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Abstract

In designing structured P2P networks, scalability, resilience, and load balancing are features that are needed to be
handled meticulously. The P2P overlay has to handle large scale of nodes while maintaining minimized path lengths
in performing lookups. It has also to be resilient to nodes’ failure and be able to distribute the load uniformly over its
participant. In this paper, we introduce SHAM: a Scalable, Homogenous, AddressingMechanism for structured P2P
networks. SHAM is a multi-dimensional overlay that places nodes in the network based on geometric addressing and
maps keys onto values using consistent hashing.
Our simulation results show that SHAM locates keys in the network efficiently, is highly resilient to major nodes’ failure,
and has an effective load balancing property. Furthermore, unlike other DHTs and due to its distinguished naming
scheme, SHAM deploys homogenous addressing which drastically reduces latency in the underlying network.
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1 Introduction
Locating keys efficiently in structured P2P networks,
commonly referred to as distributed hash tables (DHTs),
is always associated with the variant of maintaining lim-
ited routing tables at nodes. Some research adopted and
worked on the principle that in order to lower the cost
of search, the node has to acquire the most information
available from the overlay [1, 2]. Thus, the more rout-
ing information the node gathers, the less the lookup
will take. From another angle to this argument, other
research insisted on keeping the size of the routing tables
as minimum as possible while sacrificing some of the
lookup performance [3–6]. The point here is that main-
taining large routing tables is not viable and, thus, giving
up few additional hops to reach the destination is more
satisfying. Proposed DHTs differ in this regard and are
classified based on the number of hops they require in
order to land a lookup at its destination. We catego-
rize the classes in this respect into single-hop overlays,
constant degree overlays, multi-dimension overlays, and
logarithmic overlays.
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In single-hop overlays, a destination can be reached
within one hop from the source node while maintain-
ing a global knowledge about other nodes in the overlay
[1, 2, 7–11]. However, although with the assertion that
space requirements are cheap and bandwidth is abun-
dant, still, keeping up with the continuous change in
churn-intensive overlays is unfeasible.
Constant degree overlays on the other hand aim to

reduce the global knowledge to a certain limit while
increasing the latency from one single hop to a fixed
number of hops regardless of the number of nodes in
the system. Nevertheless, such DHTs are still not suitable
for large networks where maintaining the routing table
remains a challenge [12–14].
In multi-dimension overlays [4] and logarithmic over-

lays [3, 5, 6], neither the size of the routing table nor
the latency is fixed. These systems work on balancing
the two constraints based on the number of participat-
ing nodes: They tend to optimize the size of the routing
table in order to reach a reduced latency. Such systems
are known for their flexibility, scalability, and resilience to
nodes’ failure.
In similar direction, our motivation behind the work

in this paper is to propose an addressing algorithm for
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structured P2P networks that can balance between the
latency and the size of a routing table. In addition to
that, our goal for the mechanism is to be robust and
resilient against nodes’ failures, to be able to scale with-
out sacrificing performance, and to have an effective
load balancing property. We propose SHAM: a Scalable
Homogeneous Addressing Mechanism for structured P2P
networks. SHAM handles three preeminent procedures.
First, it inserts and situates nodes into the overlay. Sec-
ond, it maps keys onto available nodes in the overlay. And
third, it retrieves the keys. Similar to other structured P2P
systems [3, 4, 15], SHAM employs consistent hashing to
generate a naming space for keys. The use of consistent
hashing is known to balance the load since each node
in the system will theoretically have the same number of
keys [3]. However, unlike other systems in the same class,
SHAM does not require hashing the identifier of the node
(IP/port) in order to place it in the system. Yet, it deter-
ministically places the node in the system and assigns
it a unique identifier based on homogeneous geometric
pattern.
We will show in this paper by matching SHAM up with

the two prominent DHTs, CAN and Chord, the following:

1. SHAM has better routing capabilities than CAN in
all dimensions. Furthermore, by adjusting its
dimensions, SHAM has a shorter path length than
Chord up to a certain network sizes with minimized
routing tables.

2. Unlike Chord, load balancing is always maintained in
SHAM without additional cost. This is an issue that
has always been neglected in discussing Chord:
Although Chord maintains entries for O(log N)
nodes, however, the use of its load balancing property
is associated with each node holding log2 N entries.

3. The addressing scheme adopted in SHAM enables
the overlay to be used to reduce latency in the

underlying network. This is not applicable in Chord
since placing nodes in the overlay is the responsibility
of the consistent hashing. In SHAM, however, nodes
can be placed in the overlay based on their actual
geographical location. Thus, similar to load
balancing, latency in underlying network is another
limitation in Chord that SHAM overcomes.

Lookups in SHAM are bounded to O(N1/d) where
d is the number of dimensions in the system. While
node insertion affects

(
3d − 1

)
other nodes, each node in

SHAMmaintains 2
(
3d − 1

)
routing entries.

The paper is organized in the following manner: Section
2 presents the design of SHAM. Results and discussion are
presented in Section 3. The review of related work is in
Section 4. And we conclude our work in Section 5.

2 Design
SHAM is created and maintained using three procedures.
The node joining, the key inserting, and the key locat-
ing procedures. In this section, we describe its design and
clarify the above mentioned procedures in detail.
In its core, SHAM is a self-managing structured P2P

network built on a d-dimensional hexadecimal coordi-
nate space to host nodes; see Figure 1. It consists of nodes
that organize themselves into an overlay. Each node in
SHAM is able to (1) receive and forward routing requests,
(2) host and locate keys, (3) situate newcomers in the
network.
Nodes in a structured P2P overlay must be assigned

unique identifiers to indicate their locations in the net-
work: nodeIds. This is achieved in many systems by hash-
ing the IP address of the node using a consistent hashing
function to generate its identifier. Nodes are then ordered
in the network based on their nodeIds. For example, in
Chord, the nodes are placed orderly on an identifier cir-
cle modulo 2m, where m is a system parameter [3]. In

Fig. 1 a 2-d torus. b 2-d SHAM
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like manner, each node in SHAM is assigned a unique
identifier. However, a node’s identifier in SHAM is com-
pletely independent of its IP address and is deterministi-
cally selected from a 2m space. The design eliminates the
consistent hashing phase by directly assigning an identi-
fier to each node joining the system based on the pre-
constructed geometry of the overlay. Thus, SHAM situates
the node first in the overlay based on geometric address-
ing, then it concludes its nodeId from the address of its
position. To accomplish that, we devise that the location
of a node in our system is a d-tuple

(
X1, ..,Xd), such that

Xd =
(
xdrd−1..x

d
1x

d
0

)
is the d coordinate in the system

and rd is a system distribution parameter concerned with
the topology of the overlay, where for a system with 2m

nodes, we have m =
d∑

i=1
ri. Moreover, for any given node,

X1, ..,Xd bear hexadecimal representation of the location
of the node in the system. Accordingly, the nodeId for
node u in SHAM is simply the concatenation of its coor-
dinates from X1 to Xd to form the string

(
X1X2..Xd).

