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Abstract

Dynamic resource allocation scheme is a key component of 3GPP long-term evolution (LTE) for satisfying
quality-of-service (QoS) requirement as well as improving the system throughput. In this paper, a buffer-aware
adaptive resource allocation scheme for LTE downlink transmission is proposed for improving the overall system
throughput while guaranteeing the statistic QoS and keeping certain fairness among users. Specifically, the priorities
of the users’ data queues in the base station are ranked by their remaining life time or their queue overflow probability
which is estimated by applying large deviation principle. An online measurement based algorithm which requires no
statistical knowledge of the network conditions uses the queue priorities to dynamically allocate the resource blocks
(RBs) for avoiding buffer overflow and providing statistic QoS guarantee. The simulation results show that the
proposed algorithm improves the throughput and fairness while considerably reducing the average bit loss rate.
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Introduction
Mobile communication technologies have been developed
rapidly, and switched from the third generation (3G) of
mobile communication systems to the long-term evolu-
tion (LTE) systems, which aims to provide high-data-rate,
low-latency, packet-optimized radio-access, and flexible
bandwidth deployments [1]. LTE system allows high flex-
ibility in the resource allocation, which enables dynamic
resource blocks (RBs) allocation among the potential
users [2] and [3].
Conventional resource allocation schemes in wireless

system are generally based on user’s priority [4, 5]. They
are designed according to user’s channel status and QoS
guarantee to maximize overall system throughput. How-
ever, providing fairness among users is another essential
design consideration, although it usually sacrifices the sys-
tem throughput and/or violates QoS requirements. Some
resource allocation schemes based on buffer-aware can
improve some of these performance metrics [6]. The
resource allocation problem in wireless system has been
widely addressed in some literatures, but it is still chal-
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lenging in LTE system to design a buffer-aware resource
allocation scheme for improving the performance includ-
ing increasing the system throughput as large as possible,
guaranteeing QoS requirements, and achieving fairness.
In this paper, we propose a buffer-aware adaptive

resource allocation scheme by jointly considering the user
scheduling and RBs allocation to provide QoS guaran-
tee in LTE transmission systems. In the aspect of user
scheduling, considering that the finite buffer maximum
size, each user’s queue priority is ranked according to
its remaining life time or its queue overflow probability
which is estimated by applying large deviation princi-
ple. For RBs allocation, an online measurement based
algorithm for dynamically allocating RBs is proposed for
adjusting the service rates of the user queues in order
to provide QoS guarantee. The goal is improving the
total system throughput as large as possible while subject-
ing to provide QoS guarantee for different users and to
guarantee certain fairness.

Related work
In this paper, we consider multiuser resource allocation
for the downlink in LTE systems. The scheduler at the
base station is responsible for allocating resources to the
different users as a function of the users’ queue priority
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as well as the current channel conditions. There are many
prior works on this problem. The classic scheduling algo-
rithms include Round Robin (RR) algorithm [7], Max C/I
algorithm [8], and proportional fair (PF) algorithm [9].
Although many works [10–13] apply multiuser diversity
in user scheduling for maximizing system throughput, the
system buffer size in these schemes is assumed to be infi-
nite, that is to say, any arriving bit can be buffered and
any bit loss due to buffer overflow will not happen. This
assumption may not be reasonable since the buffer size is
limited in the transceivers.
Resource allocation for finite buffer space has been dis-

cussed in the literature related to the wireless network.
The authors in [14] design a new LTE buffer aware sched-
uler to opportunistically assign RBs for video streaming
applications in order to maximize the average video qual-
ity. In [15], the buffer occupancy based approach is pre-
sented to achieve video rate adaptation, while in [16], a
dynamic programming framework is applied to study the
buffer vs. QoS tradeoff for wireless media streaming in
a single user scenario. These papers cited above mainly
focus on video traffic. But the eNB in the practical situ-
ation schedules and transmits general data traffic besides
video traffic.
There are several related works for packet scheduling

