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Abstract

Attackers on the Internet often launch network intrusions through compromised hosts, called stepping-stones, in
order to reduce the chance of being detected. In a stepping-stone attack, an intruder uses a chain of hosts on the
Internet as relay machines and remotely log in these hosts using tools such as telnet, rlogin, or SSH. A benefit of
using stepping-stones to launch attacks is that intruders can be hidden by a long interactive session. Since each
interactive TCP session between a client and a server is independent of other sessions even though the sessions
may be relayed, so accessing a server via multiple relayed TCP sessions can make it much harder to tell the intruder’s
geographical location unless all the compromised servers collaborate with each other and work efficiently. Due to such
a nature of TCP protocol, the final victim host can only see the traffic from the last session of the connection chain, and
it is extremely difficult for the victim host to learn any information about the origin of the attack. This paper provides a
research survey in the area of stepping-stone intrusion detection. Most of the significant approaches developed by far
for stepping-stone intrusion detection are included in this paper. These detection methods are put into two categories:
host-based and network-based (i.e., connection-chain based), according to whether multiple hosts in the connection
chain are involved in the design of detection algorithms. In each category, the detection algorithms are divided into
several different subsections based on the key techniques used in the algorithms. At the end of the paper, several
important and challenging open problems are proposed in this area.
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1 Introduction
Attackers on the Internet often launch network intru-
sions through compromised hosts, in order to reduce
the chance of being detected. The compromised hosts
used by the attacker are called stepping-stones. In a
stepping-stone attack, an attacker uses a chain of hosts
on the Internet as relay machines and remotely log in
these hosts using tools such as telnet, rlogin, or SSH. On
the intruder’s local machine, he enters commands that
are relayed via the stepping-stone hosts in the chain till
they finally reach the victim machine. Since each inter-
active TCP session between a client and a server is inde-
pendent of other sessions even though the sessions may
be relayed, so accessing a server via multiple relayed
TCP sessions can make it harder to tell the intruder’s
geographical location unless all the compromised hosts
collaborate with each other and work efficiently. Due to

such a nature of TCP protocol, the final victim machine
can only see the traffic from the last session of the con-
nection chain. So it is extremely difficult for a victim
host to learn any information about the origin of an
attack.
An obvious benefit of using stepping-stones to launch

an attack is that intruders can be hidden by a long inter-
active session. If a stepping-stone intrusion can be de-
tected within the attacking period, then the session can
be cut off and the victim machine can be protected.
Even though there are still a few researchers working on
the traceback of stepping-stone intrusion, most re-
searchers work on stepping-stone intrusion detection
(SSID).
Stepping-stone intruders can make a connection chain

shown as in Fig. 1 using telnet/rlogin/ssh to launch their
attacks. In Fig. 1, we assume that Host 0 is used by an in-
truder to launch an attack to Host N via compromised
hosts Host 1, Host 2, … , Host i − 1, Host i, Host i + 1, … ,
and Host N − 1. SSID can occur at one of the
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stepping-stones. It is assumed that the detection program
resides in Host i which is called a (detecting) sensor. SSID
is to determine whether the sensor Host i is used as a
stepping-stone. The connection from Host i − 1 to Host i
is called an incoming connection to Host i, and the con-
nection from Host i to Host i + 1 is called an outgoing
connection from Host i. A necessary condition that Host i
is used as a stepping-stone is that there is at least one
relayed pair between all the incoming connections and all
the outgoing connections.
One type of approach to detect stepping-stone intru-

sion is to compare all the incoming connections with all
the outgoing connections of the same host to see if there
exists a relayed pair. This type of approach is called hos-
t-based SSID. We will discuss all the significant research
work for host-based SSID in Section 2. The primary
issue of this type of approach is that high false-positive
errors can be easily introduced since some legal applica-
tions may use stepping-stones to access remote servers.
Another type of approach to overcome the issues of

host-based detection is to estimate the number of con-
nections from Host 0 to Host N (as shown in Fig. 1),
which is referred to as the length of the connection
chain. If there are more than three connections involved
in a connection chain, it indicates that the user obvi-
ously tries to access Host N via more than three com-
puter hosts. Clearly, the more hosts involved in an
interactive session to access a server, the slower the net-
work communication, unless there are something hid-
den; otherwise, it does not make sense to access a
remote sever via more than three hosts. The number
“three” is used because it was found that most legal ap-
plications rarely used more than three stepping-stones
to access a remote server. This type of approach is called
network-based (or connection-chain based) SSID.
Estimating the length of the connection chain from

Host 0 to Host i as shown in Fig. 1 is called upstream
detection. Similarly, estimating the length of the connec-
tion chain form Host i to Host N is called downstream
detection. Accurate estimation of the length of the whole
connection chain requires both downstream and up-
stream detections. Unfortunately, performing upstream
detection is extremely challenging. Such a problem is

still open and remains unsolved. Therefore, it is ex-
tremely hard to estimate the length of the whole connec-
tion chain. So most researchers in SSID primarily
focused on using the length of downstream connection
to decide whether there is a stepping-stone intrusion.
Compared to using the length of the whole connection
chain, this simplified method may introduce false nega-
tive errors, but it performs much better than host-based
detection as well as largely reduces false positive errors.
The remaining of this paper is organized as follows. In

Section 2, we present some significant host-based ap-
proaches for SSID. In Section 3, we summarize some
typically known network-based (connection-chain based)
approaches for SSID. In Section 4, we propose several
open problems in this area. Finally, we conclude our
paper in Section 5 and provide the funding information
of this research work in the declarations section.

2 Host-based SSID
In this section, we present some significant host-based ap-
proaches for SSID in the literature. Detecting stepping-
stone intrusion is to decide whether a host is used as a
stepping-stone. For host-based SSID, determining whether
a host is used as a stepping-stone is to examine its incom-
ing and outgoing connections to see if there is a relayed or
matched connection pair. If such a pair exists, the host is
most likely used as a stepping-stone by an attacker. The
host-based approaches for SSID to be discussed include
content-thumbprint, time-thumbprint, packet counting,
random-walk detection, cross-over packets, and water-
marking detection. At the end of this section, we introduce
a very recent work for sniffing and chaffing network traffic.

2.1 Content-thumbprint
Using a content-thumbprint is one way to find a relayed
connection pair on a host. As shown in Fig. 1, we assume
that Host i is used as a sensor. To determine whether Host
i is used as a stepping-stone using content-thumbprint, it
is necessary to sniff the TCP packets from the incoming
connection of the sensor for a certain time interval, e.g.,
5 min. Applying a hash method to the contents from all
the sniffed packets, we can obtain a hashed result which is
called a content-thumbprint Ctb-in for the incoming

Fig. 1 A sample connection chain. Host 0 is used by an intruder to launch an attack to Host N via compromised hosts Host 1, Host 2,..., Host N −
1. SSID can occur at one of the stepping-stones. It is assumed that the detection program resides in Host i which is called a (detecting) sensor.
SSID is to determine whether the sensor Host i is used as a stepping-stone. The connection from Host i − 1 to Host i is called an incoming
connection to Host i, and the connection from Host i to Host i + 1 is called an outgoing connection from Host i
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connection. In the same time interval, we sniff TCP
packets on the outgoing connection of the sensor and get
another content-thumbprint Ctb-out. We can determine
whether Host i is used as a stepping-stone by comparing
Ctb-in with Ctb-out to see if they are close enough. Of
course, this approach to detect stepping-stone intrusion
can only apply to unencrypted sessions. For the details
about applying a content-thumbprint to detect stepping-
stone intrusion, please refer to the paper [1].
Another content-based method is proposed in [2] by

using an approach called sleepy watermark tracing
(SWT). SWT is “sleepy” in that it does not introduce
overhead when no intrusion is detected. When an intru-
sion is detected, the target will inject a watermark into
the backward connection of the intrusion and wake up
and collaborate with intermediate routers along the in-
trusion path. By integrating a sleepy intrusion response
scheme, a watermark correlation technique, and an ac-
tive tracing protocol, SWT provides an efficient and ac-
curate source tracing on interactive intrusions through
chained telnet or rlogin.