Throughout this paper, we shall use the term nodeId to
refer to both the node’s location and identifier.
Since addressing in SHAM is sequential, nodes that

share the same coordinate are labeled in sequence
in the other coordinates. The identifier space sug-
gests addressing wraps around on each coordinate.
Thus, we perceive the addressing as rings on regu-
lar coordinates X1,X2, ..Xd and diagonal coordinates
X1X2, ..Xd−1Xd.
Figure 2 illustrates the hexadecimal addressing in a 16-

node 2-d system using two rules. The first rule is when
r1 = r2 = 2, X1 = (

x11x
1
0
)
, and X2 = (

x21x
2
0
)
, where x10 = 0,

x11 range is {1 − 4}, x21 = 1, and the range of x20 is {A − D}.

The second rule is when r1 = 2, r2 = 3, X1 = (
x11x

1
0
)
, and

X2 = (
x22x

2
1x

2
0
)
, where x11 = 0, the range of x10 is {1 − 4},

x22 = 1, x21 = 1, and the range of x20 is {A − D}.
Figure 3 presents an example of addressing in a 3-d

SHAM system with r1 = r2 = r3 = 2 with a node 13F9BC
having its complete set of direct neighbors. The address
of the node will be translated onto coordinates: X1 = 13,
X2 = F9, and X3 = BC.

2.1 Routing tables
In a d-dimensional fully occupied SHAM system, every
node has (3d − 1) direct neighbors it must be aware of.
Strictly speaking, a direct neighbor of node u is sequential
to u in addressing in a specific direction. Thus, the rout-
ing table of any node has

(
3d − 1

)
permanent entries for

those neighbors. Each entry includes the nodeId and the
IP address of the neighbor, the nodeId and IP address of
the successor of that neighbor in the same direction, a
timeout counter, and the weights of the paths of the node
in every direction. The timeout counter is used to mea-
sure the connectivity and the availability of a neighbor.
While the path weight of a node in a specific direction, or
simply the weight, represents the number of consecutive
adjacent successors of the node in that direction. The path
weights are maintained by the node to realize the growth
of the overlay on all direction. If a direct neighbor has not
been placed yet, or it has left the system, a Null value is
entered in its relative position in the routing table. Figure 4
shows an example of path weight measurement.
The weight counters are also used in gap detection. The

gap notion is used in the remaining of this text to indicate
an unfilled zone in the overlay caused by the departure of
one or more nodes. This is the only way a gap is created in
SHAM. Nodes monitor the change of the weights of their

Fig. 2 A 16-node 2-d system with two different addressing schemes. a Addressing rule: 01-04 horizontal and 1A-1D vertical. b Addressing rule:
01-04 horizontal and 11A-11D vertical
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Fig. 3 Hexadecimal addressing in a 3-d SHAM system. Node 13F9BC
has 26 direct neighbors organized in sequential order on each
coordinate

neighbors continuously to detect the formation of gaps.
For instance, say that node b observes that the weight of
its direct neighbor c has decreased after sometime; b then
deduces that one of the nodes down the direction of c has
left the system.
To entrench routing in SHAM, the node’s routing table

includes temporary entries for remote neighbors. A node’s
remote neighbor in a direction d is not sequential in
addressing to that node, yet it is the first available node
in that direction. The sole purpose of remote neighbors
is to facilitate routing. Their entries are created in case a
direct neighbor does not exist. The essence here is that any
node must have

(
3d − 1

)
routing entries in total, direct

and remote. Table 1 shows routing entries for node 031C
shown in Fig. 2a.

2.2 Node join
In P2P systems, peer dynamic refers to the ability of nodes
to join, leave, or even fail without any delay or restric-
tion imposed [16]. Thus, it is important for the DHT to
have a simplified joining procedure in order to maintain

its resilience and scalability when multiple nodes attempt
to join. Here, we mention two methods of admitting
newcomers to the overlay.
In Chord, after hashing the newcomer’s IP address and

generating its nodeId, the system relies on some exter-
nal mechanism to introduce the newcomer to an existing
node in the overlay. Afterwards, the existing node will
generate a lookup message to find the successor of the
newcomer based on its generated nodeId. The newcomer
will then connect to its successor and join the overlay.
CAN on the other hand assumes the existence of a domain
name server that maintains the addresses of bootstrap-
ping nodes which hold partial lists of available nodes in
the overlay. In order to join the overlay, the newcomer
has first to obtain the address of one of the bootstrapping
nodes. Later, the newcomer contacts this node in order to
retrieve a list of randomly selected available nodes. Finally,
the newcomer sends a join request to one of those nodes
which accordingly splits its zone in half and assigns it to
the newcomer.
The joining procedure in SHAM is distinctively simple

as well. Adding a nascent node to the system entails the
following steps.

2.2.1 Bootstrap
Similar to Chord, to join SHAM, node u contacts a boot-
strapping server that holds the IP addresses of nodes
already situated in the system. The bootstrapping server
responds with a list containing the IP addresses of nodes
that had recently joined the system. Discovering and con-
tacting a node in the system engages procedures outside
of the overlay, i.e., contacting a web-server that is known
to provide the addresses of nodes in SHAM. This server
is simply a Rendezvous host that is not attached in anyway
to overlay [17]. Hence, it does not impinge on the func-
tionality of the mechanism such as node and key handling
since its role is limited to providing addresses of available
nodes.

