-scale NFV testbeds are hard to maintain, too expensive, or simply not available.

In this paper, we introduce the concept of emulation-based smoke testing, which enables automated, large-scale
testing of MANO systems. We show that our test platform prototype can easily emulate up to 1024 PoPs on a single
physical machine and that it can reduce the setup time of a single test PoP by a factor of 232x compared to a
DevStack-based PoP installation. In a case study, we test and compare two versions of a state-of-the-art MANO
solution, namely ETSI's Open Source MANO (OSM), in large-scale scenarios using our prototype. The issues we found
in this study would not have been discovered with existing, lab-scale test environments.
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1 Introduction

Network softwarization and its underlying technolo-
gies, like software-defined networks (SDN) and network
function virtualization (NFV), are one of the key con-
cepts of the upcoming fifth generation of networks (5G).
Those technologies are expected to introduce a new level
of agility into our networks, including the on-demand
deployment of new network services within a few minutes
or even seconds [1]. In addition, these software-based ser-
vices are expected to move towards the network edge and
execute on top of many small, spatially distributed cloud
infrastructure installations, the so called NFV infrastruc-
tures (NFVI). Such deployments are called multi-point-
of-presence (multi-PoP) environments, where each point
of presence (PoP) provides NFVI resources as well as
a virtual infrastructure manager (VIM), like an Open-
Stack installation [2], which offers interfaces to request
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resources, e.g., start a virtualized network function (VNF).
Multiple of these VNFs are then chained together, possi-
bly across multiple PoPs, to build more complex network
services, a concept called service function chaining (SFC).

The key component in such NFV environments is
the management and orchestration (MANO) system that
controls the deployment and configuration of individ-
ual VNFs as well as complex SFCs. A MANO system
can connect to multiple PoPs by consuming the north-
bound interfaces of their VIMs and has a global view of
the NFV infrastructure under its control. Several of these
MANO systems are currently developed, some as com-
mercial products, others as open-source community or
research projects, like SONATA [3], ONAP [4], or Open
Source MANO (OSM) [5].

The complex and distributed nature of these multi-
PoP scenarios lead to a big challenge for the develop-
ment of MANO systems, which obviously need to be
tested against such large-scale environments. But large
multi-PoP environments are costly, hard to set up, and
usually just not available to MANO developers. Even
if they were available, it is often too expensive to use
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them in automated test pipelines for continuous integra-
tion (CI) setups, which would occupy resources whenever
a developer submits code. This raises the question how
to efficiently test MANO systems in large multi-PoP envi-
ronments.

In this paper, which extends our previous work [6],
we present a solution for this: an emulation-based test
platform that emulates multiple NFVI environments on
a single machine, enabling automated tests of MANO
systems in large multi-PoP scenarios. The presented solu-
tion is inspired by a concept called smoke testing [7]
which focuses on testing only the main functionalities
of a system and skips unimportant details to reduce test
times (Section 1.1.2).

Our contributions are as follows: First, we introduce
our novel emulation-based smoke testing concept in
Section 2.1 before presenting the prototype of our open-
source multi-PoP test platform in Section 2.2. This proto-
type consists of two parts: the emulation platform, which
is based on [8], and a novel test suite for MANO sys-
tems compliant to European Communications Standards
Institute (ETSI)’s SOL0O05 standard [9] that is presented
in this paper and made available as open-source project
[10]. Both parts can be integrated into a fully automated
CI pipeline as discussed in Section 2.2.3. Next, we analyze
the scalability of our platform and show how we can emu-
late up to 1024 NFVI PoPs (10 times as much as in our
previous work [6]) on a single physical machine or virtual
machine (VM) in Section 3.1. Finally, we present a case
study in which we test and compare OSM rel. THREE and
OSM rel. FOUR [5] using our platform and test suite. In
this case study, presented in Section 3.2, we discovered
some interesting insights and bugs that would not have
been found with existing, lab-scale NFVI testbeds offer-
ing only a handful of PoPs. We discuss these insights in
Section 4 and conclude in Section 5.

1.1 Background

Before presenting our solutions, we first analyze compo-
nents and interfaces required to test MANO systems and
give deeper insights into the smoke testing concept.

1.1.1 Management and orchestration for NFV

MANO systems are complex software systems and rep-
resent the main control entity in NFV-enabled net-
work infrastructures. Besides basic lifecycle manage-
ment (LCM) tasks, MANO systems are also responsi-
ble for performing more complex orchestration tasks,
like scaling, self-healing, or failover management [11].
Those tasks are often automated and part of a closed
control loop, which uses monitoring data as inputs to
trigger orchestration decisions based on pre-defined poli-
cies or service-/function-specific management algorithms
[12]. To provide all these functionalities, MANO systems
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usually interface with a high number of external compo-
nents, as shown in Fig. 1. The figure shows a simplified
version of ETSI’'s NFV architectural framework [13] and
highlights the MANO system and its interfaces to external
components.