and resource allocation in wireless data systems. In [17],
M. Andrews et al. focus on how to adapt MaxWeight
algorithm to the multicarrier wireless data systems, and
a simple variant was introduced into the objective for
reducing resource wastage. In [18], M. Realp et al. propose
a resource allocation algorithm in multiuser OFDMA by
considering queue and channel state information. How-
ever, these methods focus on maximizing the overall
throughput by improving spectral efficiency, which may
lead to unfair resource sharing among users. In fact, fair-
ness is necessary to guarantee minimum performance
of the users experiencing bad channel conditions. The
buffer-aware adaptive resource allocation proposed for
LTE system in this paper will consider the problem of
keeping certain fairness while improving the total system
throughput.
Due to the limited available resource, RBs allocation

aims to efficiently use the shared resource and allocate
the resource in a fair manner. Naturally, there is a trade-
off between fairness and system throughput. PF algorithm
has emerged as a prominent candidate since it balances
between fairness and throughput. In [19], S. Lee pro-
poses a sub-optimal method, i.e., PF metric(2), which
introduces the status of queues into PF metric(1). How-
ever, it is pointed out in [19] that although PF metric(2)
is more responsive to the queues than PF metric(1),
it incurs a reduced system throughput because its iso-
lated RB assignment strategy may assign the RB to a
user having low channel quality. Similar work related

to PF scheduling in LTE systems can also be found
in [20, 21] and [22]. By considering both fairness and
the constraint of finite buffer space, a channel-adapted
and buffer-aware (CABA) packet scheduling algorithm
is proposed in [23]. This method defines and applies
the user priority in the resource allocation for avoid-
ing buffer overflow. However, the empirical parame-
ters in the priority function are hard to appropriately
choose. Inappropriate parameters will lead to an inaccu-
rate user priority, which induces excessive resource allo-
cated to the users and reduce the utilization of the system
resource.
The eNodeB may have large capacity to cache traf-

fic such as audio and video streams, but it substantially
increases the delay and reduces QoS. Hence, we consider
the finite buffer size and queue overflow probability in this
paper. We will jointly exploit the priorities of user queues
and the RBs capacity for controlling the service rate of
each user data queue in the base station, instead of solely
relying on any one of them. Under the constraint of finite
buffer space, the proposed buffer-aware adaptive resource
scheduling algorithm aims at achieving three objectives:
(1) keep bit loss rate as low as possible by means of tak-
ing buffer status into account, (2) improve the total system
throughput as large as possible, and (3) keep certain fair-
ness among users by means of adjusting the overflow
probability.

Contributions
In this paper, we proposed a buffer-aware adaptive
resource allocation scheme for LTE downlink transmis-
sion by jointly exploiting the priorities of user queues
and RBs capacity. The proposed problem is formulated
as improving the total system throughput subject to pro-
viding QoS guarantee for different users while keeping
certain fairness. Specifically, our main contributions are
listed as follows:

• User scheduling: Firstly, the user scheduling scheme
is considering the finite buffer size. Secondly, the
scheme is depending on the users’ queue priority
which is calculated by their remaining life time or
their queue overflow probability. The overflow
probability estimation model is derived by applying
the large deviation principle [24], which incorporates
both the queue fullness and its variation.

• RBs allocation: An online measurement-based
algorithm is further presented to adjust the service
rate of the user queues, which requires no statistical
knowledge of the network conditions. According to
the user queues’ priorities, we control the service rate
of each user queue by dynamically allocating the RBs,
in order to avoid queue overflow and provide statistic
QoS guarantee.
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• We present experimental results to show that the
proposed algorithm is able to improve the total
system throughput while guaranteeing certain
fairness among users and providing QoS guarantee.

The rest of the paper is organized as follows: Section
‘System model and problem statement’ describes a sys-
tem and channel model for resource allocation. In
section ‘User priority determination scheme’, we present
user priority determination algorithm, including calcu-
lating the remaining life time or queue overflow prob-
ability. Section ‘Online measurement-based algorithm
for dynamic RBs allocation’ is devoted to describing
the online measurement-based algorithm for dynamic
resource allocation. Section ‘Performance evaluation’
provides the experimental results and performance
comparisons. Finally, conclusions are drawn in Section
‘Conclusion’.