2.2.2 Establish a connection to an existing node
After receiving a list from the bootstrapping server, the
nascent node u selects a node p from the list and sends

Fig. 4Weight measurement in a 2-d SHAM. aWeights before filling the gap 2D. bWeights after filling the gap 2D
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Table 1 Routing table entries for node 031C in Fig. 2a

Direction
Neighbor Successor Remote

NodeId IP Timer Weight NodeId IP NodeId IP

→ 031D 92.110.XXX.XXX 20 4 031A 67.209.XXX.XXX Null Null

↘ 041D 87.89.XXX.XXX 611 2 011A 167.80.XXX.XXX Null Null

↓ 041C 212.23.XXX.XXX 221 2 011C 67.115.XXX.XXX Null Null

↙ 041B 89.213.XXX.XXX 342 4 011A 167.80.XXX.XXX Null Null

← 031B 55.10.XXX.XXX 512 4 031A 67.209.XXX.XXX Null Null

↖ Null Null 0 0 Null Null 011A 167.80.XXX.XXX

↑ Null Null 0 0 Null Null 011C 67.115.XXX.XXX

↗ 021D 114.23.XXX.XXX 343 4 011A 167.80.XXX.XXX Null Null

it a join request which contains its IP address. If no reply
is received, u chooses another node and sends a new join
request.

2.2.3 The existing node positions the nascent in the network
Once the join request is received, p refers to its rout-
ing table to find a position for the newcomer. If p has
a more than one direct spot1, it will situate n in one of
them directly such that the newcomer will get a maximum
number of neighbors upon joining; see Fig. 5a.
However, if p does not have a direct spot, it forwards

the join request to another node in the overlay. This for-
warding is not arbitrarily done. p consults its routing table
to determine on which direction the join request has to
traverse. The node elects the direction that reflects the
minimum weight entry in the routing table assuming that
either a gap exists or that the network lacks growth in
that direction. This also helps limit forwarding the request
through the overlay. Figure 5b illustrates an example of

forwarding the join request based on the weight entry.
In this 36-node 2-d system, the host 2C does not have a
direct empty spot. Thus, based on its routing table entries,
the weight of its link is 1 in the direction of 3B, while the
weight in directions 2B and 3C is 2. As a result of that, the
join request will be sent to 3B.
After deciding on the position of u, p assigns the new-

comer a nodeId tuple and embraces it in the system’s
routing information:

1. p and u update their routing tables with each other’s
information.

2. p provides u with its successor information on the
direction u was inserted.

3. p sends u’s information to their common direct
neighbors. Accordingly, each one of them repeats the
previous two steps with u.

All of the preceding steps engage adjusting the weight
entries of related nodes.

Fig. 5 Two cases of node n′ joining the system. a Direct placement: n′ will be placed by 1D based on a greedy manner at position 1C. b Forwarding
the join request: 2C does not have an empty spot. The join request will be sent to node 3B which will place n′ at 3A
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2.2.4 Graceful departure
Before a node leaves the system gracefully, it chooses a
direct neighbor to become the heir to its keys. As a con-
sequence, the heir receives the keys from the departing
node and assumes their ownership. Furthermore, the new
owner duplicates the keys on its direct neighbors. The
selection of the heir is based on the weights of the direct
neighbors. The departing node aims to choose a neigh-
bor which reflects the maximum value of weight. This is
a safeguard to store the keys at nodes which have as many
neighbors as possible, thus, duplicating them more effi-
ciently. Finally, the departing node informs the neighbors
which are “uncommon” with the heir about its departure
to delete its keys.

2.2.5 Ungraceful departure
In the case of a node’s departure, the system needs to
be informed and updated as well. However, due to the
dynamism of P2P networks, nodes tend to leave ungrace-
fully without informing the system. Nodes in SHAM rely
on system maintenance messages to keep their routing
tables updated. However, in the absence of such mes-
sages, SHAM nodes depend on the timeout counters and
self-initiated heartbeat messages to check the availability
of their neighbors. Each neighbor receives the heartbeat
message responds with an alive message and resets the
timeout counter of the neighbor that sent it.
The heartbeat messages used in SHAM are the same

as alive messages that are communicated to detect node’s
failure in other systems, i.e., PASTRY [15]. That is, a heart-
beat or alive message is a simple ping command from one
peer to another peer in the overlay. Thus, such “soft” mes-
sages are not considered as an overhead for the traffic of
the overlay as they might traverse through nodes that are
not in the overlay.

2.3 Maintenance and recovery
Chord uses periodic stabilization protocol at each node to
learn about newly joined nodes, update successor and pre-
decessor, and fix finger tables. Nodes in SHAM announce
the changes in their routing tables by piggybacking these
changes on traffic messages such as node and key place-
ments and key search [8]. Moreover, in addition to the
heartbeats that are invoked when timeout counters expire,
SHAM relies on two mechanisms to keep the routing
tables up to date: the Join and the Routing Restoration
mechanisms.
The join mechanism is the first recovery tool in the sys-

tem. Whenever a new node joins the system, any other
node that either handles its placement or forwards its join
request in the overlay will update its routing table accord-
ingly. In the routing restoration mechanism, the system
recovers stale entries that are caused by the ungraceful
departure of nodes. In this procedure, if a node’s direct

Algorithm 1 The update procedure between nodes p and
u

p.update(u)

Rdu
p ← u {Rdu

p : Add u to p’s
routing table in direction of u}
Rdp
u ← p {Rdp

u : Add p to u’s
routing table in direction of p}
if (p.remote)du == udu + 1 then

Rdu+1
u ← udu + 1

Rdu
u+1 ← u

p.successor(udu) == udu + 1
if (p − 1) �= NULL then

(p − 1).successor(pdu) = u
(u).successor(pdp) = p − 1

end if
else

(u.remote)du = (p.remote)du

p.successor(udu) = (p.remote)du

end if
(p.remote)du = NULL
u.publish()
u.weight()

Algorithm 2 The publish procedure between nodes p and
u

u.publish()
Require: ψu: set of available direct neighbors of u

for all j ∈ ψu do
u ← ξj = {
u ∩ 
j} {ξj: common
available neighbors between u and j}
for all v ∈ ξj do

if v /∈ ψu then
v.update(u)

end if
end for

end for

neighbor and its successor go offline ungracefully, it will
send a hunt message looking for a node that succeeds
the departed successor on the same direction. The hunt
message will be forwarded until it reaches a node that is
“currently” a neighbor of the first available successor of the
departed node. Consequently, the neighbor responds by
sending the routing information of the successor directly
to the requester. The requesting node in turn updates its
routing information to reflect the successor as a link in
that direction.