In general, the interfaces of a MANO system can be cat-
egorized into northbound and southbound interfaces. The
northbound interfaces are those interfaces used by service
providers, platform providers, or operation/business sup-
port systems to trigger LCM actions, like service instanti-
ation. They are consolidated within the Os-Ma reference
point in the ETSI architecture (Fig. 1). The southbound
interfaces of a MANO system are considered to be those
interfaces that connect to the underlying NFVI and the
corresponding management components, like VIMs and
WAN infrastructure managers (WIMs). Those interfaces
are part of the Vi-Vufm and Or-Vi reference points. In
addition, the interfaces that connect to the instantiated
VNFs and services, e.g., for configuration and monitoring
tasks, are also considered part of the southbound inter-
faces of a MANO system. They are represented by the
Ve-Vnfm reference point.

When looking at this complex environment, it becomes
clear that testing MANO systems in isolation, e.g., using
unit tests, is not sufficient to ensure that they behave as
desired. More specifically, testing solutions are needed
that efficiently test the interoperability of a given MANO
system in different environments, e.g., a high number of
connected VIMs in multi-PoP scenarios. Our proposed
solution offers exactly this by providing a lightweight test
harness for MANO systems. Figure 1 shows which of the
components in the ETSI architecture need to be mocked
to build a full test environment for a MANO system. The
first component contains the test triggers which connect to
the northbound interface of a MANO system and trigger
OSS/BSS actions. The second—and most important—
component of the test harness is the test infrastructure,
which is connected to the MANO’s southbound interface
and can be used by the MANO system to test NFV deploy-
ments without requiring one or more full-featured NFVI
installations. Those deployments are the third component
of the test harness, called test deployments, for example,
lightweight NFV services or service mockups.

1.1.2 Smoke testing

The term smoke testing was originally introduced by the
electrical engineering community and describes a very
basic test to see if the tested device catches fire (smokes)
after it is plugged into a power source. Later, the term
smoke testing was taken up by the software testing com-
munity and used to describe rapid tests that verify that
the most basic but critical functions of a system work as
they should [14]. They are also called build verification
tests and should be executed whenever a new built of a
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Fig. 1 Simplified ETSI NFV architecture. A simplified version of ETSI's NFV architectural framework [13] showing the main components of an NFV
environment, including the MANO system which we want to test. The figure highlights which of the NFV components need to be mocked to build

system (or of a subcomponent of that system) becomes
available. They can be considered as a preliminary test-
ing stage that is used to qualify builds for further, more
complex tests, like regression or integration tests. The
important thing here is that smoke tests do not substitute
regression or integration tests which are still needed to
test every detail of a system. The main goal of smoke tests
is to ensure that the basic functionality of a software prod-
uct works, e.g., the program can be started and the default
usage path does something meaningful. Using this, broken
builds with major bugs are rejected early before more time
and resource intensive tests are deployed and executed [7].

We noticed that those smoke testing concepts per-
fectly match the problem of testing complex NFV MANO
systems where testing suffers under the high resource
demands of end-to-end tests due to the needed NFVI
infrastructures. Our main idea is to use a more lightweight
NFV environment, including a very lightweight NFVI,
that allows to test the basic functionalities of a MANO
system, e.g., service on-boarding and initial instantiation,
before testing the MANO system and all its detailed func-
tionality in a full-fledged NFV environment, which might
not even be available to each individual developer of a
MANO system. Section 2.1 presents our smoke testing
concepts for NFV in more detail.

1.2 Related work

Automated testing of NFV deployments is still a novel
research direction with a limited amount of solutions.
Most of them focus on testing NFVIs and their corre-
sponding data planes or the corresponding VIMs, e.g., the
test tool collection of OPNFV with projects like Yardstic,
Functest, or NFVperf [15]. They neither consider testing
of VNFs, complex network services, nor MANO solu-
tions, which makes those solutions complementary to our
work. Some recent work focuses on end-to-end testing
in 5G networks [16] or the verification and validation of
network services and network function [17]. Even though
[17] considers the case of applying integration tests in
the NFV domain to test interoperability between differ-
ent VNFs, none of them explicitly considers the need of
testing the core part of NFV deployments: the MANO
system. In the software engineering community, smoke
testing has already been established since several years,
providing the ability to quickly integrate new versions
of different software components [7], which is what our
solution introduces for NFV MANO systems.

Another related research direction are automated per-
formance tests of either VNFs, network services, or
NFVIs. A handful of solutions have been proposed for
performance testing of VNFs with the goal to characterize
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their performance behavior under different configura-
tions or in different environments [18, 19]. Some solutions
focus more on end-to-end performance tests for complete
services, like [20], arguing that testing the performance
of a single VNF in isolation does not yield represen-
tative results. All of these solutions require an end-to-
end deployment of the tested VNFs and services during
their tests, but none of them does these deployments
with a real, production-ready MANO system. They all
use custom-tailored, often hardcoded, deployment scripts
for their solutions, making them unsuitable for MANO
testing.