2.2 Time-thumbprint
Since most intruders use encrypted sessions to launch their
attacks, content-thumbprint stepping-stone detection does
not work in such cases. A time-thumbprint approach (see
[3]) was proposed to overcome the primary issue of the
content-thumbprint approach. Time-thumbprint uses the
timestamp of each packet to decide whether there is a
relayed connection pair. This approach can apply to
encrypted sessions to detect stepping-stone intrusion be-
cause the timestamp of each packet is not encrypted.
We still use the scenario of Host i shown in Fig. 1 to

demonstrate the mechanism of using time-thumbprint to
detect stepping-stone intrusion. Monitoring and sniffing
TCP packets from the incoming and outgoing connec-
tions of Host i in the same time interval, we record the
timestamp of each TCP packet captured. Here, a TCP
packet is either a send or an echo packet. We obtain a
timestamp sequence TSin = {p1, p2, p3, . . . , pi, . . . , pn−1,
pn} from the incoming connection of Host i, as well as an-
other timestamp sequence TSout = {q1, q2, q3, . . . , qj, . . . ,
qm−1, qm} from the outgoing connection, where pi (1 ≤ i ≤
n), and qj (1 ≤ j ≤m) denote the timestamp of each packet
captured. Simply comparing the two sequences TSin and
TSout to get the similarity, we can decide whether there
exists a relayed connection pair. The higher the similarity
between TSin and TSout, the higher the probability that
the two connections are relayed, indicating that Host i is
used as a stepping-stone. So the problem of SSID is con-
verted into the mathematical problem of sequence com-
parison. For the details of using a time-thumbprint to
detect stepping-stone intrusion, please refer to paper [3].

2.3 Packet counting
When an intruder launches an attack using stepping-
stones, the commands are indirectly sent to the victim
host through a chain of stepping-stones. The use of
encrypted connections by such intruders make the de-
tection process much harder and even more difficult if a
connection is manipulated by intruders, such as time-jit-
tering and/or chaff-perturbation.
The packet counting method was introduced to handle

such challenges for SSID [4]. The strategies proposed in
[4] are to identify stepping-stone connections when the
attacking packets are encrypted and their timing is jit-
tered. Furthermore, an attacker can inject chaff packets
into an attacking stream. He and Tong [4] considered
stepping-stone connections subject to packet-conserving
transformations by an attacker. In order to defeat in-
truders’ manipulation, two activity-based algorithms were
proposed in [4] to detect stepping-stone intrusion. The
goal of these two algorithms is to detect stepping-stone in-
trusion with bounded memory or bounded delay perturb-
ation. This paper also addressed the detection of
stepping-stone intrusion if the connection is manipulated
by an intruder with both time-jittering and chaff-perturb-
ation. The authors of [4] proved that their algorithms can
tolerate a number of chaff packets proportional to the size
of the attacking traffic sent from the intruder and have
vanishing false alarm probabilities if traffic arrivals follow
Poisson distribution.
Under the bounded memory assumption, the algo-

rithm developed in [4] has linear complexity. The key
idea used in this algorithm is that the maximum vari-
ation statistics diverges unboundedly for independent
traffic. But when the memory is limited, it stays bounded
for relayed traffic going through a stepping-stone. Under
the bounded delay assumption, a timing-based algorithm
was derived in [4] based on the idea of matching arriving
packets with departing packets, but it has exponential
complexity. However, by restricting the search to
order-preserving packets, the complexity of this algo-
rithm can be reduced from exponential to linear. Both of
these algorithms have no miss detection for their target-
ing stepping-stone pairs and exponentially decaying false
alarm probabilities for network traffic arrivals following
Poisson distribution.
In paper [5], Donoho et al. proposed monitoring the

incoming stream and outgoing stream of a network at a
gateway node to detect stepping-stone intrusion. They
considered that not only a host but also a network can
be used as a stepping-stone. A pair of incoming and out-
going streams is called a stepping-stone pair if it is part
of a stepping-stone attack. Otherwise, it is called a nor-
mal pair. The algorithms proposed in [5] attempted to
find the stepping-stone connection pairs by analyzing
the traffic from both incoming connection and outgoing
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connection of a network (also see [6]). It is desirable that
the detection strategy does not require synchronization
between incoming and outgoing streams. Besides, the
connections may be encrypted so that the algorithms
cannot rely on the content of the traffic. Furthermore, a
careful attacker may even modify the traffic on purpose
each time it passes through the machine.
To reduce the false positive error, the two connections

can be monitored in more than one time intervals, for
example, six distinct time intervals. This means we can
obtain a set of number pairs from incoming and out-
going connections, respectively. Each number pair repre-
sents the number of packets sniffed in one time interval
from the incoming and outgoing connections. So the
problem to detect stepping-stone intrusion using packet
counting becomes the problem of sequence comparison.
The larger the size of the sequence, the lower the false
positive detection error.

2.4 Random-walk detection
Using stepping-stone hosts to launch attacks is one of
the indirect ways used by hackers for hiding their iden-
tities. If a machine is used as a stepping-stone, it must
have an incoming connection that originally comes from
a hacker’s machine and an outgoing connection that
eventually goes to the victim host. Also, these two con-
nections must be a relayed pair. In other words, if the
two connections are relayed, then the machine must be
used as a stepping-stone.
Based on the nature of TCP/IP protocol, the final vic-

tim machine can only see the network traffic from the
last connection of a chain used by attackers. The infor-
mation of a TCP/IP connection is only visible to its adja-
cent host in either downstream or upstream, that is, if
an intruder uses a chain of multiple compromised hosts
to invade a victim host, only the host having a direct
TCP/IP connection to the victim host is visible, but the
geographic location about the origin intruder host can-
not be obtained. Therefore, it is very challenging for the
victim machine to learn any information about the ori-
ginal machine used by the attacker.
To detect stepping-stone intrusions when the network

traffic are encrypted, a lot of approaches have been pro-
posed in the literature. One of these approaches is the
time-thumbprint method proposed in [3] by Zhang and
Paxson based on the periods of activity of the connec-
tions between the stepping-stones. This method can be
used for SSID if the network traffic is encrypted. But this
time-thumbprint approach also has several drawbacks
that are listed below:

1. Intruders can easily use time-jittering and chaff-
perturbation manipulations to fail SSID;

2. The time-thumbprint approach must use and rely
on the synchronized and precise timestamps of the
captured packets; and

3. There are many applications which make legal use
of some hosts as stepping-stones, but the
applications are apparently not malicious. For example,
a typical legitimate application is when we access a
remote file server and may need to get some
information/file from another remote server. In
this case, stepping-stones are used legitimately.