Systemmodel and problem statement
Systemmodel
We consider LTE system architecture with downlink RBs
allocation as shown in Fig. 1. The eNode B (eNB) controls
the bit service rate through dynamically allocating RBs to
users. The total number of the data bits within a RB is
referred to as RB capacity. The better channel condition
of an RB implies a higher achievable RB capacity. Differ-
ent RBs may have distinct channel conditions [20]. The
smallest resource unit that can be allocated to a user is a

scheduling block (SB), which consists of two consecutive
RBs [25, 26]. In each time slot, several SBs may be allo-
cated to a single user, but each SB is uniquely assigned to
a user.
We focus on single-cell downlink resource allocation

in eNB of LTE system employing OFDMA. The imple-
mentation of adaptive resource scheduling in eNB relies
on the following factors: buffer status (e.g., unoccupied
buffer space and current queue length), traffic character-
istics (e.g., bit arrival rate) and channel quality.We assume
that eNB has perfect and instant channel information for
all downlink transmissions via the feedback channel, while
the channel quality is assumed stationary for the duration
of each subframe, but may vary from subframe to sub-
frame. Since the data queue of each user locates in eNB,
it is natural that eNB knows the amount of each user’s
data in the transmission-side buffer without additional
signaling to report.
Let K and N , respectively, denote the number of the

users and the number of all SBs. In the practical situation,
eNB does not differentiate the transmitting data types.
Hence, one user is assumed to have a single queue. Then,
the kth queue length can be updated as

Qk(t + 1) = max{Qk(t) − Vk(t), 0} + Ak(t), (1)

where Ak(t) ∈ A = {0, 1, . . . ,mA} denotes the bit arrival
number of the kth user queue during the slot t, and mA
is the maximum number of bits arriving in a single slot.

Fig. 1 System architecture
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Here, we assume that the bit arrival process of the kth
user queue Ak(t) to be an i.i.d sequence. Vk(t) ∈ V =
{0, 1, . . . ,mV } represents the bit number transmitted dur-
ing the slot t, where mV is the maximum number of bits
served in a single slot. DefineQk(t) as the length of the kth
queue in terms of bits at the beginning of the slot t. Here,
we consider the practical scenario of finite buffer space
and integrate the buffer status into the scheduling decision
to decrease the bit loss rate. It is noted that buffer over-
flow implies the resource is not enough for transmitting
the data in the queue, and the data has to be droppedwhen
the buffer is full, while buffer underflow means that the
resource is sufficient for conveying the data in the queue,
and data loss will not occur. Hence, we only consider
the buffer overflow in the transmitter-side (eNB-side). Let
us define a threshold Qmax

k as the the maximum length
of the kth user queue. If the kth queue length is higher
than Qmax

k , it implies that an excessive number of bits is
buffered, and bit loss may be likely to occur. Naturally, any
queue length exceeding Qmax

k is undesirable. Hence, the
problem may be described as that of selecting an appro-
priate service rate to keep each queue length lower than
Qmax
k . The kth user queueing system model is shown in

Fig. 2. When the arrival rate is larger than the service rate,
bit loss may occur due to the queue overflow. In order to
reduce the average bit loss rate (BLR), we plan to apply the
large deviation algorithm to calculate the queue overflow
probability. Accordingly, we define overflow probability of
the kth queue as

Pkoverflow = P
(
Qk(t) > Qmax

k
)
. (2)

For a given slot t, the increase of the kth queue length is
characterized by

Ik(t) = Ak(t) − Vk(t). (3)

We define remaining life time Rk(t) to denote the
remaining time of the kth user queue to be fullness. Then
the remaining life time of the kth user at the slot t can be
calculated by