A straight-forward solution to setup those NFVIs for
testing is to use testbed installations. Testbeds can either
be installed locally, e.g., lab-scale installations, or third
party testbeds can be used remotely. Keller et al. [21]
propose a locally installed multi-cloud testbed based
on a handful of physical machines, each representing
a single cloud site, i.e., a small OpenStack installation.
Those machines are then interconnected, and traffic
shaping solutions are added to emulate realistic delays
between the sites. The problem with local installations,
like [21], are their resource limits which prevent large-
scale test cases, e.g., with a high number of PoPs.
Remote testbeds, like [22-24], may offer the required
NFV infrastructure and interfaces, but their main focus
is the development, experimentation, and evaluation of
network services, rather than being infrastructure for
automated test pipelines. Most of their infrastructure
deployments and management functionalities are fixed,
e.g., the used SDN controllers, VIMs, and MANO solu-
tions, offering limited space for custom-tailored MANO
tests. In addition, they are shared between many users
which means they may not always be available to
quickly execute automated tests on them. In general,
these testbed solutions are complementary to our pre-
sented approach and should be used for final, manu-
ally deployed integration tests rather than for automated
smoke testing.

Another option for automated smoke tests is using
locally available network emulation approaches, like
Mininet [25], CORE [26], or VLSP [27]. Unfortu-
nately, these solutions focus on prototyping and eval-
uation of new protocols or network management
paradigms rather than on interactions with production-
ready MANO solutions. None of these solutions offers
de-facto standard VIM northbound interfaces for easy
MANO system integration, like our solution does with
its OpenStack-like interfaces. Even if VLSP focuses
on MANO-like experiments in the NFV domain, it
lacks the ability to execute real-world VNF software,
which is possible in our platform that uses lightweight
container solutions to run VNFs in an emulated
environment.
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2 Methods

We introduce emulation-based smoke testing, which sub-
stantially reduces the required resources to perform real-
istic test scenarios with real-world MANO solutions as
the key concept behind our solution (Section 2.1). After
that, we present our prototype in Section 2.2.

2.1 Emulation-based smoke testing
Emulated test infrastructure provides some major benefits
when compared to a real NFV multi-PoP deployment, e.g.,
based on OpenStack. First, the state of emulated VIMs
and NFVIs can be made volatile, which ensures that tests
are always executed in a clean environment. For example,
there are no zombie VMs left in a PoP resulting from a
former test execution in which the used environment and
infrastructure was not cleaned properly. Such a cleanup
would take much longer with real-world VIM systems and
might even require their reinstallation and reinitializa-
tion. Second, the setup of an emulation platform can be
expected to be much quicker and the needed resources
are far less than for a full-featured VIM, e.g., an Open-
Stack installation and the configuration of the attached
compute, storage, and networking infrastructure. More
importantly, an emulation platform can even be executed
on a single machine (physical or VM), making it a much
better fit for existing test pipelines, e.g., based on Jenk-
ins [28]. It also allows parallelization by using multiple
VMs, each containing its own emulated NFV deploy-
ment. Third, emulated infrastructure can be easily scaled
to hundreds (or even thousands) of PoPs, whereas a fully
automated setup of hundreds of interconnected Open-
Stack installations is very challenging and may be even
infeasible in a short time, as we show in Section 3.1.
Figure 2 shows the proposed testing setup in which a
test controller, e.g., Jenkins [28] or a simple shell script,
automatically sets up an environment that emulates a pre-
defined multi-PoP topology (1). This setup can either be
done on a physical machine or a VM, the so-called test
executor. Once this is done, the test controller configures
the MANO system to be tested and connects it to the
VIM interfaces of the emulated PoPs. In the figure, we use
OSM as an example for a MANO system under test; we
emphasize again that other MANOs can be used. After
that, the test controller triggers the test cases against the
MANO’s northbound interface (2), e.g., deploying a test
service. To do so, either custom test suites or pre-defined
standard-compliant test suites, e.g., our test suite for ETSI
NFV’s SOL005 [9] MANO northbound interface specifi-
cation, introduced in Section 2.2.2, may be used. Those
tests should trigger the main functionalities of a MANO
system, starting from VNF and service on-boarding, fol-
lowed by browsing the elements of a MANO’s catalog, to
the instantiation and scaling of a VNF or a service . By
doing so, the MANO system is tested end-to-end. Once
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Fig. 2 Automated testing setup. An automated testing setup for a MANO system, using OSM as an example. The test controller automatically sets
up the emulated infrastructure (multiple PoPs) in a test executor machine and tests the MANO system against this fresh infrastructure using a test

a test service is instantiated, the test controller checks if
the resulting deployments and configurations on the emu-
lated infrastructure, done by the MANO system during
the tests, are correct (3). For example, it checks if the num-
ber of VNFs deployed on the PoPs can be retrieved and
if the correct configuration values have been applied to
them. Once all tests are done, the test controller destroys
the emulated infrastructure by stopping the emulation
environment and freeing the test executor machine. It can
then start a new emulation instance, e.g., with a different
multi-PoP topology, for further tests.