Successors also enforce the stability of the system.
Fundamentally, each node should be in a relation with(
3d − 1

)
other nodes. However, in a partially occupied

system and due to nodes’ departure, there exist gaps and



Zghaibeh and Ul Hassan EURASIP Journal onWireless Communications and Networking  (2017) 2017:161 Page 7 of 16

Algorithm 3 The weight procedure for node u
u.weight()
ξk = {
u ∩ 
p}
for allmembers of ξk do

if udj + 1 �= NULL then
while udj .link < maximum diameter do

udj .link = (udj + 1).link + 1
end while

else
udj .link = NULL

end if
end for

unoccupied positions in the system. SHAM requires each
node to hold entries for the successors of its direct neigh-
bors as a contingency plan. As a result of that, each node
maintains 2

(
3d − 1

)
entries of peers’ addresses which for-

tifies the system and reduces the average path length as
we will discuss later. Also, this is important to enhance
connectivity and routing in the system. In case a direct
neighbor fails or leaves the system, the node will move the
successor nodeId and IP address from the routing table to
the relative remote neighbor entry. Therefore, the node in
SHAM has to maintain between

(
3d − 1

)
and 2

(
3d − 1

)

entries in its routing table.

2.4 Key handling
Values are data items needed to be uniformly distributed
over the P2P network [18–20]. In structured P2P networks
this is usually carried out by using DHTs. Each value in
the system will be paired with a key that is generated by
a known hashing function. Each node identifier (usually
the IP address of the node accompanied with a port num-
ber) will be hashed using the same hashing function to
generate the nodeId. As a result of that, both of the gener-
ated nodeId and the key will fall within the same identifier
space. Having created the namespace for nodes and val-
ues, every (key, value) pair will be stored at a node that
has an identifier matches the generated key. If a match is
not found, the key will be stored at a node with the closest
identifier. This eventually makes every node accountable
for a group of values. Our system as mentioned before
does not require hashing the node’s IP address to gener-
ate its nodeId, yet, it is derived directly from the node’s
position in the overlay. Choosing a hexadecimal represen-
tation in SHAM congregates the nodeIds and keys within
the same namespace. We relax our guard when choos-
ing the address space since no two nodes will have the
same nodeIds. The criterion in choosing the address space
becomes related to the load on each node in particu-
lar: The more nodes in the system, the less load on each
node. On the other hand, the size of the namespace must

be large enough to neglect the probability of having two
values hash to the same identifier [3].

2.4.1 Keymapping
Key mapping in SHAM is similar to that in other DHT
mechanisms. In SHAM, CAN, and Chord, the key will be
cached at a node that has a nodeId that is closest to the
key. Each time a new node joins with closer nodeId to
that of they key, the key will be forwarded to it. Specif-
ically, in SHAM, keys are distributed to nodes based on
the coordinate system

(
X1, ..,Xd). The address of the key

will be resolved to get its X1, X2, .., and Xd coordi-
nates. For an address space with a tuple

(
X1, ..,Xd), any

key in the system will be regarded as a concatenation of(
x1r1−1..x

1
1x

1
0, .., x

d
rd−1..x

d
1x

d
0 , z

)
bytes, where rd is the num-

ber of hexadecimal bytes along the Xd coordinate and z is
a suffix of hexadecimal bytes in which z = 0 if the address
space is the same size of the key space. After extracting the
coordinates of the key, it will be forwarded through the
system until it reaches a node that matches its X1, X2, ..,
and Xd coordinates. If no node has been placed in the sys-
tem with that address yet, the key will be stored at a node
that has the closest identifier to that of the key. Later on,
whenever a node whose identifier is closer to the key joins
the system, the key will be reallocated to that newcomer.
The reallocation of the key may continue until it is stored
at node whose nodeId matches the key2.
Figure 6 shows an example of key mapping in a 2-d

SHAM system, (X1,X2). In the figure, node 3E receives
key 1B23F which is resolved to X1 = 1, X2 = B, and
z = 23F . Thus, the node deduces that the key should be
stored at node 1B. 3E forwards the key to another node
that has a closer identifier to that of the key. In this partic-
ular case, 3E forwards the key to node 1C. After receiving
the key, 1C applies the same procedure to decide on which
direction the key should be forwarded. Since 1B is a direct
neighbor to 1C, and since it has not been placed in the
system yet, 1C caches the key locally. After 1B joins the
system, the key 1B23F will forwarded to 1B.

2.4.2 Key duplicate
Replication techniques play a major role in reducing
latency, improving load balancing, and enhancing avail-
ability [21–24]. Some known techniques are synchronous,
asynchronous, dynamic, full, and neighborhood replica-
tion [25–27]. Such schemes differ based on their com-
plexity. For example, synchronous, asynchronous, and
dynamic replication techniques require frequent messag-
ing in order to keep the system updated. Whereas the full
replication technique is much simpler in principal, yet it
is associated with high cost in maintaining the replicas of
all keys in the system. In SHAM, we employ the neigh-
borhood replication: Once the key is stored at a node, it
will be directly replicated at the node’s neighbors only as a
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Fig. 6 Key mapping in a 2-d SHAM. a Key 1B23F is received by node 3E. 3E forwards the key to node 1C as it has closer nodeld to that of the key. b
As node 1B joins, the key 1B23F is forwarded to it

safeguard that the key will still be an accessible contingent
upon the failure of its host. In this scheme, no messaging
is required to update the system, i.e., there is no need to
knowwho has what.Moreover, the cost of maintaining the
direct neighbors’ keys is considerably a small compromise
for enhancing the availability of keys.
We require the node to discriminate between its own

keys and its neighbors’ keys. The discrimination is cru-
cial to prevent the neighbors’ keys from being replicated
over and over again in the network. Strictly speaking, the
node will only replicate its original keys. This rule holds
until the neighbor which replicated its keys departs. In
that case, as an heir, the node assumes the neighbor’s keys
to be original and replicate them at its neighbors except
those which are common with the departed.

