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generated visco-elastic Rayleigh-like
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Abstract

This paper reports on a study of the propagation characteristics of visco-elastic, Rayleigh-like waves in stratified half-space
structures. Beginning with the Kelvin model, the characterization equation and the normal displacement of visco-elastic
Rayleigh waves in stratified half-space structures are derived and the influence of the visco-elastic modulus on dispersion
and attenuation is discussed. Theoretical calculations show that the attenuation-frequency curves perfectly match the
phase-frequency curves. The effect of visco-elasticity on the attenuation of the Rayleigh-like wave is larger than its effect
on dispersion. For “weak viscosity,” the attenuation is directly proportional to the viscosity modulus and the shear viscosity
has a greater impact on the dispersion curves than does the bulk viscosity. The transient response of a visco-elastic
Rayleigh wave is also simulated by means of Laplace and Hankel inversion transforms. The results are in good agreement
with the theoretic predictions. It is believed the paper’s results and conclusions will provide insights and guidance for
estimating visco-elastic parameters and for assessing adhesive quality.
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1 Introduction
Rayleigh waves, propagating on the free surface of an
elastic half space, are well known. If the medium is
homogeneous and isotropic, the velocity of the Raye-
leigh wave depends on the elastic constants of the
medium and not on the wavelength, i.e., the Rayleigh
wave is non-dispersive, and the power density of the
wave decays exponentially from the surface with a
characteristic penetration depth of the order of a
wavelength. However, in the presence of stratified
half-space, the velocity will exhibit dispersion. Strati-
fied half-space is a kind of common material struc-
ture [1–3]. Elastic wave fields in multilayered media
are of considerable interest in a variety of applica-
tions, and have, therefore, been studied extensively
over the years. After Rayleigh, Love, and Stoneley,
Thomson and Haskell introduced the propagator
matrix method that is later focused on by many

authors. These works were carried out in the strati-
fied elastic solid media model, and the propagator
matrix technique is heuristic in many applications.
The propagation of Rayleigh-like waves in a stratified
half-space has been widely studied for use of nonde-
structive. Many years ago, Mason and Thurston [4]
described surface acoustic waves (SAWs) in half
substrate-coatings. Zininet et al. [5] pointed out that
a pseudo-Rayleigh wave leaks energy into substrate.
Lawr ultrasonics have been widely used to study the
SAWs of multilayered adhesive structures [6–9], and
its advantages include providing a non-contact, wide
band, perfect source. Cheng et al. [10] have simulated
laser-generated ultrasonic waves in a layered plate. All
of the studies cited above assumed the adhesive layers
are elastic solids because solidified adhesive layers
closely resemble elastic solids. It should be remem-
bered, however, that adhesive layers or coating have
more attenuation than solids due to the presence of
more “relaxation” or “creep.”
There are two attenuation mechanisms for sound

waves in layered media. The first is due to leaking
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wave where energy is leaking from one type of
material to the other. Wave leaking is common when
the sound wave is traveling from a solid to a liquid
[11–13]. The second mechanism is material damping.
Media are never perfectly elastic but always show
some degree of damping that absorbs the energy of
mechanical waves. Material damping is often de-
scribed in the research of the waves associated with
earthquakes [14, 15]. Many researchers have applied
the study of waves in a stratified half-space to nonde-
structive evaluation (NDE) of materials. For instance,
Yew et al. [16] have assessed the bonging quality of
for SH waves when the adhesive layers are considered
visco-elastic layers. Deschmps et al. [17] have studied
acoustic emission and reflection in an anisotropic
plate. Chan and Cawley [18] have discussed the effect
on Lame waves brought about by viscosity through
changing imaginary part of phase velocity. Bernard
and Lowe [19] have studied the velocity of energy
propagation in a visco-elastic plate. However, in order
to simplify the calculation, most of the researches
adopt Kelvin-Voigt model which directly append an
imaginary part (damping) to the phase velocity and
the frequency dispersion caused by visco-elasticity is
ignored.
In this paper, according to the fundamental visco-