As expected, there are also a couple of limitations when
using an emulation-based infrastructure for testing. First,
not all features of the original OpenStack APIs will be sup-
ported by an emulated platform. This behavior is inten-
tional and helps to achieve the goal of a very lightweight
substitution of a full-featured NFV infrastructure. In our
prototype implementation, presented in the next sections,
we focused on the API endpoints required to let typical
MANO solutions, like OSM, believe that they talk to a real
OpenStack installation, namely the OpenStack Keystone,
Nova, Glance, and Neutron endpoints. Nevertheless, new
endpoints can easily be added to our prototype. Second,
an emulated infrastructure will not be able to deploy VNFs
as full-blown VMs; instead, it is limited to lightweight con-
tainer technologies, like Docker in our prototype. This
limitation is required to keep the emulation lightweight
and to be able to run it on a single machine and execute
the test cases within seconds rather than within minutes

or hours. Third, the total available resources of the emu-
lated infrastructure is limited. However, the lightweight
emulation design still allows to emulate hundreds of PoPs
as shown in Section 3.1.

These limitations must be kept in mind when using
our emulation-based smoke testing concept in a testing
pipeline. In general, emulation-based smoke tests should
not be considered as a full replacement of a final inte-
gration test against a real multi-PoP environment but as
a much faster, intermediate testing stage that can easily
be executed for each new commit to the MANO system’s
code base—something that is certainly not feasible with
existing setups based on real-world PoP testbed installa-
tions.

2.2 Prototype

We built a prototype of the described testing platform to
validate our design and to check the feasibility of the pro-
posed testing approaches. The core of our prototype is
based on our open-source emulation platform that was
initially designed to rapidly prototype network services
or experiment with different MANO solutions on a local
machine [8] as described in Section 2.2.1. After extend-
ing the emulation platform to support large-scale MANO
test scenarios with many emulated PoPs, we added a test
suite for MANO systems to it (Section 2.2.2). Finally, we
integrated the entire system with existing testing solutions
to be able to automatically run them within existing CI
pipelines as shown in Section 2.2.3.
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2.2.1 Multi-PoP emulation platform

Our emulation platform consists of three main compo-
nents as shown in Fig. 3: first, the network emulation part,
which is based on Containernet [29], a Mininet extension
[25], and shown as the bottom layer in the figure. Contain-
ernet allows to execute network functions inside Docker
containers that are connected to arbitrary, user-defined
network topologies [8]. Those topology definitions are
based on Python scripts, and the network links can have
parameters (like delay, loss, and data rate) which are used
to artificially delay, drop, or rate-limit the traffic between
the Docker containers of the emulated network.

The second part of our platform is the VIM emulation
part which creates an abstraction layer for the network
emulation and lets a user define arbitrary topologies with
emulated NFVI PoPs instead of single networking hosts.
Each of these emulated NFVI PoPs then represents a
single VIM endpoint and allows to deploy, terminate,
and configure VNFs executed inside the emulated PoP.
This allows the emulation platform to emulate realistic,
distributed NFVI deployments, e.g., by adding artificial
delays to the links between the PoPs. We utilize this to
allow the emulator to automatically load topologies from
the Internet Topology Zoo (ITZ) library [30], as we show
in Section 3.2. The VIM emulation layer deploys or ter-
minates single VNFs, in form of Docker containers, inside
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each of the emulated PoPs at runtime, just like it would
be possible in a full-featured, cloud-based PoP. Once the
VNFs are running, traffic can be steered through multiple
VNFs by using the emulator’s chaining API to support ser-
vice function chaining (SFC) [8] for the test deployments.

The third part, which is one of the main contribu-
tions of this paper, are additional APIs on top of the
emulation platform. These APIs mimic the original Open-
Stack APIs for each of the emulated PoPs and trans-
late OpenStack requests, e.g., openstack compute
start, into requests that are executed by the emulation
platform, e.g., start a Docker-based VNF in one of the
emulated PoPs. We opted to mimic the OpenStack APIs
because OpenStack is currently the de-facto standard
VIM and supported by most MANO systems. However,
all these API endpoints are designed as small, pluggable
components and can easily be replaced by endpoints that
mimic the APIs of other VIM solutions.

Figure 3 shows a usage scenario in which our emula-
tion platform (bottom layer) emulates five interconnected
PoPs, each offering its own OpenStack-like northbound
API. This emulated infrastructure can be controlled by
any real-world MANO system that is able to use Open-
Stack, e.g., OSM [5] or SONATA [3] (top layer). The
MANO system is used to instantiate a complex, dis-
tributed network service, consisting of five VNFs, on
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Fig. 3 Emulation platform architecture. A multi-PoP topology with five emulated, OpenStack-like NFVIs running on a single physical machine
(bottom) and five Docker-based VNFs running on the emulated infrastructure (middle), all controlled by a real-world MANO system (top)
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top of the emulated infrastructure (middle layer). With
this setup, the emulated infrastructure and the instan-
tiated services look like a real-world multi-PoP NFVI
deployment from the perspective of the MANO system
consisting of multiple data centers deployed at different
geographical locations.