2.4.3 Key search
The presence of the weight entries in the routing tables
fortifies the routing efficiency of the system. Those entries
give the node sufficient knowledge of the approximate
depth of the network from all

(
3d − 1

)
directions. Search-

ing for a key in our system comprises two steps. First,
resolve the direction of which the search will traverse.
Then, estimate the distance (depth) of the key from
the requesting node. Using simple mathematical inter-
pretation, the node can resolve the direction on which
the query should traverse. Consequently, the node will
approximate its distance from the requested key based on
the weight of the neighbor which is in that direction. The
mathematical interpretation is an inherited characteristic
from the topology of the system. The property of sequen-
tial addressing places the nodes within specific intervals
from each other. Table 2 shows the distance between a
node and its direct neighbors in a 2-dimensional system
X1X2.
Figure 7 illustrates an example on key search in a 2-d

system that uses an addressing rule with r1 = r2 = 1

and X1 = (
x10

)
, X2 = (

x20
)
. In the figure, when node 5C

searches for key 1731A, it first determines the location of
node 17 in the system, which is 5 − 1 = 4 steps away on
the upward direction of X2 coordinate and C − 7 = 5
steps away on the leftward direction of X1 coordinate.
Accordingly, 5C forwards the request to node 3A which
is in the upward and leftward direction in its routing
table. The forwarding continues by 3A following the same
procedures.

3 Discussion
We compare SHAM with two major DHT systems:
CAN and Chord. Each one of them represents a fam-
ily of DHT routing protocols. There are more recent
DHT routing protocols that have been recently developed
[28–30]. However, the majority of these systems adopt
the paradigms of CAN or Chord or they do not fall into
the class of systems that balance between the routing
performance and the size of the routing table.
We choose three areas of comparison in this paper:

routing performance, robustness against failures, and load
balancing. In addition to that, we explore a distinctive

Table 2 Address resolution in 2-d SHAM

With direct neighbors

X1 − 1X2 − 1 X1 − 1X2 X1 − 1X2 + 1

X1X2 − 1 X1X2 X1X2 + 1

X1 + 1X2 − 1 X1 + 1X2 X1 + 1X2 + 1

With other neighbors

X1 − jX2 − j X1 − jX2 X1 − jX2 + j

X1X2 − j X1X2 X1X2 + j

X1 + jX2 − j X1 + jX2 X1 + jX2 + j

Note: j = 2, 3, .., E, F
1 + F = 0 and 0 − 1 = F
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Fig. 7 Key search in a 2-d SHAM system. Following the address resolution procedure, node 5C forwards the query to node 3A from its routing table.
Subsequently, 3A forwards the query to node 18. Based on key replication technique used in SHAM, node 18 will answer the query

characteristic of SHAM, homogeneous addressing, and
show its effectiveness in reducing latency in the underly-
ing network.

3.1 Average path length in CAN vs. SHAM
In CAN, the average path length for a d-dimension sys-
tem is d

4N
1
d , where each dimension has an average path

length of 1
4N

1
d . In SHAM, however, the average path

length for each dimension is 1
4N

1
d , whereas for a d-

dimension system the average path length becomes 1
8N

1
d .

This is because the search in SHAM takes diagonal paths
between coordinates while in CAN the search traverses on
the coordinates as Fig. 8 illustrates [4, 31]. Furthermore,

each hop in SHAM is being performed from a node to its
direct neighbor’s successor which reduces the path length
by half.

3.2 Performance against CAN and Chord
In Fig. 9, we present the results of the first experiment
in matching SHAM up with CAN and Chord. The basis
in this part of the simulation is to saturate the over-
lays with nodes by setting Poisson arrival rate λ = 1
and the departure rate μ = 0. The overlay size var-
ied from 210 nodes with a query rate of 0.1 and an
update rate of 0.001 to 223 nodes with a query rate 0.001
and an update rate of 0.0001. Table 3 summarizes these
parameters.

Fig. 8 Depiction of routing in SHAM vs. Torus. a In 2-d torus: the longest path is between nodes A1 and D4. It requires the lookup six hops to reach
D4 from A1 (solid line). Another possible same length route is the dashed line. b In case of SHAM: the longest path is also between A1 and D4. It
requires the lookup two hops to reach D4 (solid line). Another same length route is the dashed line
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Fig. 9 a–d Average path length in SHAM, CAN, and Chord

This experiment is comprised of two steps: First, we
compare the performance of SHAMwith CAN in 2-d, 3-d,
and 4-d systems. Second, we compare the performance of
SHAM in 3-d and 4-d systems with Chord.
Regarding CAN, the results seen in the figure support

our analysis that SHAM performs better than CAN and
achieves a shorter path length. The advantage in perfor-
mance is clearly seen in Fig. 9a–c. Distinctly, the per-
formance of SHAM in 3-d is even better than CAN in
4-d. Part of this improvement in performance is credited
to the use of diagonal paths between coordinates which
minimizes the average path length by a factor of d. The
other part is ascribed to the double hops that are being
performed from the node to the successor of its direct
neighbor which further reduces the average path length by
a factor of 2.
On the other hand, the results presented in Fig. 9d show

that up to a certain network size, SHAM performs better

Table 3 Simulation parameters 1

Operating system Red hat

Simulator C++

Processor Xeon E7 @ 3.20–3.50 GHz

Cache 45 MB

RAM 16 GB

Network size 210 − 223

Number of keys 210 − 223

Arrival rate λ 1

Departure rate μ 0

Query rate per node {0.001–0.1} per time interval

Update rate per node {0.0001–0.01} per time interval

than Chord in 3-d and 4-d. This is consistent with expec-
tation: in 3-d and 4-d, SHAM has shorter path length
than Chord in networks of sizes up to 219 and 227 nodes,
respectively. Thus, increasing the number of dimensions
plays a significant role in reducing the average path length
in SHAM comparing to Chord.3