elastic theory, the characterization equations for the
Rayleigh waves and Rayleigh-like waves in stratified
half-space structures are found by means of the La-
place/Hankel transform method. Frequency dispersion
and the attenuation related to the visco-elastic modu-
lus in a half-space, substrate-coatings, and three-layer
structures are analyzed, and the transient responses of
visco-elastic Rayleigh wave are simulated.
In Section 1, the theory about attenuation modes is in-

troduced, the governing equations are derived in the
transformed domain, and the equivalent elastic force
sources for laser ultrasonics are discussed. In Section 2,
visco-elastic Rayleigh wave propagation characteristics
including dispersion, attenuation, and transient response
in half-space are simulated and analyzed. In Section 3,
the procedure associated with the transfer matrix
approach is presented and visco-elastic Rayleigh waves
in two layered structures are considered. Finally, in
Section 4, three-layer adhesive structures, e.g., a half
infinite metal substrate—adhesive layer-metal film, are
also studied. Studying the visco-elastic (or attenuation)
characteristics of waves should help us to evaluate adhe-
sive quality and material properties. The purpose of the
paper is to quantitatively analyze attenuation and disper-
sion and the transient response properties of Rayleigh-like
waves generated by a laser and provide a theoretical basic
for the determination of visco-elastic characteristics of the
coatings and adhesive layers.

2 Theory
2.1 Attenuation model
Considering a three-dimension linear visco-elastic solid,
the constitutive equations are [20]

σ ij ¼ δijλ tð Þ � dεkk þ 2μ tð Þ � dεij ð1Þ

where σ and ε are stress and strain, respectively, δij is Di-
rac delta function, λ(t) and μ(t) are the time-dependent
Lame moduli of the solid, “*” denotes convolution, and d
indicates differential coefficient. The other form is
expressed as

P
0
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0
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P
00
σ ¼ Q

00
e

�
ð2Þ

where Sij ¼ σ ij− 1
3 σkkδij is stress deflection tensor, eij

¼ εij− 1
3 εkkδij is strain deflection tensor, σ and e are the

stress symmetrical tensor and the strain symmetrical
tensor, respectively; the strain is given by εij ¼ 1
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0
k ,
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00
k , q

0
k , and q

00
k indicate the modulus in visco-elasticity

mode, respectively, which are determined by material
and visco-elastic mode.

2.2 Governing equations
The equation of motion is

λ tð Þ þ 2μ tð Þ½ � � duj;ji þ μ tð Þ � dui;jj ¼ ρ∂2ui=∂t2 ð3Þ

The Rayleigh wave is generated by a point pulse
laser source and the coordinate axes of an isotropic
plate with thickness L is depicted in Fig. 1a, where
z > 0 represents the stratified medium; z = 0 is the
interface between the medium and air. The surface
wave excited by a point laser source has geometric at-
tenuation symmetric about the z-axis. When the laser
irradiate on the surface of media, the Rayleigh wave
is excited and propagated along radial direction. We
choose point source because it is easy to focus and
contribute to attenuation measurement.
In a cylindrical coordinate system, the displacement

can be expressed by the potential functions φ and Ωi

0;− ∂ψ
∂r ; 0

� �
as ui = φ,i + eijkΩk,j and Ωi,i = 0.

From Eqs. (1) and (3), the visco-elastic wave equations
are given as:
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ρ
∂2φ
∂2t

− λ tð Þ þ 2μ tð Þ½ � � d∇2φ ¼ 0

ρ
∂2ψ
∂2t

−2μ tð Þ � d∇2ψ ¼ 0

8><
>: ð4Þ

Applying the transform of Hankel and Laplace, the ap-
propriate solutions of the potential functions in the
transform domains can be expressed as:

�φH0 ¼ A p; sð Þe−αz þ B p; sð Þeαz
�ψH0 ¼ C p; sð Þe−βz þ D p; sð Þeβz

�
ð5Þ

where the superscript H0 indicates a Hankel transform
of order zero and p and s are the space frequency and

time frequency, respectively; α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ s2

cl2

q
, β
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ s2

ct2

q
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ρ

q
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ffiffiffiffiffiffi
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ρ

q
, λ sð Þ ¼ sλ sð Þ ¼ 1
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h i
, and μ sð Þ ¼ sμ sð Þ ¼ Q

0
sð Þ

2P
0
sð Þ represent complex

Lame constants associated with frequency s; ρ is
density; A, B, C, and D are constants in transform
field.
The application of the Laplace transform and the

Hankel transform of order zero to normal displacement
uz as well as the stress τzz and the application of the La-
place transform and the Hankel transform of order one
to the tangential displacement ur as well as to the stress
τrz, yield
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 �
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where the superscript H1 indicates the Hankel transform
of order one. The characterization frequency equations
can be obtained by continuation of the displacement and
the stress.

2.3 The equivalent elastic force sources
The equivalent elastic force sources generated by a point
laser source on the sample surface due to the thermo-
elastic (ablating) effect are [21]

�τ
H1

rz ¼ −2
p
s
C0Q0Q sð ÞQ pð Þ

�τ
H0

zz ¼ −
β2 þ p2
� �

sξ
C0Q0Q sð ÞQ pð Þ

ð7Þ

where ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ s

γ

q
, γ is the thermal diffusion coeffi-

cient, and C0 is a constant related to the thermal and
elastic properties; Q0 is the laser energy amplitude; Q(s)
and Q(p) are the laser source function on time and space
in the transform domain, respectively.

3 Visco-elastic Rayleigh waves in half-space
3.1 The characterization equation
Let us study visco-elastic Rayleigh wave in half-space
firstly; the concerned conclusion will help us to under-
stand characteristics of visco-elastic Rayleigh-like waves.
Considering the fact that the two upgoing bulk wave
modes vanish such that two constants B and D are zero
in Eq. (5) in the half-space z > 0. Substituting Eq. (5) into
Eq. (6), the characterization equation of visco-elastic
Rayleigh wave becomes

4p2αβ− β2 þ p2
� �2 ¼ 0 ð8Þ

The normal displacement of the visco-elastic Rayleigh
wave in transformed domain is obtained:

�u
H0

z ¼ −α
Δ1

Δ
þ p2

Δ2

Δ
ð9Þ

where

Δ = 4p2αβ − (β2 + p2)2,

and

Fig 1 a Geometry used for laser generation Rayleigh wave. b The
coordinate axes of an isotropic plate with thickness H
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The transient response under laser source illumination
can now be obtained by using the inverse Laplace and
Hankel transforms as

uz r; tð Þ ¼
Z∞

0

Zαþi∞

α−i∞

�u
H0

z p; sð Þestds
0
@

1
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3.2 Dispersion and attenuation characteristics of the
visco-elastic Rayleigh wave
From Eq. (8), the dispersion and attenuation characteris-
tics of the visco-elasric Rayleigh wave can be obtained.
The roots of the equation are complex related to fre-
quency; with the imaginary part of the wave number is
the attenuation factor in SI units of Np/m. The phase
velocity of waves can be calculated from c ¼ ω

real kð Þ, where
ω is angular frequency and k is wave number. In
addition, s = jω and k = p.
Because its rheological property is mainly presented by

shear deformation, when the shear deformation in the
Kelvin model is only considered, we have

Sij ¼ 2μkeij þ 2ηk :eij
σ ¼ 3Ke

�
ð11Þ

where μk, ηk, and K are shear, viscous, and bulk modu-
lus, respectively.
Combining Eq. (2) with Eq. (10) leads to