2.2.2 Standard-compliant MANO test suite

Once the emulated NFVI is up and running and the
MANO system that is supposed to be tested is installed,
running, and configured, everything is ready for test exe-
cution. The only missing piece in such a setup are the
actual test cases as well as mechanisms to invoke the
tested MANO system during the tests. One option to
implement test cases for this scenario is to create test cases
that are custom-tailored to the MANO system under test.
This approach makes a lot of sense if very specific aspects
of a single MANO solution should be tested, e.g., a propri-
etary management interface. However, the goal of NFV is
to establish an open environment with well-documented
and standardized interfaces. An example for this is the
Os-Ma-Nfvo reference point defined by ETSI [13] and
its interface specification ETSI NFV-SOL005 [9]. Even
though ETSI recently established a special task force (STF)
activity with the goal to build API conformance tests for
their NFV interface specifications [31], the resulting tests
are not yet complete, neither they are able to work againts
real-world MANO implementations, like OSM.

Motivated by this, we started to design a standardized
test suite for ETSI's Os-Ma-Nfvo reference point, imple-
mented it as part of our prototype, and released it under
Apache 2.0 license [10]. To make this test suite as re-
usable as possible, we used a two-layered design. The
top layer, which is based on Python’s unittest library,
implements the abstract test logic according to the written
interface specifications of ETSI SOL005. Those tests then
call the bottom layer of our test suite which contains plug-
gable connection adapters, abstracting MANO-specific
connection details that are not part of the interface spec-
ification, e.g., authentication mechanisms. Our prototype
comes with an example MANO adapter that supports
OSM rel. FOUR and uses OSM’s client libraries to access
OSM’s northbound interface.

Table 1 presents an overview over the implemented
tests. It shows different operations of the tested inter-
faces grouped by the resources they manipulate. The
table also shows the availability of each interface end-
point in ETSI SOL005 and its implementation status in
OSM rel. FOUR. Some endpoints, e.g., the endpoints to
manipulate the VIMs that are connected to a MANO
system, are only available in OSM’s interface but not in
ETSI’s specification. Those differences to the written spec-
ification usually originate from additional requirements of
practical implementations. Other endpoints, e.g., network
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Table 1 Interfaces covered in our test suite (TS)
ETSI OSM TS Runtime

Resource: VIMs

Create . . 131s £ 031s

List . . 2585 £ 0545
Resource: Single VIM

Show . . 1265 + 0.37s

Update .

Delete . . 1.165s £ 0.33s
Resource: NSDs

Create . . . 0.52s £ 007s

List . . . 0.555 £ 0.04s
Resource: Single NSD

Show . . . 0.545 4+ 0.09s

Update . .

Delete . . . 0535 £ 0.115s
Resource: VNFD

Create . . . 0.24s £ 0.06s

List . . . 040s £ 0.07s
Resource: Single VNFD

Show . . . 0.24s £+ 0.06s

Update . .

Delete . . . 0.23s £+ 0.065s
Resource: NS

Create . . . 9355 £ 0515

List . . . 9565 £ 0435
Resource: Single NS

Show . . . 9445 £+ 044s

Update °

Scale . .

Create Alarm .

Export Metric .

Heal °

Terminate . . . 944s + 043s
Resource: VNF

List . . 981s £ 048s
Resource: Single VNF

Show . . 9675 £ 0425

service healing, are defined by ETSI but are not yet avail-
able in OSM. To keep the table short, it does not show
the network service performance and fault management
interfaces defined by ETSI, since they are not yet avail-
able in OSM. In general, our open-source test suite already
contains tests for all major endpoints of OSM; additional
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ones, like the scaling endpoint, are in preparation and will
evolve together with the available endpoints of the tested
MANO solutions. Finally, the table presents average run-
times of each test further described in Section 3.2.3.

2.2.3 (lpipeline integration

One of the key points in modern software testing is
automation. Today, most software projects, including
MANO system projects, use CI approaches to automat-
ically execute tests whenever a developer commits new
code to the code base. Those tests are organized in so-
called test pipelines that start with static code style checks,
continue with detailed unit tests, and end with basic inte-
gration tests between the project’s components. Once all
these tests passed, the resulting software artifacts have to
be tested in more complex environments to check their
compatibility with external components, e.g., different
VIM solutions, to find integration issues.

The main problem of those complex tests is the required
test infrastructure, e.g., to setup multiple OpenStack-
based VIMs and to maintain them. Another problem
with those tests is their scalability: Even if some lab-scale
OpenStack installations are available, they can only be
used to execute a limited number of test cases at a time
that easily becomes a bottleneck if the number of devel-
opers and thus the number of contributions increases.
A common solution for this is to reduce the frequency
of complex tests by not executing them for each new
commit, but only once a day. At this point, our emulation-
based smoke testing solution can help and improve the
test workflow because it can be used as an intermedi-
ate test stage between frequent basic tests and complex
integration tests in real environments.