3.3 Failed lookups
Another part of the analysis is failed lookups, i.e., queries
that do not result in keys. Although Chord has a better
performance after specific network sizes in 4-d, how-
ever, when it comes to failed lookups, SHAM noticeably
outperforms Chord.
To examine this venue, we run the simulation on fully

occupied 216-node 3-d SHAM and Chord overlays and
measure the number of failed queries in each system.
The scenario of this second experiment is to fail nodes
at different capacities in both systems by increasing the
departure rate, then monitor the percentage of queries
that encounter failed nodes through their paths to des-
tination; see Table 4. From Fig. 10a, we notice that in
SHAM and Chord, as the percentage of failed nodes
increases, the probability that a query will face at least
a failed node also increases. However, Fig. 10b, which
represents the percentage of failed lookups, signifies the
difference in performance between the two systems. In
SHAM, when the percentage of failed nodes is 20% for
instance, the probability that a query will encounter at
least a failed node is around 65%, yet, the percentage
of failed queries is less than 10%. This is not the case
for Chord: For the same percentage of failed nodes, the
probability of facing at least a failed node is around
80%, while the percentage of failed lookups reaches
more than 35%.
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Table 4 Simulation parameters 2

Network size 65,536

Number of keys 262,144

Graceful departure % 30%

Departure rate μ {0–0.2}

Query rate {0.2–0.5} per time interval

Update rate {0.1–1} per time interval

This reduction in failed lookups in SHAM comparing
to Chord is related to the following. First, it is related to
the connectivity of the system in SHAM where each node
maintains entries to 2

(
3d − 1

)
nodes in total, thus, having

different possible routes to the destination. Second, each
key in SHAM is being replicated at the direct neighbors of
the host. As a result of that, even if the host failed, once
the query reaches one of its direct neighbors, it would be
considered as a successful hit. In Chord, however, a failed
lookup is attributed to one of these two reasons: either the
node that is hosting the key has failed whichmeans a failed
lookup or the finger table of some of the predecessors are
inconsistent which hinders forwarding the query [3].
The last part of the comparison is to examine the addi-

tional number of hops visited when lookups face failed
nodes. In this experiment, we use the previous network
configuration in SHAM and Chord with two failure set-
tings: 5 and 20%. Figure 11 illustrates that SHAM outper-
forms Chord in this part of the performance as well. For
a 5% failure, in Fig. 11a, around 84% of lookups encoun-
tering at most two additional hops is observed in SHAM,
while in Chord, 86% of lookups encounter at most three
additional hops. On the other hand, Fig. 11b shows the
results of the same experiment for a 20% failure rate. The
figure shows that both systems start sluggishly with 11
and 6% of at most two additional hops visited for SHAM
and Chord respectively. However, as seen in the figure, 61
and 56% of lookups encountered at most five and seven
additional hops in SHAM and Chord respectively.

3.4 Load balancing
Load balancing is an important aspect of structured
P2P networks [18, 32–35]. A robust and resilient system

should be able to fairly distribute the keys in the net-
work over the participating nodes [32, 34, 35]. This will
avert inundating nodes with keys and hence improving
resources accessibility in the network. Consistent hashing
uniformly distribute keys over the namespace as discussed
earlier. However, in structured P2P system where both of
the nodeId and the key are generated using the consistent
hashing, there exist situations where the node identifiers
do not uniformly cover the entire namespace system [3].
Thus, some nodes will be overloaded with keys while
other nodes do not cache any keys. Chord maintains uni-
formity in this regard by requiring each node to cache its
keys at an additional O(log N) virtual nodes.
SHAM emulates the property of consistent hashing by

deterministically assigning nodeIds based on the prede-
fined addressing scheme. Moreover, if a node that is sup-
posed to store a key has not been placed yet, the key will be
cached at a node that has a nodeId which is closest to the
key’s identifier temporarily. Whenever a node with closer
nodeId is placed in the system, the key will be forwarded
to it. This ensures that each node will roughly receive the
expected load. However, most importantly, SHAM ben-
efits from its key replicating scheme at direct neighbors
in enhancing its load balancing. This is nearly similar to
Chord with two differences. First, in Chord, the node will
need to discover its virtual nodes and saves their routing
information whereas in SHAM, those nodes are already
in the node’s routing table. Second, the cost of adding
the virtual nodes in Chord is increased [3]. For exam-
ple, in an overlay of one million nodes, a Chord’s node
has to maintain entries for log2N ≤ 400 nodes. In 4-d
SHAM, however, for the same network, each node main-
tains entries for 2

(
34 − 1

) = 160 other nodes in total.
Figure 12 signifies the load balancing capability in

SHAM. The figure presents the results obtained by sim-
ulating a 2-d SHAM overlay with a capacity of 212 nodes
and 214 keys. Intuitively, if the system is fully occupied, we
expect theoretically each node to hold 214/212 = 4 keys.
However, the deficiency in load balancing in DHTs arises
when the overlay is not fully occupied or the namespace
is not entirely covered. Therefore, to show the efficiency
of SHAM in load balancing, we run the experiment on
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Fig. 10 Performance comparison between SHAM and Chord. a Probability that a query will encounter a failed node. b Percentage of failed lookups



Zghaibeh and Ul Hassan EURASIP Journal onWireless Communications and Networking  (2017) 2017:161 Page 12 of 16

a b5% failure

1 2 3 4 5 6 7 8 9 10
0.5

0.6

0.7

0.8

0.9

1.0

3-d SHAM

Chord

Hops

P
ro

ba
bi

lit
y

20% failure

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.0

0.2

0.4

0.6

0.8

1.0

3-d SHAM

Chord

Hops

P
ro

ba
bi

lit
y

Fig. 11 Performance comparison between SHAM and Chord. CDF of number of additional hops visited in case a lookup encounters failed nodes in
a network of 65,000 nodes. a Percentage of failed nodes is 5%. b Percentage of failed nodes is 20%

a partially occupied overlay. The first figure, Fig. 12a,
shows how SHAMdistributes 214 keys over nodes without
invoking key replication procedure. The results indicate
that when 211 nodes are present, load balancing is main-
tained in the overlay with around 60% of nodes holding
between 10 to 16 keys each. Additionally, Fig. 12b presents
the results of running the same experiment when the
key replicating procedure is invoked. The results indi-
cate that replicating keys at neighbor nodes adds more
balance in distributing keys: around 23% of nodes are stor-
ing 160 keys each. The tradeoff here is in the increase in
the number of keys the node holds; however, we believe
that this increase is viable and practical since not only it
enhances load balancing but also it increases availability
in the network.