A deviation-based approach for SSID was proposed in
[7] by Yoda and Etoh. In this paper, the authors calcu-
lated the deviations between a known intruder stream
and all other concurrent streams on the Internet, com-
pared the packets of streams which have small deviation
from the intruder’s stream, and used such an analysis to
find a set of streams that might match the intruder’s
stream. Through their observation, the authors claimed
that the deviation of two un-relayed connections is large
enough to be noted from the deviation of those relayed
connections. This deviation-based method has the same
issues as the time-thumbprint method proposed in [3].
Also, if there are too many incoming and outgoing con-
nections to/from the host, this approach is inefficient be-
cause computing the deviations is too complicated in
such a case.
Yang and Huang in [8] proposed a better approach

than the one presented in [9] using TCP/IP packet RTTs
to detect stepping-stone intrusion. The method pro-
posed in [8] makes the intrusion detection more accur-
ate and significantly decreases both the false positive
rate and the false negative rate. The authors designed a
clustering–partitioning algorithm to compute the TCP
packet RTTs from the timestamps of send and echo
packets in a connection chain. This paper showed that
the occurrence of TCP packet RTTs in the same level
obeys Poisson distribution, which means that most of
the packet RTTs in the same level are around its expect-
ation value. The number of RTTs is hard to be manipu-
lated by intruders because most chaff packets do not
have responses so it is hard to match. When matching
send and echo packets, the algorithm proposed in [8] filters
out the un-chaffed send or echo. If we can obtain respect-
ively the numbers of RTTs for incoming and outgoing con-
nections, then it is trial to compute the difference of these
two RTT numbers. Although this difference may vary, it is
bounded regardless of whether chaff-perturbation or
time-jittering is performed by intruders.
In order to resist network intruders’ evasions using

manipulation tools such as time-jittering or chaff-per-
turbation, a packet count difference-based approach was
proposed in [10] by Blum et al. to detect stepping-stone
intrusions through checking the difference of send packet
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counts between two connections, one from the sensor and
the other one to the sensor. The key idea in this approach
is that the difference of Send packet counts is bounded if
and only if the two connections are relayed. In other
words, if two connections are not relayed, such a differ-
ence would not be bounded. This method has also its
drawbacks. In order to detect a chaff connection even
with a small amount of chaff packets, this approach re-
quires to capture a large number of packets. Therefore, in
practice, Blum’s packet count difference-based method is
difficult to implement and may not work in detecting
stepping-stone intrusions when a number of chaff packets
were injected by attackers.
A better approach was proposed by He and Tong in

[4] in resisting intruders’ chaff evasion with tolerance of
a number of chaff packets injected. Their algorithm is
called DBDC (detect-bounded-memory-chaff ) for de-
tecting stepping-stone intrusion with bounded memory
or bounded delay perturbation. The authors claimed that
their algorithm DBDC can tolerate a number of chaff
packets proportional to the size of the attacking traffic
in resisting chaff evasion of intruders. This paper proved
that the chaff-packets injection rate of DBDC can be at
least 1/(1 + λΔ), where Δ is an upper bound of the
packets delay and λ is a parameter of a Poisson distribu-
tion which indicates the expected number of occur-
rences during a given time interval. Clearly, if algorithm
DBDC uses smaller values for λ and Δ, then it can toler-
ate more chaff packets. However, this would also make
DBDC have a high false positive rate for a wide range of
normal network traffic.
Another innovative approach was proposed in [11] by

Yang et al. in resisting intruders’ chaff evasion using the
idea of random-walk. The authors in this paper discov-
ered that a random-walk process can be used to model
the differences between the number of requests and the
number of responses.
In this section, we present two algorithms for SSID

using the random-walk approach. One is the routine
random-walk detection algorithm proposed in [11], and
the other one is the RTTs-based random-walk detection
algorithm proposed in [12].
Routine random-walk detection: First, we introduce

the routine random-walk algorithm proposed in [11] for
SSID.
We capture and analyze an interactive TCP connection

that is established using the open source tool OpenSSH
for a given period of time. We will capture all the send
packets in the outgoing connection of a sensor and all
the echo packets in the incoming connection and store
them in two different sequences respectively represented
by S (with n send packets) and E (with m echo packets).
In an interactive TCP session, the user will enter a

command such a Linux command “ls” by typing a list of

letters (for example, l, s, etc.) and then execute the com-
mand on the server machine. The result responses from
the remote sever will be a number of packets containing
the output generated by executing the command. In
general, the user machine will receive an Echo packet as
a response whenever the user enters one letter on his
machine as a command or a part of a command. If the
command is a single letter, the packet is called a
single-letter send or a single-letter echo, respectively. To
this end, we only consider the single-letter send packets
of the outgoing connection and the single-letter echo
packets of the incoming connection. If the two connec-
tions of the sensor are a relayed stepping-stone pair,
then the number of the send packets in the outgoing
connection should be very close to the number of the
echo packets in the incoming connection of the sensor.
Figure 2 contains host hi with one incoming connec-

tion Ci
1 and one outgoing connection Ci

2; the incoming
connection Ci

1 has one request (send) stream Si
(1) and

one response (echo) stream Ei
(1), and the outgoing con-

nection Ci
2 has one request stream Si

(2) and one re-
sponse stream Ei

(2), where the index i represents the
host hi.
Considering a time interval of a pre-determined

length, we analyze the packets captured during the same
time interval from both the incoming connection and
outgoing connection of host hi. Let N

(1) denote the total
number the TCP packets in the incoming connection of
host hi, N

(2) the total number the TCP packets in the
outgoing connection of host hi. The difference between
these two numbers Ni

(1) and Ni
(2) is denoted as Ni

Δ.
That is:

NΔ
i ¼ N 1ð Þ

i −N 2ð Þ
i :

The paper [11] proved that if the two connections are
relayed (i.e., they are a stepping-stone pair), then the be-
havior of the difference Ni

Δ follows a random-walk
process [13]. The value of Ni

Δ may be negative or posi-
tive, but must be close to zero, that is, abs(Ni

Δ) is
bounded. In other words, if the difference Ni

Δ calculated

Fig. 2 Modeling of a stepping-stone host. This figure contains host
hi with one incoming connection Ci

1 and one outgoing connection
Ci
2; the incoming connection Ci

1 has one request (send) stream Si
(1)

and one response (echo) stream Ei
(1), and the outgoing connection

Ci
2 has one request stream Si

(2) and one response stream Ei
(2), where

the index i represents the host hi
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from the incoming and outgoing connections is a
random-walk process, then paper [11] concluded that
the two connections are relayed and they are a
stepping-stone pair.
RTT-based random-walk detection: In this subsection,

we present the RTT-based random-walk algorithm pro-
posed in for SSID.
In the case of no packet dropped, combined, or

decomposed, the number Nin of packets in an incoming
connection must be the same as the number Nout of
packets in the corresponding outgoing connection. Even
if packet dropping occurs during the course of data
communication, these two numbers should be very close
with each other, compared with those of any two con-
nections that are non-relayed. However, hackers can ma-
nipulate connections through chaff-perturbation or
time-jittering. If either an incoming connection or an
outgoing connection is manipulated by an attacker, there
would be a big gap between the two numbers Nin and
Nout. With chaff-perturbation and time-jittering, it is
possible that the intruder may be evaded from stepping-
stone detection. All previously known approaches in the
literature including the papers [8, 10, 14, 15] assumed
that:

1. If an intruder uses the time-jittering technique to
hold a packet at any place, the holding time of any
packet must be bounded;

2. If an intruder uses the chaff evasion approach to
insert meaningless packets into interactive
connections at any time, the inserting rate operated
by the attacker must be bounded.