λ# sð Þ ¼ μk
K
μk

−
2
3
−
2
3
Kηs

� 	

μ# sð Þ ¼ μk 1þ Kηs
� �

8<
: ð12Þ

where Kη ¼ ηk
μk

is the relaxation time of the visco-elastic

medium (its SI unit is s), which indicates the time of
strain lagging stress and Kη = 0 represents an elastic
medium, that to say, Kη can describe the characteristics
of viscous also. With epoxy as an example, the parame-
ters are the bulk modulus K = 7.28 × 109kg/m. s2, the
shear modulus uk = 2.37 × 109kg/m. s2, and the thermal
diffusion coefficient γ = 0.001 cm2/s. Since the coefficient
Kη for a solidified epoxy is very small, two cases of Kη =
10−10(0.1ηs) and 10−9(1ηs) were chosen in our simula-
tion to obtain the approximate attenuation [22]. By
using Eqs. (8) and (12), the dispersion curves (phase vel-
ocity versus frequency) and attenuation curves (attenu-
ation factor versus frequency) for two cases are plotted
in Fig. 2a, b which presents Kη = 0.1ηs, (c) and (d) indi-
cate Kη = 1ηs.

From the dispersion curves, we find that the visco-
elastic Rayleigh wave is dispersive and is not the case in
(non-dispersion) elastic materials, which is due to the in-
fluence brought by viscosity. The amount of dispersion
is related to the magnitude of the viscosity, and the lar-
ger the magnitude of viscosity is, the stronger the disper-
sion. It is also shown that the viscosity has little effect
on phase velocity. When Kη = 1ηs, the phase velocity of
the visco-elastic Rayleigh wave increases from 1.22 to
1.26 km/s in the frequency range 0–40 MHz and the
change in phase velocity for the case of Kη = 0.1ηs is
negligible. Consequently, a sample can be regarded as
non-dispersion in the case of weak viscosity, which is in
correspondence with the results of Ping [23]. Accord-
ingly, it is not very productive to study visco-elastic
characteristics from the perspective of dispersion.
However, it is also shown that the attenuation of the

visco-elastic Rayleigh wave increases with an increase of
frequency and material viscosity. Compared with the dis-
persion curves, the attenuation curve variation with the
frequency is more pronounced. It has been shown that
the relative amplitude change in velocity versus fre-
quency is 10 % less than that of the attenuation versus
frequency, [24] and the attenuation for Kη = 1ηs is higher
by about one order of magnitude than for Kη = 0.1ηs at
the same frequency. Thus, the elastic constants could be
determined by dispersion (velocity) and the viscous con-
stants by an attenuation curve.
Above research, we assume that the only shear vis-

cosity, if bulk viscosity is also taken into account in
the Kelvin model, the constitutive equations can be
written as

Sij ¼ 2μkeij þ 2ηk :eij
σ ¼ 3Keþ 3η:e:

�
ð13Þ

λ sð Þ ¼ K 1þ KBs−
2μk
3K

−
2ηk
3K

s

� 	

μ sð Þ ¼ μk 1þ Kηs
� �

8<
: ð14Þ

where KB ¼ η
K , and η is the bulk viscosity modulus.

In order to investigate the influence of bulk viscos-
ity, we suppose Kη = 0 firstly. Let us consider the case
of KB = 1ηs, the calculated dispersion and attenuation
curves are showed in Fig. 3. Compared these results
with that of Kη = 1ηs and KB = 0, it was found that
the attenuation and dispersion caused by shear vis-
cosity are much larger than that by bulk viscosity of
the same frequency. In general, shear viscosity is
greater than bulk viscosity for most of materials [1].
Therefore, bulk viscosity will be ignored, and only the
shear viscosity will be taken in account in the follow-
ing research.
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3.3 Transient response of visco-elastic Rayleigh
To observe attenuation effect produced by viscosity in-
tuitively, the time domain transient response of visco-
elastic Rayleigh wave was simulated by means of inverse
Laplace and Hankel transform. Here, we use laser ultra-
sonic to simulate the transient response of visco-elastic
Rayleigh wave, because pulsed laser sources provide a
nondestructive, non-contact means of wide bandwidth
acoustic wave generation, especially, its good repetition
will be good for attenuation measurement; point excited
source is adopted to focus easily on producing higher-
frequency wave for attenuation measurement.
The time domain transient response of visco-elastic