3.5 Homogeneous addressing
In addition to load balancing, nodes dynamics, and self-
organizing capabilities, reduced latency is a crucial prop-
erty in P2P networks [23, 24, 36, 37]. Latency in P2P
network is related to the distributed nature of nodes.
Nodes with adjacent addresses in the overlay might be
located in different geographical areas. This mismatch
between the overlay and the IP network is the major fac-
tor for increasing latency. For example, in SHAM, a direct
neighbor is within one hop, yet, this same neighbor could
be many hops away in the IP network. A remedy to this
problem is to enable nodes to connect to physically nearby
neighbors. Other method is utilizing clustering to impose

physical proximity of overlay neighbors or even using
geographical routing, i.e., geographic awareness [38, 39].
In SHAM, we propose positioning nodes with adjacent

physical addresses at close spots in the overlay as a solu-
tion to this problem. SHAM can function as to arrange
nodes in classes, where each class holds a range of nodes
with close physical locations. Thus, once a newcomer
arrives to the bootstrap server, a traceroute command
is sufficient to indicate to which class the newcomer
belongs. In that case, the bootstrap server constructs a
list of nodes from that class to handle the positioning of
the newcomer. Figure 13 shows the results of testing the
latency in SHAMunder two conditions. First, when nodes
are placed with no regard to their geographical positions;
see Fig. 13a. And second, when we apply homogenous
IP/location addressing scheme; see Fig. 13b.
In this experiment, we simulate a 2-d SHAM system

having 211 nodes distributed over five IP classes with
each class representing a geographical area. The latency
between nodes within the same class is drawn uniformly
at random from [ 5, 15] intervals. Similarly, the interclass
latency is selected from the space [ 16, 45]. The scenario
here is to send queries from source nodes to their most
distant nodes in the overlay and measure the latency these
queries accumulate in a heterogeneous and homogeneous
addressing schemes. Noticeably, the fluctuation in delay in
first condition is due to the heterogeneity of nodes loca-
tions in the overlay. On the other hand, when we apply
homogenous addressing in SHAM, fluctuation has been

Fig. 12 Distribution of 214 keys over 212 nodes. aWithout replication. bWith replication
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Fig. 13 Latency when no clustering is imposed. a No clustering. b Clustering

reduced drastically with occasional overshoots. The over-
shoots are affiliated with forwarding the queries from one
class of addresses to another.

4 Related work
In classifying structured P2P overlays based on their rout-
ing performance, we put them in four major groups:
single-hop overlays, constant degree overlays, multi-
dimension overlays, and logarithmic degree overlays. In
single-hop overlays and as the name implies, routing can
be resolved within one hop. Some of the knownO(1) over-
lays are D1HT [1], OneHop [2], Kelips [7], and EpiChord
[8]. As mentioned before, in order to resolve lookups
within one step from source to destination in such over-
lays, nodes must maintain global knowledge about the
status of the overlay. Thus, a major drawback to the O(1)s
is the high cost associated with maintaining the global
routing tables and their inability to handle churn-intensive
workloads.
Constant degree overlays take fixed number of hops

in resolving lookups regardless of the number of nodes
in the system. One of the well-known systems in this
class is Cycloid [12]. The system is a d-dimensional cube-
connected cycles. Every vertex in the cube is replaced by
a cycle of 3◦ d nodes each maintaining a routing table of
seven entries. Although routing is achieved within O(d),
however, stabilizing and maintaining valid routes degrade
the system’s performance.
The third category in DHTs is the multi-dimension

overlays. Our system falls within this category. The most
prominent system in this category and one of the ear-
liest DHT systems that have been proposed is CAN
[4, 31]. Nodes self-organize themselves in CAN in a vir-
tual d-dimensional Cartesian coordinate space built on a
d-torus. To join the system, a newcomer must acquire the
information of an available node in the overlay. This infor-
mation is obtained usually from a bootstrapping server.
A join request is then sent by the newcomer destined
to a point P in the overlay. The message is routed using
CAN routing algorithm through the available nodes until

it reaches a node which is the owner of the zone where
P exists. The node then divides its own zone by half and
assigns one half to the newcomer. The split process is per-
formed in such a way that the zones will be re-merged
upon the departure of nodes. Each node in CAN holds
entries for a number of neighbors based on the dimen-
sion of the coordinate system. Thus, insertion process in
CAN affects O(d) existing nodes. Average path length in
CAN is bounded to O

(
N1/d). If d is chosen such that

d = (logN)/2, routing performance converges to O(log
N). Although ourmechanism seems similar to CAN, how-
ever, in addition to lowering the cost of search, there are
also major points that distinguish SHAM. First, unlike
CAN, the overlay in SHAM is already organized into fixed
addresses, or spots, that will be occupied when nodes
join, whereas in CAN, the spot will be created for the
node upon its arrival, which may include zone splitting.
Second, situating a newcomer in SHAM is much simpler
and requires minimum effort comparing to CAN, which
involves forwarding the join request to the selected point
P as mentioned earlier. Third, SHAM employs homo-
geneous addressing which is not possible in the CAN
structure.
The last category in our discussion is logarithmic degree

overlays. In this category of DHTs, routing is reduced by
half in each step the query takes towards the target. Sys-
tems such as Chord, Ulysses, Pastry, Kademilia, Tpastry,
and P-grid belong to this class [3, 5, 15, 40–43].
Chord is the most renowned DHT in this category. It