The paper [12] proposed a new method to determine
whether an incoming connection and an outgoing con-
nection are a relayed pair using the number of RTTs in a
connection together with the random-walk approach, in-
stead of using the number of packets monitored. This
new approach can defeat intruders’ chaff-perturbation
and time-jittering manipulation without the two as-
sumptions described above that were made in all prior
work.
Next, we introduce the approach proposed in [8] for

computing the packet RTTs of a TCP/IP session.

2.4.1 Computation of packet RTTs
Again, we use Fig. 2 to model a stepping-stone host, say,
the host hi. The paper [8] developed a data mining ap-
proach (a clustering–partitioning algorithm) to find the
round-trip time from the timestamps of TCP Send and
Echo packets. This paper showed that the occurrence of
TCP packet RTTs in the same level obeys Poisson distri-
bution, which means that most RTTs in the same level
are around its expectation. The key idea to compute the

packet RTTs is to match the Send and Echo packets in
the same session. The clustering–partitioning algorithm
can filter out the chaffed Send or Echo packets and de-
tect intruders’ evasion.

2.4.2 RTT-based random-walk detection algorithm
We use Ni

RTT to represent the number of RTTs for the
incoming connection of host hi, No

RTT the number of
RTTs for the incoming connection of host hi, and Δio

RTT

the difference between these numbers. The value of this
difference can be used to determine the probability that
the two connections are relayed. The larger Δio

RTT, the
lower the probability that the two connections are
relayed, and the lower the probability that the host hi is
used as a stepping-stone.
The authors of [12] observed that if the two connections

of a host are relayed, then the value of Δio
RTT must follow

a random-walk behavior round zero. Due to this
random-walk property of Δio

RTT, the value of Δio
RTT must

have an upper bound, say Γ, that is, | Δio
RTT | < Γ.

Therefore, the two connections are relayed if and only
if the above inequality holds. The paper [12] proposed
an RTT-based random-walk algorithm RBRW for SSID.
Yang and Zhang [12] presented a technical proof and
showed that the algorithm RBRW can resist intruders’
evasion from detection, such as chaff-perturbation and
time-jittering. Chaff-perturbation is a tool that allows in-
truders to insert some meaningless packets (chaff ) which
can make intruders escape from detecting methods.
These chaffed packets are meaningless, and they must
be excluded from the connection before they arrive at
the victim host at the end. Time-jittering means that in-
truders can hold any packets for a random amount of
time to evade detection. In practice, intruders do not
perform time-jittering to the Echo packets. If the send
packets are held by an intruder for certain amount of
time and then release, it will not affect the number of
RTTs because the corresponding echo packet also has
the same delay. The timestamp difference between the
delayed Send and Echo packets is thus not changed.

2.5 Cross-over packets
Most of intruders use long connection chains of
stepping-stones to reach a victim target at the end of the
chain in order to avoid being detected. The previously
known SSID work has concentrated on detecting inter-
mediate stepping-stones, not the victim host at the end
of a chain. Because a stepping-stone host can perform
timing and correlation analysis with all of the informa-
tion sent between the attacker and the victim, the detec-
tion of a malicious connection chain is much more
challenging from a victim’s perspective than at inter-
mediate stepping-stones. The packets from the inter-
mediate stepping-stone to the target victim and back
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form a closed loop. However, these intermediate stepping-
stone-based detection approaches have several flaws. Ob-
viously, most of the benefits go to the target victim at the
end of the chain. Also, the intermediate stepping-stone is
only able to gauge the maliciousness of a connection by
the number of downstream connections it detects. If the
stepping-stone host is very near the target victim in the
connection chain, it is very difficult to distinguish a mali-
cious chain from a benign connection.
Victim-based detection attempts to address these is-

sues. It is much more important for a host to protect it-
self from being a victim host. This method also has
some challenges to implement. Thanks to the nature of
tunneled SSH connections and the fact that SSH is an
interactive terminal session, estimating the full RTT for
the length of a connection chain is usually very difficult.
During an SSH session, there is no point in time at
which the server sends data to the client and the client’s
machine automatically sends a reply back to the server.
Also, the SSID completely relied upon the time differ-
ence between the attacker sending data downstream and
a reply from the victim at the end of the chain passing
back.
The paper [16] proposed an approach to detect long

SSH connection chains at the victim host. This method
of detection uses an approach to investigate the time
delay between the time a user presses enter to finish a
command and the time that the user types the next
character. With the user’s typing speed taken into con-
sideration, we can estimate if the user is connected
through a long or a short connection chain.
The key idea of this approach is to find the time differ-

ence between the server sending a response to the client
and the clients’ machine sending the next packet to the
server with relative certainty. The time difference typic-
ally represents the full round-trip time plus the time it
takes the user to generate the next packet (via keystroke)
as follows:

Time Diff ¼ Time to send an echo packet

þUser delay timeþ Time to send the

next packet

¼ Full round trip timeþ User delay time

In this formula, the Echo Time of the previous Echo
packet and Send Time of the next packet are combined
in order to derive an estimate round-trip time (eRTT).
Thus, if the user delay time (the time needed by the

user to type the next key) is subtracted from this time
difference given above, the full round-trip time remains.
The paper [16] seeks to estimate the user delay time in
order to find the full round-trip time. More specifically,
the paper calculated the time difference between the

client’s typing of a keystroke to submit a command and
the client’s typing of next keystroke to enter a new com-
mand. Having this time difference obtained, then the au-
thors analyze this time gap based on several other
features of the connection. Based on all these informa-
tion, the authors try to find the full round-trip time and
finally are able to estimate the length of the client’s con-
nection chain.
The user delay time is estimated to be the client’s aver-

age typing speed. While this estimation does not account
for the time the user might spend reading/thinking be-
fore starting to type, the method proposed in this paper
try to target those pairs of commands which require
minimal cognitive delay. By subtracting the estimated
user delay from the total gap time, we obtain the esti-
mated full round-trip time (eRTT).
We need to examine some features of an SSH connec-

tion session as we want to find accurately the measures
such as the user typing speed and the occurrence of a new
command. Session characteristics which allowed the de-
tection of keystrokes, new commands, and nearest con-
nection round-trip time are all needed for the analysis.
Keystroke detection—The TCP header of all packets in