Rayleigh waves is related to excited source. Here, the
laser source function is chosen to be
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Fig 3 a Phase velocity versus frequency for epoxy half-space with KB=
1ηs. b Attenuation versus frequency for epoxy half-space with KB= 1ηs
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Fig 2 a Phase velocity versus frequency for epoxy half-space with
Kη = 0.1ηs. b Attenuation versus frequency for epoxy half-space with
Kη = 0.1ηs. c Phase velocity versus frequency for epoxy half-space
with Kη = 1ηs. d Attenuation versus frequency for epoxy half-space
with Kη = 1ηs
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Q r; tð Þ ¼ Q0
2

R2 exp −2
r2

R2

� 	
 �
t
t30

exp −
t
t0

� 	
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δ zð Þ

ð15Þ
Its transform is given by

�QH0 ¼ Q0 exp −
R2p2

8

� 	
� 1

1þ t0sð Þ ð16Þ

where t0 is the laser pulse rise time (in our calculation
t0 = 10ηs), R is the laser pulse Gaussian radius (R =
0.1 mm), and Q0 is the absorbed laser energy. This
source has been shown to accurately represent the stress
field induced by a laser in a number of practical cases
[21]. The representation is subject to the following as-
sumptions: the heating is localized to the surface layer,
the point of observation is outside of the volume defined
by significant thermal diffusion, and the optical energy is
converted to heat close to the irradiated boundary. The
first and second assumptions hold if the thermal diffu-
sion length is sufficiently less than the top layer thick-
ness and the source to receiver distance, respectively.
The third assumption holds as long as the top layer ma-
terial is a strong absorber at the generation laser
wavelength.
The Fourier-Bessel or Hankel transform is fre-

quently used as a tool for solving numerous scientific
problems and becomes very useful in the analysis of
wave field. Equation (10) is used to calculate the
transient response in stratified half-space. For a multi-
layered plate, there are an infinite number of singu-
larities for particular frequency values in the
integrand of the equations. These values correspond
to an infinite number of poles associated with the
zeroes of the Rayleigh-like frequency equation that re-
lates frequency and wave number for guided waves in
a layered plate. Since all of the poles are simple poles
for a layered plate, the integral is carried out along a
contour that is not on the imaginary axis so that the
singularities can be avoided. Here, we apply the
Secada method to inverse Laplace and Hankel trans-
forms [25] to Eq. (9); this method uses an integral
representation of Bessel functions for the transform
as a weighted integral of Fourier components of the
output function, by the means of computer and FFT
technology, the inversing transient responses of the
displacement can be obtained quickly. The transient
responses of the Rayleigh wave at distance r = 5 mm
and r = 7 mm for different Kη are shown in Figs. 4
and 5. Again, Kη = 0 implies the case of an elastic
body.
The profiles of the Rayleigh wave are similar to that

in an elastic medium; there are three waveforms that
can be identified by their arrival times: the first is the

lateral (or Head) wave which propagates along surface
with longitudinal velocity of medium, the second is
shear lateral wave and very weak. The amplitude of
Rayleigh wave is greatest and can be clearly identified.
It is found that the transient response amplitude of
the Rayleigh wave decreases with increase in the

(a)

(b)

(c)

Fig 4 Transient response of the Rayleigh wave on epoxy half-space
at r = 5 mm for a Kη = 0, b Kη = 0.1ηs, and c Kη = 1ηs
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propagation distance for the same viscosity, which
may attribute to the presence of geometric attenu-
ation for cylindrical diffusion propagation. However,
at the propagation distance, the amplitude of the Ray-
leigh wave decreases with increase of viscosity, from
which the effect of viscosity on Rayleigh waves is
clearly seen.