Rk(t) = Qmax
k − Qk(t)
E[ Ik(t)]

. (4)

However, the distribution of Ik(t) is not available.
Hence, we use the sample mean of queue varia-
tions in the last N slots to estimate E[ Ik(t)], i.e.,
1
N

∑t−1
t0=t−N−1 (Ak(t0) − Vk(t0)). Then, the remaining life

time of the kth user at the slot t can be calculated by

Rk(t) = Qmax
k − Qk(t)

1
N

∑t−1
t0=t−N−1 (Ak(t0) − Vk(t0))

. (5)

Problem statement
This paper aims for maximizing the throughput while
reducing BLR and keeping certain fairness among users.
In order to achieve this, we jointly consider the users’
queue priority and RBs capacity for controlling the ser-
vice rate of each data queue. The users’ queue priority
is based on the remaining life time or the queue over-
flow probability which is calculated by applying the large
deviation principle. Then, according to the queue prior-
ity, we adjust the service rate of each user queue through
dynamically allocating the RBs, in turn providing different
transmission rate to achieve statistic QoS guarantee.
Channel quality indicator (CQI) reporting procedure is

a fundamental feature of LTE networks since it enables
the estimation of the downlink channel quality at the eNB
[27]. UE reports a CQI value of each RB to the eNB, and
the eNB uses CQI for the resource allocation [28]. Let
rnk (t) denote instantaneous data transmission rate when
the nth SB is assigned to the kth user queue at the slot
t. According to CQI information, rnk (t) can be calculated
using the AMC module or simply estimated via the well-
known Shannon’s formula for the channel capacity [27],
i.e.,

rnk (t) = log2
(
1 + γk,n

)
. (6)

where γk,n is the signal-to-interference-plus-noise-ratio
(SINR) for the kth user on the nth SB.
Let us define xnk (t) to indicate whether the nth SB is

assigned to the kth user at the slot t. If the nth SB is
assigned to the kth user at the slot t, we have xnk(t)=1. Oth-
erwise xnk(t)=0. Then, the resource allocation problem can
be defined as improving the system throughput as large as
possible, i.e.,

Fig. 2 Queueing system model
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max
K∑

k=1

N∑
n=1

xnk(t)r
n
k (t), (7)

In this paper, we apply Jain’s fairness index [29], F(t), to
indicate the fairness to denote the system fairness at time
t. The formula of Jain’s fairness index are given as (33)
and (34) in the section of Performance evaluation. The
constraints are listed as follows:

K∑
k=1

xnk(t) = 1, n ∈ {1, 2, . . . ,N}. (8)

1 − F(t) ≤ ξ . (9)
where ξ is a given threshold value of the fairness deviation.
Equation (8) indicates that each SB can be only assigned
to one user during the slot t. Equation (9) indicates that
the difference between 1 and the system fairness should
be kept less than ξ .
The resource allocation problem (7–9) is complicated

and intractable to obtain the optimal solution by exhaus-
tive search. Here, we propose a buffer-aware adaptive
resource allocation scheme which considers the differ-
ent priorities of user queues and RB capacity, in order
to achieve a better performance tradeoff of throughput,
fairness and average BLR.

User priority determination scheme
In order to improve the total system throughput and
QoS for different users while keeping certain fairness, we
need to determine the users’ queue priority for deriving
an online measurement based resource allocation. The
overflow probability estimationmodel is derived by apply-
ing large deviation principle, which requires no statistical
knowledge of the network conditions. Then, we rank the
users’ queue priority by their remaining life time or their
queue overflow probability.