TCP sessions holds information about the source port,
destination port, sequence number, and acknowledgment
number of the packet among other pieces of information.
The latter two numbers were used extensively to detect
nearly all of the desired SSH session characteristics.
Command detection—The intuition behind command

detection is that after the client enters a command, the
amount of data that is sent back will be large enough to
exceed one block size for the encryption algorithm being
used.
Near connection round-trip time detection—After

every packet sent by the client to the server, the server
responses with an ACK packet to the last host in the
connection chain. The last host then automatically sends
an ACK packet back to the server. The RTT to the near-
est host can then be calculated by investigating the time
difference between the server sending the ACK and the
client replying with its own ACK back to the server.
The paper calculated an eRTT to distinguish a long

connection chain from a short one. The authors pick the
time gap between an echo packet and the next send
packet received at the victim’s host and then use this
time gap to subtract the average user delay. The paper
argued that the value of eRTT can be used to differenti-
ate the chain length.
The paper [17] improved the accuracy rate of detect-

ing long connection chains based on the paper [16].
Both papers make the same assumption that there exist
packet crossovers in a long connection chain. Huang et
al. [17] further assumed that there are more crossovers
generated in a long connection chain than in a short
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one. The authors of [17] used these assumptions to iden-
tify a long connection chain.
This paper investigated the relationship between the

number of crossovers and the length of a given connec-
tion chain. The goal is to distinguish and identify long
connection chains from short ones. A connection chain is
defined to be “a short chain” if its length is equal to one
connection. One connection is defined as a session be-
tween an SSH client and an SSH server. A connection
chain is defined to be “a long chain” if its length is at least
three connections. All three connections in their experi-
ment were routed on the Internet, not on any local LAN.
If a connection chain is long enough, the RTT of a

packet may be longer than the time interval between
two consecutive keystrokes. For data transfer, the client
is allowed to send further packets without waiting for
the response to the request. Thus, if the interval of a cli-
ent’s keystroke is longer than the RTT, the response
packet will arrive at the client’s host before another re-
quest is sent out. On the other hand, if the time interval
of a client’s keystroke is shorter than the RTT of the pre-
vious packet, there will be two or more consecutive re-
quest packets sent before a response packet arrives.
Therefore, the probability that an RTT is greater than
the time interval of the keystroke is higher in a long
connection chain. When a response packet arrives at the
client’s machine later than another request packet is sent
out, this response packet will cross over the coming re-
quest packet on its way before arrival, which is called a
“crossover”. The two crossovers occurred in such a situ-
ation are shown in Fig. 3.
The algorithm proposed in [17] is based on the exist-

ence of the packet crossover and its relationship with
the length of a chain. Obviously, a large number of

crossover packets can change the distribution of the
packet gaps. This algorithm captures those packet gap
variances resulting from a large number of packet cross-
overs. The algorithm can be used to distinguish and
identify long connection chains from short ones.
Using RTT is an appropriate way to estimate the

length of a connection chain. When a monitoring algo-
rithm is running at the target server, the RTT cannot be
calculated by using the algorithm. Instead of calculating
the RTT, we can calculate an upstream RTT (uRTT),
which is defined as the time gap between sending a re-
sponse packet and the receiving of the next request
packet at the target server. An example of RTT and
uRTT is provided in Fig. 3. Generally speaking, the
uRTT does not represent the real RTT because there is
possible a delay before next request is being sent.
We focus on the minimum of all uRTTs, some of

which are much smaller than the real RTTs. This hap-
pened because of the existence of the packet crossovers
in a long connection chain. For example, if we compute
the uRTT of the second pair of timestamps at Host 4,
the uRTT2 is much smaller than the RTT or the first
uRTT1 in Fig. 3. The reason for this difference is pre-
cisely due to the crossover of a response packet (Echo 2)
with a request packet (Send 3).
From the experiments conducted in [17], the paper

concluded that long connection chains generate a num-
ber of packet crossovers. Based on observations, the
paper claimed that the number of crossovers is propor-
tional to the length of a connection chain.

2.6 Watermarking detection
To detect the attacker’s machine behind the stepping-
stone hosts, we need to correlate the incoming and

Fig. 3 Illustrations of an uRTT and two packets crossovers along a long connection chain with three hops. This figure provides an example of RTT
and uRTT. We focus on the minimum of all uRTTs, some of which are much smaller than the real RTTs. This happened because of the existence
of the packet crossovers in a long connection chain. If we compute the uRTT of the second pair of timestamps at Host 4, the uRTT2 is much
smaller than RTT or the first uRTT1 in the figure. The reason for this difference is precisely due to the crossover of a response packet (Echo 2) with
a request packet (Send 3)
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outgoing connection sessions of a stepping-stone host.
To resist attempts at correlation, the intruder may en-
crypt network traffic. The proposed timing-based correl-
ation methods have been proven to be quite effective in
correlating encrypted connections, as the time stamps of
packets are not encrypted. However, timing-based cor-
relation methods are subject to timing perturbations
performed by attackers at stepping-stone hosts.
The authors in [18] proposed a watermark-based correl-

ation scheme that was developed specifically to be effect-
ive against timing perturbations. Unlike most previous
timing-based correlation methods, the key idea of the
watermark-based approach proposed in [18] is that a
unique watermark is embedded into the encrypted traffic
flows by slightly adjusting the time stamps of selected
packets. The embedded watermark in the encrypted flow
gives us a number of advantages over previously known
timing-based correlation approaches in resisting timing
perturbations performed by the intruder. In contrast to all
the existing correlation approaches, the watermark-based
correlation in [18] did not have any limitations about the
distribution or random process of the original inter-packet
timing of the packet flow. In theory, it is possible for the
watermark-based approach proposed in [18] to achieve al-
most 100% correlation true positive rate and almost 0%
false positive rate at the same time if the packet flows are
sufficiently long. This paper not only identified the accur-
ate quantitative tradeoffs between the achievable correl-
ation effectiveness and the defining characteristics of the
timing perturbation, but also developed, when the amount
of timing perturbation is given, a provable upper bound
on the number of packets needed to achieve a desired ef-
fectiveness of correlation. Furthermore, the watermark-
based approach proposed in [18] requires substantially
fewer packets than any previously known timing-based
correlation approach to achieve a given level of
robustness.
Network flow watermarking approaches have been

used to detect stepping-stone intrusion, including water-
mark embedding scheme and detection scheme. Most
known watermark embedding schemes use a randomly
selected operation time interval and then generate a
watermark sequence in carrier flow of packets. Such
existing approaches have an issue that the randomness
of watermark operating can make the watermark be vul-
nerable for security attacks. The authors of [19] pro-
posed another watermark embedding scheme based on
entropy to overcome this problem. They first use en-
tropy analysis to pre-process the carrier traffic flow and
then determine the optimum time intervals for embed-
ding the watermark. Within these determined time in-
tervals, the watermark was randomly embedded. The
authors of [19] proved analytically and verified by ex-
periment that the proposed scheme is robust for timing

perturbation by intruders and the embedded watermark
is invisible for intruders. This new watermarking ap-
proach based on entropy also improved the stepping-
stone detection rate and required less number of packets
observed. The key idea of this method is to hide infor-
mation in network traffic flow. All the watermark infor-
mation are embedded in the time intervals of a large
amount of information by preprocessing the carrier flow
using entropy.

2.7 Sniffing and chaffing network traffic
Since stepping-stone hosts are widely used to launch at-
tacks by intruders on victim machines on the Internet, a
lot of stepping-stone intrusion methods have been pro-
posed. Most of these proposed approaches need to sniff
and analyze network traffic to detect stepping-stone in-
trusions. The paper [20] discussed how to write a C#
program to sniff TCP/IP packets. It is well known that
some intruders try to evade detection by manipulating
TCP/IP connection sessions [21], such as using the tech-
nique of chaff-perturbation. In order to help SSID re-
searchers understand how TCP/IP sessions are
manipulated, [20] introduced a tool called Fragroute
which can be used to inject meaningless packets into
TCP/IP sessions on the Internet. Such results will help
develop more advanced approaches not only detecting
stepping-stone intrusion, but also resisting intruders’
manipulation. Unlike other packet-sniffing tools such as
Wireshark or Tcpdump, self-making programs to sniff
network packet can be easily integrated into various de-
tecting approaches that were proposed in the literature.
Session manipulation can help intruders escape from de-
tection. Therefore, knowing how to manipulate TCP/IP
sessions can help SSID researchers develop more ad-
vanced detection approaches to resist intruders’ manipu-
lation in detecting stepping-stone intrusion.