More specifically, our emulation-based solution pro-
vides some characteristics which make it a perfect fit
for a frequent execution in CI pipelines. First, the entire
platform can be started and configured with a single com-
mand. This includes the setup of hundreds of emulated
VIMs, which is not feasible with real-world VIM solu-
tions. Second, our platform always starts in a clean state.
There is no need to manually cleanup the environment
after a test has been executed: whenever the emulation
platform is restarted, all deployed services, the underly-
ing emulated infrastructure, and all emulated VIMs are
removed, and new ones are started . Third, the emulator
can be packaged and executed within a Docker container
(nested Docker deployment) or a virtual machine which
make distribution, initial setup, and integration with exist-
ing test environments easy. It also allows highly paral-
lelized test setups because multiple VMs, each running
one emulation platform instance, can be deployed on an
existing test infrastructure and used completely indepen-
dently from each other. This feature should be particu-
larly helpful for multi-branch test pipelines. Finally, the
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resource footprint of the emulation platform is very small,
and it can be (re-)started within seconds (or minutes if
hundreds of PoPs should be emulated) as we show in the
following section.

3 Results

The evaluation of the proposed smoke testing concepts
and our platform prototype can be split into two parts.
First, we evaluated the scalability of our emulation plat-
form in Section 3.1 using the same approach as in [6] but
using scenarios ten times larger to push the platform to its
limits. Second, we conducted a case study using OSM as a
state-of-the-art MANO solution and tested it against our
platform using real-world topologies in Section 3.2. In this
case study, we not only tested two major release of OSM,
namely OSM rel. THREE and OSM rel. FOUR, and com-
pared them, but also analyzed the runtimes of our novel,
ETSI-compliant test suite executed against OSM.

3.1 Emulation platform scalability

To get a first idea about the setup time savings that can
be expected from emulated PoPs, we compared the setup
times of our emulation platform configured to emulate
a single OpenStack-like PoP with the setup times of a
single-node OpenStack DevStack [2] installation, which
can be considered as the most simple way to install a fully
featured OpenStack in a PoP. We executed both setup
procedures 10 times on a single physical machine with
Intel(R) Core(TM) i5-4690 CPU @ 3.50 GHz and 16 GB
memory and found a mean setup time for a single emu-
lated PoP of 2.48s compared to a mean setup time of
576.42 s for a fresh DevStack installation, which is more
than 232 times slower. This comparison makes sense since
we want to ensure that we always test against a clean envi-
ronment, and thus, a fresh installation of DevStack would
be always required.

Users of production-ready, carrier-grade MANO sys-
tems, like OSM, are not only interested that the MANO
system works well with a single PoP but expect that
these systems scale well with the number of attached
PoPs and the number of deployed services. To test this,
our emulation-based approach is a perfect fit since it is
able to emulate many PoPs and allows to deploy many
lightweight services on the emulated infrastructure. All
this can be done on a single machine, whereas similar
DevStack-based testbed installations would require much
more resources, i.e., 2CPU cores, 4 GB memory, and
about 15 GB disk space per PoP [2].

To quantify the scaling abilities of our emulation plat-
form, we did a set of experiments to study its behavior
when topologies with many PoPs are emulated or when
hundreds of service instances are deployed on the emu-
lated infrastructure. This experiment and all following
experiments have been executed on a single physical
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machine with Intel(R) Xeon(TM) E5-1660 v3 CPU with
8 cores @ 3.0GHz and 32 GB memory and have been
repeated 10 times. In the first experiment, we analyzed the
startup and configuration time of the emulation platform
for different synthetic topologies with different numbers
of PoPs. Figure 4 shows the setup time breakdown for up
to 1024 PoPs using four topologies. It shows how much
time is used by which of the four phases of the emula-
tion setup procedure: initialization, PoP setup, link setup,
and emulation start. The linear topology connects all PoPs
into a long chain, the star topology connects all PoPs to a
single central PoP, and the two randomized (rnd) topolo-
gies get the number of PoPs |V| and a factor k as inputs.
They then interconnect the PoPs with |E| = k|V]| links
where |E| is the number of created links. Those |E| links
are picked uniformly at random from the set of possible
links between all involved PoPs. All error bars in this paper
show 95 % confidence intervals.

The results show that in all topologies, 128 PoPs
can be set up in between 91.8and 197.7s, which is
a huge improvement when compared to 128 DevS-
tack installations. Even the maximum tested number of
1024 PoPs can, on average, be created in 3,704.0s using
the rnd(k=0.5) topology. The results of the randomized
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topologies indicate that the number of links which have
to be established in the topology has a non-negligible
impact on the overall setup time. Further, the plots indi-
cate a non-linear relationship between number of PoPs
and total setup times. We identified the Open vSwitch
daemon (ovs-vswitchd), which runs always on a single
CPU core, to become the bottleneck in large deployments
as it has to manage one vSwitch instance per PoP.