utilizes consistent hashing to generate an m − bit identi-
fier for nodes and keys. Nodes are then organized in an
identifier circle modulo 2m. The node identifier will be
generated from the node’s IP address while the identifier
of the key will be generated by hashing the key itself. This
arrangement makes both of the nodes and keys have the
same naming space. Chord assigns keys to nodes based
on the naming space as well. A key k will be stored at
its successor node whose nodeId matches the identifier
of the key in the space. If no match is found in the sys-
tem, i.e., if the node whose nodeId matches the key has
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not been placed in the system or has left the system, the
key will be cached at the next node whose nodeId fol-
lows the identifier of they key in the space in a clockwise
manner. Also, Chord recognizes a predecessor to a node
(or a key) as a node whose nodeId precedes that node
in the circle in a counterclockwise manner. Each node in
Chord maintains a routing table of O(log N) entries in
N-node system. Lookups are resolved in O(log N) mes-
sages to other nodes, while insertion or deletion of a
nodes affect O(log2N). However, in order for Chord to
be load balanced, each node has to store its keys at addi-
tionalO(logN) virtual nodes. Thus, increasing the routing
table for the purposes of routing and storing to O(log2N).
For reader’s reference, other DHTs that are derived from
Chord are [28–30].
Ulysses is a P2P structured system that adopts the static

butterfly topology and attempts to reduce the O(logN)

latency by a factor of log log N [5]. Naming space in
Ulysses is based on a row-level convention. In a network
with l levels andN nodes, each DHT node is depicted by a
tuple of row and level identifiers (P, l), where P is a binary
string signifying the row to which the node belongs and
l denotes the level in that row. The row identifier can be
mapped into a concatenation of bits between 0 and k − 1,
where k is the size of the dimension in the static butter-
fly topology. The space in Ulysses is divided into disjoint
zones in which each DHT node is responsible for a spe-
cific zone. A node with an identifier (P, l) caches all keys
(α, l) where P is a prefix to α. Routing in Ulysses tra-
verses the network through levels. If a node (P, l) searches
for a key (α, i), the query will be forwarded to the next
level (P′, l + 1). α in this case will match a range of the
binary string P′ in level l+ 1. The forwarding continues in
Ulysses through levels where at each step, the search for
α narrows down until the target level is reached. Ulysses
is optimized such that its nodes maintain routing tables of
an average size of size log N in order to achieve a mini-
mum diameter of � logN

log logN �+1. Although Ulysses reduces
the path length while maintaining log N routing entries,
however, this comes at a cost of uniformity. Thus, two
major drawback exist in Ulysses: node congestion and load
balancing.
In addition to routing performance in DHTs, we also

list some of the overlays that discuss the geographical
awareness in structured P2P networks [39, 44, 45].
Jedda and Mouftah [39] proposes the Geographic-

Aware Content Addressable Network (GCAN) to solve
the issue of geographic awareness in object naming ser-
vice architecture, ONS, by placing it on top of Chord-like
systems. According to the paper, GCAN preserves the
complexity of Chord toO(logN) and the routing table size
to O(log N) as well. GCAN is built on a grid that could
cover a certain geographical area. This area is divided into
cell using vertical and horizontal chords. Later, using a

discretization procedure, cells will be filled with nodes
that represent nameservers.
SpatialP2P is a decentralized mechanism that provides

node indexing and key storing for multi-dimensional data
[44]. According to the paper, the proposed framework
upholds the major requirements of DHTs such as index-
ing, retrieval, and load balancing. It is built on grid that is
divided into cells that hold the spatial data and are iden-
tified by the grid’s coordinates. Spatial data can be stored
at one single cell or they can span over a group of cells.
Moreover, nodes in the system are also identified by the
same coordinatesmaking cells and nodes sharing the same
coordinates eventually map to each other. Nodes in Spa-
tialP2P maintain lists of successors and indexed nodes
as well. Successors are needed for connectivity and rout-
ing, while indexed nodes are essential for enhancing the
lookups. The cost of search in SpatialP2P whenmapped to
a one-dimensional Chord-like system is bounded to 3log
N. Although the paper discusses load balancing, however,
the experiment tested the scenario of having fully occu-
pied network whereas the issue of load balancing is when
the network is not fully occupied.
Geodemlia is yet another P2P overlay that is based on

Kademlia [40, 45]. It is a location-based search algorithm
that allows nodes to locate keys around specific geograph-
ical area. Geodemlia is to be built on static nodes that pro-
vide storage and search functionalities for mobile devices.
Nodes in Geodemlia are positioned on a sphere inspired
by the shape of the earth. Accordingly, each node can be
located using longitude and latitude angles using some
location services, i.e., GPS or IP locators. Nodes in the sys-
tem split the geographical area into predefined directions,
where for each direction, the area will be divided into
distance buckets that store fixed number of the system’s
nodes. Geodemlia, as a geographical awareness mecha-
nism and similar to SpatialP2P, preserves the locality and
directionality of data in the overlay. However, the assump-
tions of the static nature of nodes and load balancing are a
matter of question.

5 Conclusions
In this paper, we presented SHAM, an addressing mecha-
nism for structured P2P overlays. SHAM is robust, highly
scalable, and decentralized. SHAM is simple, it uses a
hashing function to generate keys’ identifiers, and a prim-
itive hexadecimal scheme to address nodes in the overlay.
In performance, given a key, SHAM can route queries to
that key in 1/8

(
N1/d) steps, with each node maintain-

ing 2
(
3d − 1

)
routing entries, where d is the number of

dimensions and N is the number of nodes in the steady
state.
With a limited increase in the size of the routing tables

and the use of diagonal paths, we have shown that SHAM
significantly outperforms CAN. Moreover, SHAM even
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performs better than the dominant Chord system. Our
results demonstrated that failed lookups were noticeably
reduced in SHAM comparing to Chord. We attributed
this reduction to the presence of multiple routes to the
destination and to the duplication of keys in the system.
The rigidness of SHAM stems from the use of the gap

filling mechanism in which the priority is to situate new-
comers in vacant positions formed by departed nodes.
Thus, entrenching routing as nodes perform double hop-
ping to the successors of their direct neighbors.
Finally, with the use of homogeneous addressing

scheme, nodes which have close geographical locations
can be positioned adjacent to each others in the overlay.
Thus, giving SHAMamajor advantage in reducing latency
in the network.

Endnotes
1 The term spot in this paper refers to an empty position

in the overlay.
2 Key refers to the (key, value) pair.
3 Choosing the number of dimensions in SHAM such

that d = log(N) reduces SHAM to be from the same fam-
ily as Chord. Thus, reducing the average path length to
1
2 log(N).
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