3 Network-based SSID
If a host is detected to be compromised as a
stepping-stone, we can only say that it is highly suspi-
cious the session is an intrusion. But we cannot con-
clude whether an intrusion must exist. Otherwise, false
positive error would be introduced. So stepping-stone
intrusion can be detected depending on if a host is used
as a stepping-stone, but the price is to introduce false
alarms. In some cases, the error is fatal. The approaches
we have mentioned in Section 2 can detect if a
stepping-stone exits, but have their limits in terms of de-
tecting the existence of a stepping-stone intrusion.
To avoid/reduce false positive error for SSID, new ap-

proaches need be developed [8, 9, 22–24]. Using one
host as a stepping-stone is very common in legitimate
applications, but we also found that it is rare to use
more than three hosts as stepping-stones in legitimate
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applications. The rationale behind this is clear. The more
hosts to pass through to access a target, the slower the
network traffic would be. If there were no malicious be-
havior to be hidden, it would be not wise or necessary to
access a target indirectly via more than three hosts be-
cause this would generate lots of traffic and make the
accessing very inefficient. So it is reasonable to assume
that anybody doing so would try to hide some malicious
activities.
So one approach of detecting stepping-stone intrusion

is to estimate the number of compromised hosts used as
stepping-stones in a connection chain. In other words,
this detection method is to estimate the length of a con-
nection chain. The longer the connection chain is, the
more suspicious the connection is. It makes a more rea-
sonable sense to determine an intrusion based on the
number of hosts used as stepping-stones, other than a
single host detected to be used as a stepping-stone. As
we mentioned before many times, detecting intrusion
based on stepping-stone detection may bring false posi-
tive errors. Similarly, detecting intrusion using the length
of a connection chain may incur false negative detection
error. The reason is that we can only estimate the length
of the downstream section in a connection chain, other
than the length of the whole connection chain. If a sen-
sor happens to be close to the victim host, the length of
the downstream connection chain would be trivial. In
such a case, the upstream connection would dominate
the length of the whole chain, but it cannot be esti-
mated. In this scenario, the intrusion would escape from
the detection. But this approach can definitely bring
down false positive error because it does not count the
upstream connection. If a downstream connection has
more than three hosts used as stepping-stones, plus up-
stream connection, it would definitely be more than
three compromised hosts. Obviously, if we want to
minimize false negative detection error, it is necessary to
know the length of the upstream connection which is cur-
rently still an open problem even though some researchers
proposed several methods toward solving this problem. In
the following, if we mention the length of a connection
chain, it always means a downstream connection.
There are three basic approaches proposed to estimate

the length of a connection chain. One approach is

proposed in [9] by Yung in 2002; the second one is using
a step-function proposed in [22] by Yang and Huang in
2004; and the third one is the clustering-partitioning
data mining approach proposed in [8] by Yang and
Huang in 2007. Even though the ideas used to estimate
the length of a connection chain are different, all the
three approaches use RTT to represent the length of a
connection chain. The concept of RTT discussed here is
slightly different from the one used in most computer
network textbooks. In any computer network textbook,
an RTT indicates the sum of a packet delivery and re-
sponse times between a computer host serving as a
sender and another computer host serving as a receiver,
assuming no other computer hosts existing in between
the two hosts (i.e., there are only routers in between).
But for all the three approaches we will discuss here, an
RTT means the round-trip time between two computing
hosts, and there might be many other hosts existing in
between the two.
At the end of this section, we introduce a recent work

on stepping-stone detection in software-defined net-
works (SDN).

3.1 Yung’s approach
In order to detect stepping-stone intrusion in a lower
false positive rate, [9] by Yung proposed to estimate the
length of a connection chain. As shown in Fig. 4, instead
of estimating the number of hosts used as stepping-
stones, Yung estimates the connection length from H1

to Hn+1. To obtain how long the downstream connection
chain is, Yung introduced using the length of connection
from H1 to H2 as a yardstick to roughly measure how
long the length of the connection is from H1 to Hn+1.
The timestamp gap between a send packet and its

matched echo packet collected at H1 (the sensor) can be
used to indicate the length of the connection chain from
H1 to Hn+1. It is denoted as RTTe = te − ts. If we want to
use the connection from H1 to H2 as a scale to measure
the length of other connections, the connection length
from H1 to H2 must be estimated. It is apparently not
correct to use the timestamp gap between a send and its
matched echo to represent the length of the connection
from H1 to H2. What Yung used is the timestamp gap
between a send packet and its acknowledgement packet

Fig. 4 Estimation of the connection length from H1 to Hn + 1. The timestamp gap between a send packet and its matched echo packet collected at
H1 (the sensor) can be used to indicate the length of the connection chain from H1 to Hn + 1. The timestamp gap between a send packet and its
matched echo packet collected at H1 (the sensor) is denoted as RT Te = te − ts. It is apparently not correct to use the timestamp gap between a send
and its matched echo to represent the length of the connection from H1 to H2. What Yung’s approach used is the timestamp gap between a send
packet and its ACK packet collected at H1. We denote this gap as RT Ta = ta-ts. The ratio RT Ta/RT Te can approximately tell how long the connection
from H1 to Hn + 1 is
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collected at H1. We denote this gap as RTTa = ta − ts.
Since H2 is directly connected to H1 in an ssh connec-
tion, so any packet sent from host H1 is acknowledged
at host H2. The acknowledgement will sooner or later go
back to H1. Upon receiving a packet, an acknowledge-
ment packet would be generated immediately. From the
packet acknowledgement process, we understand even
though it is not accurate to use RTTa to represent the
length of a connection chain, it still makes some sense.
The reason that it is not accurate is because RTTa tends
to be smaller due to lacking of packet processing time.
Any acknowledgement packet is generated at transport
layer which needs less time than an echo packet which
is generated at application layer in a ssh connection.
The ratio RTTa/RTTe can approximately tell how long

the connection from H1 to Hn+1 is. If this ratio is close to
1, it indicates the downstream connection length is not
long. However, if this ratio is close to 0, it strongly indi-
cates the downstream connection length is long. Yung
verified his idea in [9] using the computers located
throughout the USA and some of them located in Europe.

3.2 Step-function
The step-function approach proposed in [2] takes a dif-
ferent way from Yung’s method. It is an approach for de-
tecting stepping-stone intrusion by estimating the length
of a connection chain. It collects and matches all the
send and echo packets to compute the RTTs for all send
packets. The RTTs would form different steps since the
RTTs belong to different stages of a connection chain
would go to different clusters and each of them can be
considered as one step. Simply counting the number of
steps can tell us how many hosts are used as stepping-
stones.
As shown in Fig. 4, host H1 is the sensor where we

can monitor a connection chain which passes through
hosts H2, H3,. . . , and finally reaches the victim host Hn

+1 at the end. As discussed before, if we can collect all
the TCP packets when the chain only extends to H2

from H1 and compute the RTT for each send packet, we
would get a set of RTTs which are different but are close
enough in terms of their values. We denote this set of
RTTs as RTT1. When the chain extends to host H3 from
H2, we would get another set RTT2. The difference

between RTT1 and RTT2 is that RTT1 represents the
connection chain that has only one connection from the
sensor, but RTT2 represents the connection chain that
has two connections from the sensor. Most of the values
in RTT2 are larger than those in RTT1.
Similarly, as long as the chain has one more connec-

tion extended, we would get a different RTT set. At the
end of connection chain, we would get RTT1, RTT2,
RTT3, . . . , RTTn. If we put all the RTT sets into a two
dimensional coordinate system, we get different clusters
with each cluster forming one step. The number of steps
can tell the number of connections in the chain which is
also the number of computer hosts connected in the
chain. The core of the step-function approach is to
match the send and echo packets; therefore, each RTT
can be computed correctly. The step-function approach
uses first-match packet matching algorithm which is a
key step. This approach was tested at a local area net-
work in [22], and OpenSSH was used to establish an
interactive session connecting seven hosts with six con-
nections from host H1 to host H7.