We also analyzed the memory consumption for these
four topologies and directly compared their total setup
times (Fig. 5). The figure shows that the total memory
used by the tested environment increases proportion-
ally to the number of PoPs in the topology. In general,
not more than 5Gb of memory is used, even with large
topologies, which shows that our emulation platform can
easily be executed on existing test nodes or locally on a
developer’s laptop.

Finally, we studied the time required to deploy a large
number of VNFs on top of the emulated infrastructure.
We again used our liner, star, rnd(k=0.5), and rnd(k=1.5)
topologies with either 8 or 128 PoPs and deployed up to
256 VNFs on those PoPs (randomly placed). The used
VNFs are based on the default Docker ubuntu:trusty
images and do not run any additional software, since
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we are only interested in the bare instantiation times.
Figure 6 shows that the instantiation times scale propor-
tionally with the number of VNFs and that the instantia-
tion process takes longer in larger topologies and is also
influenced by the number of links in a topology. Please
note that most error bars are hidden behind the mark-
ers of the plots because of the small deviation observed
between the experiments. It can be seen that with our
platform, hundreds of VNFs can be quickly deployed on
a single machine, enabling fast tests of large deployment
scenarios.

3.2 Case study: OSM rel. THREE vs. OSM rel. FOUR
In our case study, we decided to compare OSM
rel. THREE and OSM rel. FOUR [5] because OSM

rel. FOUR is the latest release at the time of writ-
ing and the internal architecture of OSM has com-
pletely changed between those two major releases.
Where OSM rel. THREE had a more monolithic design,
with three or four large components using fixed APIs
for communication, OSM rel. FOUR follows a micro-
service-based architecture using many small components
communicating over a common message bus. Besides
the improved flexibility, this design also promises bet-
ter scalability and performance, which we verify with our
experiments.

The setup for the study was the same as described in
Fig. 2, but we used a scripted test controller that auto-
matically performs a series of experiments and collects
additional data. Besides the general functionality of the

Service deployment time (8 PoPs)

Service deployment time (128 PoPs)

6007 topology 7 +
500 - line i x
—8— star
400 - rnd(k=0.5) i
— —&#— rnd(k=1.5)
o 300 - i
£
= + +
200 / - /X
100 - . ) i/
/+/ ,f+/
* &
0 i It
1 1 1 1 1 1 1 1 1 1 1 1
o o o o o o o o o o o o
n o n o Te] Te} o n o n
— — N — — o~ N
Fs

(o]
number of deployed VNFs
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VIM attachment procedure, we investigated the behav-
ior of OSM when it has to interact with large multi-PoP
deployments and a high number of instantiated network
services. To be more realistic, we used a set of real-world
topologies with different sizes that are taken from the
Internet Topology Zoo (ITZ) library [30]. In our case
study, each node of a given topology is turned into a single
PoP emulating an OpenStack VIM, resulting in topolo-
gies with 4 to 158 PoPs. The delays between the PoPs are
calculated based on the geolocations provided by the ITZ
dataset. These are test cases which are not covered by
existing NFV testbed installations that usually only use a
single PoP installation.

3.2.1 OSM in large multi-PoP environments
In the first set of experiments, we analyzed the VIM attach
procedure, which is used to connect OSM to a single
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PoP using the osm vim-create < vim-endpoints>
command. Figure 7 shows the total setup time breakdown
to start the emulated infrastructure and to attach all emu-
lated VIMs to OSM. The numbers behind the topologies
indicate the number of nodes and links in the topology.
The results show that the time required to attach the
VIMs to OSM uses most of the test environment’s setup
time, but the system can still be deployed and configured
in between 200 and 330s, even if the largest topology
with more than 150 PoPs is used. The figure also shows
the request times for all osm vim-create requests. It
indicates that the attachment procedure becomes slightly
slower when larger topologies are used. Comparing the
results between the two OSM releases, OSM rel. FOUR
shows improved setup times and reduced request times to
attach the VIMs. It can also be seen that the setup times of
the emulation platform are smaller in the OSM rel. FOUR
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case. The reason of this is the significantly smaller
resource footprint of OSM rel. FOUR which is executed
on the same physical machine as the emulation platform.

3.2.2 OSM service instantiation and termination

In the second set of experiments, we investigated
OSM’s network service management behavior. More
specifically, we tested the network service instanti-
ation (osm ns-create), network service termina-
tion (osm ns-delete), and network service show
(osm ns-show) operations. To do so, we used a test net-
work service consisting of two linked VNFs. We requested
OSM to sequentially create 64 instances of this service,
which corresponds to 128 deployed VNFs. Later, these
services are terminated one after each other. In each
instantiation request, the service was randomly placed on
the available PoPs of the three used topologies (Fig. 8). The
given instantiation and termination times represent the
time until the requested containers (the VNFs of the ser-
vice) are started or stopped, not only the raw API response
times.