4 Substrate coating structure
4.1 The transfer matrix
For the layered media, the transfer matrix method intro-
duced by Lowe [26] is adopted in this paper. Consider a
single plate, which is homogenous, isotropic, and linearly
elastic layer of thickness L. The origin of the coordinate sys-
tem is taken to be the center of the plate, as seen in Fig. 1b,
at z ¼ ∓ L

2. We define the center of every plate correspond-
ing to z = 0; z = Ln/2 indicates the surface of the nth plate.
From Eqs. (5) and (6), we obtain the transfer relation of the
stress-displacement vectors at the two sides of a plate as
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where M ¼ MBM−1
T

MT

¼
1 e−αL −β βe−βL

−α αe−αL p2 p2e−βL

−2μα 2μαe−αL μ p2 þ β2
� �

μ p2 þ β2
� �

e−βL

μ p2 þ β2
� �

μ p2 þ β2
� �

e−αL −2μβp2 2μp2βe−βL

2
664

3
775

ðandÞ
with

Table 1 The simulation parameters of two layers adhesive
structures

Materials cl(km/s) ct(km/s) Thickness (mm) ρ (g/cm3)

Al 6.32 3.13 ∞ 2.72

Epoxy 2.73 1.30 0.1 1.40

Fig 6 Comparison of dispersion curves of epoxy-Al structure for Kη = 0
(o), Kη = 0.1ηs (-), and Kη = 1ηs (–)

(a)

(b)

(c)

Fig 5 Transient response of Rayleigh wave on epoxy half-space
at r = 7 mm for a Kη = 0, b Kη = 0.1ηs, and c Kη = 1ηs
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Now, consider a multilayered plate, consisting of n
layers, each of thickness Hj (j = 1, …, n). The top sur-
face is subject to laser pulse illumination. Following
the work of other authors, the laser source may be
represented as an equivalent elastic boundary source
consisting of distributed normal and shear loading on
the plate surface as Eq. (15). Application of the

continuity conditions at layer interfaces from 1 to n
yields
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where, T =MnMn − 1Mn − 2 ⋅ ⋅ ⋅MjMj − 1Mj − 2 ⋅ ⋅ ⋅M3M2M1,
and z ¼ − L1

2 indicates the top surface. If the nth layer is
half-space, following the same procedure leads to the layer
transfer matrix,
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Fig 7 Attenuation versus frequency for coating-substrate structures a Kη = 0.1ηs and b Kη = 1ηs
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where, T =NnMn − 1Mn − 2 ⋅ ⋅ ⋅MjMj − 1Mj − 2 ⋅ ⋅ ⋅M3M2M1

and N ¼
1 −β 0 0
−α p2 0 0

−2μα μ p2 þ β2
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1 0
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The introduction of Eq. (7) into Eq. (19) yields the
displacement at the top surface of the stratified half-
space structures in transform domain
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From Eq. (20), the visco-elastic, Rayleigh-like wave
equation can be derived from

det
T31 T 32

T41 T 42

����
���� ¼ 0 ð21Þ

And, the normal displacement at top surface can also

be obtained by means of inverting �u
H0

z .
For visco-elastic layers, all the equations above re-

main true when λ, μ are replaced with λ#, μ# seen in
Eqs. (11) and (12).

0 1 2 3 4 5 6
1.2

1.3

1.4

1.5

1.6

1.7

1.8

pseudoSaws

Cut offSaw

)s/
m

K(
yticol e

V
esa h

P

Frequency  (MHz)

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0

1

2

3

4

5

6

7

8

Frequency  (MHz)

)
m/p

N(
noi ta une tt

A

Saw

(b)

0 5 10 15 20
0

200

400

600

800

1000

1200

1400

1600

1800

pseudoSaws

)
m/p

N(
noitaune tt

A

Frequency (MHz)

(c)