3.3 Clustering-partitioning
The clustering-partitioning data mining approach pro-
posed in [8] is a method to estimate the length of a con-
nection chain with no need to match any TCP/IP
packets. In some cases, matching TCP/IP packets is in-
feasible. Other than matching packets first, this ap-
proach makes use of the distribution of RTTs to find the
RTTs using a data mining approach.
It is well known that TCP/IP is a protocol between

two directly connected hosts. This means host hi can
only know host hi+1 is connected with it (see Fig. 5).
Host hi has no idea about the connecting situation after
hi+1 in the downstream of the connection. If we monitor
the outgoing connection of the host hi, what we know is
the TCP/IP packets coming from hi and going to host hi
+1, rather than any other hosts from hi+2 to hn+1. But if
there is a session between hi and hn+1, each packet sent
from host hi must be acknowledged by host hi+1 first
and then forwarded to the following hosts of the chain
until to host hn+1 at the end of the chain (also called the
destination host). Even though the echo of a send from
hi comes from host hi+1 from the point of hi, the reality

Fig. 5 An interactive connection chain. Host hi can only know host hi+1 is connected with it. It has no idea about the connecting situation after
hi+1 in the downstream of the connection chain. If we monitor the outgoing connection from the host hi, what we know is the TCP/IP packets
coming from hi and going to host hi + 1, rather than any other hosts from hi+2 to hn+1. But if there is a session between hi and hn+1, each packet
sent from host hi must be acknowledged by host hi+1 first and then forwarded to the following hosts until to the destination host hn+1 of the
chain. Even though the echo of a send from hi comes from host hi+1 from the point of hi, this packet is actually echoed by the destination host,
rather than its directly connected host
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is that this packet is echoed by the destination host, ra-
ther than its directly connected host. This feature of the
TCP/IP protocol motivated us to use the fact that if we
compute the time gap between each send and its corre-
sponding echo coming from hi+1, the gaps should vary,
but depend on the number of hosts connected after hi+1.
The time gaps are increased while more connections are
extended along the session.
As shown in Fig. 5, we monitor host hi, capture all the

sends and echoes from the time that the session is only
extended to host hi+1, and compute all the gaps between
each send and its corresponding echo. We find that
those gaps are different, but vary slightly. They are
bounded within a certain range which is called a “level,”
denoted as L1. If we monitor this host and capture all
the sends and echoes continuously, when one more host
is connected, we can get level 2, denoted by L2. In L2,
even though the RTTs are different, on average, they are
larger than the RTTs in L1. When more and more hosts
are connected one after another, more and more levels
can be obtained. As long as we monitor this session
from the beginning to the end continuously and capture
all the sends and echoes, we are able to determine the
number of the levels. The number of the levels is exactly
the same as the length of downstream connection of the
chain. If we call each level a step, this method to detect
stepping-stone intrusion is called the step-function
approach.
In order to obtain the number of RTT steps, a

step-counting algorithm was proposed in [8]. There are
some other known algorithms proposed to match TCP/
IP packets to detect stepping-stone intrusion, such as
conservative and the greedy algorithm proposed in [25].
The primary issue of these previous known algorithms is
that they always search for a “candidate” echo packet lo-
cally, rather than search globally, when they try to match
a send packet.
Unlike the policy used in the conservative and the

greedy algorithm in [25], the algorithm proposed in
[8] is to use data clustering and partitioning tech-
nique to match TCP/IP packets and find the RTTs of
the packets of a connection chain. All the previous
known approaches to match send and echo packets
work locally, i.e., these known algorithms process one
packet at a time. The data mining algorithm in [8] is
a global approach by which it checks all the packets
together to determine TCP packet matches. It cap-
tures all the send and echo packets of a connection
chain in a certain time interval and computes the dif-
ference between each send packet and all echo
packets received after it. It is for sure that the correct
RTTs are among these differences. Based on this ob-
servation, the approach is to find the subset that truly
represents the RTTs.

It is obvious that these RTTs will cluster around sev-
eral levels. It uses the maximum-minimum distance
clustering algorithm (MMD) to find the real RTTs and
determine the number of connections in a chain. The
experimental result showed that this algorithm can
match TCP/IP packets with both high matching rate and
high matching accuracy.
Suppose it monitors and captures the TCP packets of

a connection chain from the time the chain is being
established to the time that the chain has four connec-
tions. At the time when the chain has only one connec-
tion, based on the analysis of the distribution of the
RTTs of TCP packets in [8], most of its RTTs should be
around RTT1, which is the average value of the RTTs of
the chain. Similarly, if the chain is extended incremen-
tally until it has four connections, we have RTTs con-
centrating around RTT2, RTT3, and RTT4, respectively.
This result was first observed in [22]. This RTT cluster-
ing at different levels is used to identify the RTTs.
The second observation that will help us with this al-

gorithm is the disjointed partitioning of the RTTs at the
different clusters. If we identify the RTTs by the indices
of the send packets, we will see that these indices are
partitioned into four subsets, one for each cluster. Fur-
thermore, each subset is an interval of the form [i, i + 1,
.., j], inclusively. By combining these two observations,
clustering and partitioning, it can find the RTTs of a
connection chain in a more accurate manner [8].
There have been many data clustering methods pro-

posed in the literature, such as distance function classi-
fiers, minimum distance classifiers, statistical classifiers,
fuzzy classifiers, syntactic classifiers, and neural nets
classifiers [26–28]. The special properties of the data set
coming from send and echo packet timestamps deter-
mine that the MMD algorithm is most suitable for the
purpose of packet matching. There is no idea about the
final clustering results, and there is no a prior knowledge
about the number of clusters. The threshold in MMD is
only determined if a new cluster is created, rather than if
an element is added. Once a cluster center is fixed, it
does not shift any more during the process of clustering.