The results show that a service instantiation takes
between 7 and 12 s in most of the cases if OSM rel. FOUR
is used. OSM rel. THREE, in contrast, shows instan-
tiation times between 10 and 20s. The results also
show that the instantiation times in OSM rel. FOUR are
more stable. The increased instantiation times shown by
OSM rel. FOUR when the small Abilene (11 PoPs) topol-
ogy is used are caused by the fact that more services
are instantiated per emulated PoP. The analysis of net-
work service termination operations, shown in the middle
of Fig. 8, clearly shows that service termination is much
faster and shows smaller variance in OSM rel. FOUR com-
pared to OSM rel. THREE. Service termination times also
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show only very small dependencies on the used topolo-
gies. Further, the request times to show details of a run-
ning network service instance have been improved in
OSM rel. FOUR as shown in the right part of the figure.
In general, osm ns-show requests are much faster than
the other operations, since nothing in the actual service
deployment is changed during a request.

This test validates the design choices made in
OSM rel. FOUR and shows that they improved its per-
formance. More importantly, those large-scale test cases
would not have been feasible without our presented test-
ing platform and clearly show its usefulness for the NFV
community and how it can support future 5G develop-
ments.

3.2.3 ETSI-compliant test suite

Using our ETSI SOL005-compliant test suite, presented
in Section 2.2.2, we recorded the request times for more
endpoints of OSM’s northbound interface. Table 1 shows
the mean request times and standard deviation among
10 runs of the test suite against OSM rel. FOUR using
an emulated PoP as a single connected VIM. The results
show that the request times are all very stable and the
use of our emulation platform allows to execute a com-
plete test run in about 67.03 s, which is a result of the fast
instantiation times of VNFs and network services. Similar
test runs in cloud testbeds will take substantially longer.
We do not present results for OSM rel. THREE, because
of its missing ETSI SOL0OO5 support and the resulting
incompatibility with the test suite.

4 Discussion
The results of our case study show the evolution of OSM
and how its performance was improved in the latest
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release. Especially, the reduced resource requirements of
OSM rel. FOUR contribute to a better performance when
used with many PoPs.

During our case study, we found and reported some
interesting issues, for example, a bug in OSM rel. THREE
that prevents a user to instantiate a network service on
the 101st or higher-numbered PoP. The reason for this is a
hard-coded query limit that causes the OSM client to only
fetch the first 100 PoPs that are attached to the system.
This results in a PoP not found exception when a network
service should be instantiated on, e.g., PoP 101. Based
on our feedback, this issue is fixed in OSM rel. FOUR.
We also noticed that for every osm vim-show < pop
x> command, the entire VIM list is fetched by the OSM
client, instead of only fetching the information of the
requested PoP. This increases request delays when OSM
is used with many attached PoPs.

It is important to note that such issues would not be dis-
covered by today’s NFV test deployments which usually
do not use more than a handful of PoPs. But the 5G and
NFV community envisions very large multi-PoP scenar-
ios for future use cases, like Internet of Things (IoT). As
a result, MANO systems need to be tested against such
large multi-PoP networks. To do this, our platform pro-
vides a flexible and easy to apply test solution that allows
to verify and improve the quality of MANO systems for
use cases of future networks.

We are planning to test more MANO solutions, espe-
cially ONAP [4], as the second “big” player in the open-
source MANO landscape, against our system and analyze
their scalability and behavior in large multi-PoP scenar-
ios. However, the majority of the available codebase of
ONAP is, at the time of writing, not in a state to perform
those experiments, e.g., because of limited APIs. Other
reasons are the lack auf automated installation procedures
and the very high resource requirements. But we are con-
fident that this will change in the next two or three release
cycles. Another improvement we are planning to integrate
into the presented platform is support for VNF and service
configuration mechanisms, like Juju Charms [32]. This
will allow VNF and service developers to use our platform
to perform complex integration tests between their devel-
oped products and the MANO systems while having the
benefits of a lightweight test platform that can be deployed
locally.

5 Conclusions

Using emulation-based smoke testing as part of the auto-
mated test and integration pipeline, used by MANO
software projects, contributes to the quality and pro-
duction readiness of these complex software systems.
The presented approach enables the pre-validation of
future-readiness of MANO systems for upcoming, large-
scale 5G scenarios with hundreds or thousands of PoPs.
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This is not possible with today’s lab-scale NFV testbed
installations.

Our case study shows how our presented concepts are
used to find bugs and to reveal the performance improve-
ments between two major releases of OSM, one of the
most prominent open-source MANO solutions today.

The presented platform was developed as part of the
European H2020 project SONATA [33] and was recently
adopted by the ETSI OSM project [5], where it is main-
tained under the name vim-emu as part of the DevOps
module development group. Its future developments are
supported by the 5GTANGO project [34]. It is open
source and publicly available under Apache 2.0 license
[35, 36]. The novel test suite for ETSI SOL005-compatible
MANO northbound interfaces, presented in this paper,
is also available under Apache 2.0 license [10]. It can be
directly used by NFV researches and MANO developers
to test compatibility with the existing API specifications.
Our results might be exploited and contribute to run-
ning test specification activities within standardization
definition organizations (SDOs), like ETSI's STF557 [31].
The long-term vision for this project is to receive fur-
ther contributions from the community and become an
open-source reference test suite for NFV scenarios.
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