Fig 8 The substrate is epoxy, the film is Al, and the thickness of Al is 0.1 mm. Kη = 1ηs. a Phase dispersion curve. b Attenuation curve below the
cutoff frequency. c Attenuation curve above the cutoff frequency
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Fig 9 Transient response of the Rayleigh-like wave on epoxy—Al. Coating-substrate structure at r = 5 mm for a Kη = 0, b Kη = 0.1ηs, and c Kη = 1ηs
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4.2 Slow on fast
Where “slow on fast” means that the shear velocity of
the coatings is less than that of substrate, whereas the
opposite case we call “fast on slow.” The elastic parame-
ters are listed in Table 1, for the common example,
aluminum and epoxy.
Considering the epoxy coatings as a visco-elastic solid,

regarding the volumetric deformation as approximately
elastic, and the shear deformation is visco-elastic, by
using the Kelvin mode and Eq. (19), the phase velocity-
frequency curves for Kη = 0, Kη = 0.1ηs and Kη = 1ηs are
plotted in Fig. 6. Many wave modes exist, and they are
dispersive. The first two modes are named the SAW
mode and the SEZAWA mode. For the SAW mode, the
Rayleigh velocity starts at the Rayleigh velocity of the
substrate and slopes downward approaching the Ray-
leigh velocity of the coating. It can also be seen that the
curves are almost a superposition in the low-frequency
range, implying viscosity has little influence on disper-
sion, and the effect is only apparent in the higher-
frequency curves with the attendant increase in viscosity.
It should be emphasized that f*h (frequency thickness
accumulation) is not applied in constructing the curves
because of an inability to normalize in terms of one par-
ameter from the frequency equation.
Figure 7a, b shows the attenuation-frequency curves

when Kη = 1ηs and Kη = 0.1ηs. The attenuation of the
SAW mode starts increasing rapidly from a particular
frequency (for this example at about 5 MHz) which
corresponds to the repaid slope range of the disper-
sion curves. This implies that the wave’s energy is
transferring from substrate to coating. The more en-
ergy concentrate in coatings, the more attenuation
appears. We can also find that the attenuation is in
approximately in direct ratio with the viscous modu-
lus (Kη). The SEZAWA mode is more complex than
the SAW mode. An interesting phenomenon is a kind
of local minimization of the attenuation which ap-
pears where the attenuation of the SAWs is rapidly
increasing. The attenuation of SAW mode and
SEZAWA mode shall rapidly increase in the range of
the higher frequency.

4.3 Fast on slow
For the case of fast on slow, the situation is more
complicated by the presence of the cutoff velocity oc-
curring at the transverse wave velocity of the sub-
strate. This situation has been discussed by P. Zinin
[5] et al. using V(z) curves. Here, we consider the
phenomenon from the viewpoint of attenuation
caused by viscosity of adhesive layers.
Suppose the substrate is epoxy and the film is

aluminum with a thickness of 0.1 mm and Kη = 1ηs, in
this case, the substrate is epoxy with viscosity. The

calculated frequency curve is shown in Fig. 8a. We find
the SAW mode velocity increase with frequency monot-
onously; there exist a cutoff frequency in the phase dis-
persion at about 1.5 MHz which means the shear
velocity of epoxy. That to say, when velocity of Raleigh-
like wave surpasses that of shear in epoxy, the leak wave
appears and pseudo-SAWs (leak wave) propagate and
leak energy into the substrate. Figure 8a, b shows the at-
tenuation when SAW velocity is less and higher than
shear velocity in epoxy, respectively. Since the cutoff fre-
quency is lower, the attenuation caused by viscosity is
very small while that caused by pseudo-SAWs is very
large.

4.4 Transient response
Figure 9 shows the transient response calculated with

�u
H0

z for the slow layer on a fast substrate at 7 mm
from source, and the source parameters are same as
Eq. (16). In the case of a slow layer on a fast sub-
strate, the presence of the top layer decreases the sur-
face wave velocity below that of the Rayleigh velocity
of the substrate and normal dispersion is expected.
We first see the arrival of the lateral longitudinal
wave followed by the arrival of the surface wave. The
Rayleigh-like waves are, as expected, dispersive; the
high-frequency components of the surface wave travel
slower than the lower-frequency components. With
an increase in viscosity, the amplitude of all waves is
reduced and the higher-frequency components are re-
duced faster than the lower-frequency ones.