3.4 Stepping-stone detection in SDN
In this section, we introduce the work presented by
Bhattacherjee in [29] to apply some of the known SSID
and anti-evasion techniques to SDN which use network
function virtualization (NFV). NFV is an initiative to
virtualize network services traditionally run on propri-
etary, dedicated hardware. With NFV, functions like
routing, load balancing, and firewalls are packaged as
virtual machines (VMs) on commodity hardware.
The SDN network architecture has three tiers (see

Fig. 6): the application tier, control tier, and infrastruc-
ture tier. The control tier consists of the logically
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centralized controller, which provides a network-wide
view of the forwarding elements (switches) and their
states to the application tier via north-bound interfaces
(NBI). Distributed routing protocols are replaced in
SDN by algorithms that make use of the global view of
the network. The centralized control plane is the single
point of configuration for the network administrators.
The controller in turn manages the forwarding elements.
Hence, the traffic can be dynamically shaped by the ad-
ministrators without configuring the individual forward-
ing elements. The controller directs the switches to
deliver network services wherever they are needed. This
process is a move away from traditional network archi-
tecture, in which individual network devices make traffic
decisions based on their configured routing tables.
All the applications reside in the application tier, in-

cluding load balancers, monitoring apps, and intrusion
detection systems. They use the network-wide view pro-
vided by the control tier to monitor and control the data
plane. The infrastructure tier (data plane) consists of for-
warding elements (switches) which typically forward
packets based on layer-2 and layer-3 headers. The con-
troller communicates with the switches using south-
bound interfaces (SBI). The SBI is used by the controller
to send instructions to the switches and by the switches
to consult the controller when they are not able to make
the forwarding decision based on the previous instructions.
SDN is an easily programmable network architecture

which separates the control plane from the data plane.
Naturally, stepping-stone detection mechanisms must be
adapted to these new environments on SDNs. The au-
thor in [29] first theoretically analyzed the
stepping-stone attack techniques and their applicability
to SDN and NFV based on the network architectures.
He then proposed an architecture to support the

detection techniques in SDN and NFV environments. In
the experimental part, he implemented the detection
techniques and evaluated their effectiveness on various
network topologies.
The challenge on SDN is that the commonly used

south-bound protocols are not suitable for traffic moni-
toring. The controller of the SDN can gather flow-level
statistics using these protocols but cannot gather useful
information on monitored individual connections. In-
stead, one has to use protocols such as sFlow (see [30])
to gain detailed information about the traffic passing
through the individual switches on the SDN. With the
traffic monitoring technique sFlow, low-cost sFlow agents
are installed in the switches which sample packets and for-
ward sampled data to a data collector for analysis.
More specifically, [29] presented an SDN-based archi-

tecture which can be implemented to monitor the data
plane for correlated connections and stepping-stones.
The sFlow enabled switches sample packets passing
through them and forward the header information to a
central collection and analysis module. The data analysis
module removes redundancy in received information
and maps sampled headers to connections. The timing-
based stepping-stone detection techniques as well as the
anomaly-based chaff detection techniques were imple-
mented within its analyzer module.

4 Open problems
Monitoring an interactive TCP session and sniffing net-
work traffic can be used to detect stepping-stone intrusion.
To this end, host-based and network-based approaches
have been developed. While we develop more advanced
methods to detect stepping-stone intrusion, intruders also
develop new techniques to evade detection. Time-jittering
and chaff-perturbation are the two most popular tech-
niques used by most intruders in order to evade detection.
Time-jittering is a technique that intruders can hold a

packet for a while and then release it. The purpose of
using time-jittering is to change the time gap between the
TCP/IP packets in a session and further to defeat all the
existing time-based SSID (stepping-stone intrusion detec-
tion) approaches. Chaff-perturbation is an approach that
intruders can inject some meaningless packets into a
TCP/IP session to change not only the time gap between
the network traffic, but also the amount of packets in a
certain time period. Chaff-perturbation technique can eas-
ily defeat the stepping-stone intrusion approaches using
the amount of network traffic.
In Section 2.4 when we presented SSID algorithms

using random-walk approach, we discussed quite a few
detection algorithms to handle intruders’ time-jittering
or chaff-perturbation for detecting evasion in existing
research papers in this area. However, all these known
detection algorithms to handle intruders’ time-jittering

Fig. 6 SDN architecture. The SDN network architecture has three
tiers: the application tier, the control tier, and the infrastructure tier
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or chaff-perturbation for detecting evasion either are not
feasible to implement or do not work effectively. More
advanced approaches must to be developed to resist in
intruders’ time-jittering and/or chaff-perturbation eva-
sion. Any proposed approach that is feasible to imple-
ment and works effectively in practical computer
networks would be significant.
As we have seen in the discussion, packet matching

can more or less resist intruders’ evasion. The primary
reason is that some meaningless chaffed packets may be
filtered out via packet matching. But there is no guaran-
tee that all the chaffed packets can be filtered out. So in-
novative approaches are urgently needed to be proposed
to match packets and resist intruders’ chaff evasion ef-
fectively in stepping-stone intrusion detection and the
issues are pressing.
Another open problem is stepping-stone intrusion up-

stream detection. The problem is significant because
without upstream detection, most methods we discussed
in this survey bring false negative errors. For example,
estimating the length of a connection chain is a method
to detect stepping-stone intrusion effectively and accur-
ately. Unfortunately, the detecting accuracy really de-
pends on where a sensor is located in a connection
chain. The more close to the victim a sensor is, the less
accuracy of the detection, and the higher false negative
errors introduced by detection methods. The main rea-
son is that when we estimate the length of a connection
chain, we only count the downstream connection which
is from a sensor to the victim. The upstream connection
which is from a sensor to the attacker’s host is not
counted. Only counting both downstream and upstream
of a connection can allow detecting approach to obtain
an accurate estimation of the length of a whole connec-
tion chain.
Another significant part of upstream detection is due

to the need to detect stepping-stone intrusion from vic-
tims’ hosts. As we all know, detecting stepping-stone in-
trusion from a sensor which is in between intruder’s
host and victim’s host can only protect somebody else
other than the sensor itself. Detecting stepping-stone in-
trusion from the end of a connection chain is an up-
stream detection issue.
Upstream detection becomes more difficult and com-

plex because of the loose coupling of send and echo
packets. The send packets received from the upstream
have little relation with the echo packets returned back
to an intruder’s computer. Unlike downstream detection,
computing the length of an upstream connection pre-
cisely would be much more difficult. However, upon the
observation of user’s keystroke behavior which can be
modeled as Poisson distribution, we found that, as an
interactive process for an intrusion, the intruder needs
to think and pause after his/her input to determine what

to do next upon the responses. We can explore the rela-
tions among the signals: user’s behavior (signal 1), user’s
input (signal 2), and the response (signal 3). Through
carefully processing these three signals, it is feasible to
identify if an upstream connection is long or short. The
third open problem is to apply signal processing tech-
nique to stepping-stone intrusion detection. Chaffed
packets are hard to be filtered completely and make the
existing stepping-stone intrusion detecting approaches
not successful. Due to different distributions, chaffed
packets can be treated as a signal which is different from
regular traffic packets. So a chaffed connection can be
considered as a signal which contains regular traffic
packets and chaffed packets. The signal is in time do-
main. If we can use FFT or some other methods to
transfer the time domain signal to be a frequency
domain signal, it is feasible to use signal processing tech-
nique to remove the chaffed packets in frequency
domain.

5 Conclusion
In this paper, we provided a survey of research in the
area of SSID that includes most of the important known
algorithms developed for SSID. We put all these detec-
tion methods into two categories: host-based and
network-based (i.e., connection-chain based), according
to whether multiple hosts in the connection chain are
involved in the design of the detection algorithms. In
each category of the algorithms, they were discussed in
different subsections based on the key techniques used
in the algorithm design. For each of the algorithms we
included, the key ideas used in the algorithms and differ-
ences among the related algorithms were presented.
Both advantages and disadvantages of these detection al-
gorithms were also discussed. Finally, several important
and challenging open problems were proposed for future
research directions in SSID.

Abbreviation
SSID: Stepping-stone intrusion detection
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