5 Three-layer adhesive structures
Here, three-layer structures mean a half infinite metal
substrate—adhesive layer-metal film; the simulation
parameters are shown in Table 2.
Choosing thicknesses of 0.1 mm—0.05 m—∞ and

Kη = 1ηs and following the same calculation as above,
we obtain the phase velocity dispersion shown in
Fig. 10, and the attenuation-frequency curves are
plotted in Fig. 11.
The transient response of three layers on a half-

space is different than for the substrate coating case.
The SAW velocity starts at the Rayleigh velocity of
the bottom substrate (aluminum) and slopes down-
ward to the Rayleigh velocity of the adhesive layer

Table 2 Parameters of elastic epoxy and Al in three layers
adhesive structures

Materials cl (km/s) ct (km/s) Thickness (mm) ρ (g/cm3)

Al (upper) 6.32 3.13 0.1 2.72

Al (Nether) 6.32 3.13 ∞ 2.72

Epoxy 2.73 1.30 0.05 1.40
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(epoxy); meanwhile, the attenuation goes through a
precipitous rise, then the SAW velocity begins to in-
crease before it reaches the velocity of the adhesive
layer yet, which means the more energy go into upper
medium (the elastic medium aluminum). But, the
SAW velocity reduces abruptly approaching the shear
velocity of the middle layer before it reaches the vel-
ocity of the upper substrate (about 20 MHz), which
are called “energy trap” [9], which indicates that there
is energy leaking into adhesive layer again, viz. the
waves are “leaky waves” which should also be
considered pseudo-Rayleigh waves. Figure 12 shows
the transient response of a Rayleigh-like wave on
aluminum-epoxy-aluminum three-layer structure.
Now, the center frequency of the generated wave
packet falls in the valley of the dispersion curve such
that both the low- and high-frequency components of
the signal travel faster than the center frequency. The
higher- and lower-frequency components of the same
mode are on top of each other in the time domain
and what, at first inspection, appears to be the
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Fig 11 Attenuation versus frequency for three-layer structures a Kη =
01ηs and b Kη = 1ηs

Fig 10 Comparison of the dispersion curves of Al-epoxy-Al structure
with the thickness 0.1 mm-0.05 mm-∞
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Fig 12 Transient response of the Rayleigh-like wave on Al-
epoxy—Al three-layer structures at r = 5 mm for a Kη = 0.1ηs and
b Kη = 1ηs
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superposition of two different modes is actually the
superposition of arrivals from the same mode. The
first arrivals include lower- and higher-frequency
waves, the middle range of frequency components ar-
riving later which are in agreement with theoretic
perdition. In addition, the amplitude of waves also de-
creases with viscosity.

6 Conclusions
In this paper, the propagation characteristics of visco-
elastic, Rayleigh-like waves generated by a laser pulse
are analyzed theoretically. Based on general visco-
elastic theory and regarded the visco-elastic media as
a Kelvin mode, the characterization frequency equa-
tions are found by means of the Laplace/Hankel
transform, and transient displacement of the visco-
elastic, Rayleigh-like wave is derived; the dispersion
and attenuation curves due to viscosity are calculated
numerically. It is shown that the dispersion of visco-
elastic Rayleigh-like wave is associated with the mag-
nitude of viscosity. In the presence of a “weak viscos-
ity,” the viscosity has little influence on phase
velocity, and the attenuation of the wave is approxi-
mately proportional to the viscosity modulus. The ef-
fect of shear viscosity on attenuation is much more
than that of bulk viscosity. The transient responses of
the visco-elastic, Rayleigh-like wave were also simu-
lated by the Laplace and Hankel inverse transforms,
from which the effect of viscosity on the Rayleigh-like
wave is clearly shown; the simulated transient re-
sponse results are also in good agreement with the
dispersion and attenuation curves. The approach used
here was the model we develop which may provide a
useful tool for the determination of the visco-elastic
parameters of the material.
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