Estimation model for the queue overflow probability
The arrival rate of the incoming bits depends on the ser-
vice type, while the service rate depends on the resource
allocation policy as well as the wireless channel conditions
which are time-varying in nature. Hence, the arrival pro-
cess and the service process are independent of each other.
Our aim is to control all user queues in such a way that the
service demands of the data in each queue could be sat-
isfied. Moreover, the resulted scheme should be robust to
the variations of the arrival and service processes.
Let Ik(t) = Ak(t) − Vk(t), where Ik(t) ∈ {−mV , · · · ,

0, 1, · · · ,mA}, and let πk
i = P(Ik(t) = i) denote the cor-

responding kth user queue-length variation probability
distribution. Since Ak(t) is determined by the bit arrival
number during the slot t and Vk(t) is determined by the
bit number served during the slot t, their difference Ik(t)
characterizes the mismatch between the bit service rate

and the bit arrival rate of the kth user queue during the
slot t. Ik(t) < 0 implies that the bit service rate is higher
than the arrival rate in the tth slot, while Ik(t) > 0 implies
that the bit service rate cannot satisfy the bit arrival. Due
to the time-varying number of bit arrivals and the state of
SBs, the polarity of the sequence Ik(t)(t = 1, 2, . . .) may
change frequently between negative and positive.
The kth user queue length increment during the period

spanning from the tth slot to the (t + T)th slot can be
formulated as

It+T
k =

T∑
i=1

Ik(t + i), (10)

where T is called prediction interval.
Then, the length of the kth user queue at the beginning

of the (t + T)th slot can be expressed as

Qk(t + T) = Qk(t) + It+T
k . (11)

Let Pt+T
koverflow denote the overflow probability of the kth

user queue during the slot (t + T), which is defined as

Pt+T
koverflow = P

(
Qk(t + T) > Qmax

k
)
. (12)

The above expression can be rewritten as

Pt+T
koverflow = P

(
Qk(t) + It+T

k > Qmax
k

)
. (13)

Define the achievable average queue growth of the kth
user queue during the future T slots as

gk = Qmax
k − Qk(t)

T
, (14)

and the expected average queue growth of the kth user
queue in each slot during the T slots as

ck = E
[∑T

i=1 Ik(t + i)
T

]
. (15)

where E[ ·] denotes expectation operator. ck > gk implies
that there is high overflow possibility of the kth user queue
after T slots. Equation (12) can be further written as

Pt+T
koverflow = P

(
Qk(t) + It+T

k > Qmax
k

)
= P

(
It+T
k /T > (Qmax

k − Qk(t))/T
)

= p
(∑T

i=1 Ik(t + i)
T

> gk

)
. (16)

The term
∑T

i=1 Ik(t+i)
T in (16) is determined by the bits

departure or the resource allocation, while gk is deter-
mined by the current length of the kth user queue. Since
the queue overflow probability indicates the mismatch
between the resource and the traffic, we can dynami-
cally rank the users’ queue priority based on the value
of Pt+T

koverflow . The larger value of Pt+T
koverflow means that queue

overflow is more likely to occur and the corresponding
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user queue should have the higher priority of resource
allocation, thus reducing the bit loss rate and satisfy-
ing QoS requirement. This is why the proposed method
jointly considers RB capacity and the queue priority.
Cramér′s Theorem in the context of large deviation

principle can be applied to estimate the overflow probabil-
ity in [30]. Since Ak(t) is an i.i.d process, Ik(t)(t = 1, 2, . . .)
are also i.i.d random variables with a finite moment gen-
erating function G(θ) = E{eθ Ik(t)}. According to Cramér′s
Theorem [31], if ck < gk , the sequence Ik(t)(t = 1, 2, . . .)
obeys the large deviation principle, and we have

lim
T→∞

1
T
logP

(∑T
i=1 Ik(t + i)

T
> gk

)
= −l(gk). (17)

where

l(gk) = supθ>0{gkθ − logG(θ)}. (18)

and

logG(θ) = log

⎧⎨
⎩

mA∑
i=−mV

πk
i e

iθ

⎫⎬
⎭ . (19)

Note that logG(θ) is a convex function, and the rate
function l(gk) is also convex [31]. For a sufficiently large
value of T , according to (17) the overflow probability can
be approximated by

Pt+T
koverflow ≈ e−Tl(gk). (20)

In theory, the overflow probability estimate becomes
more accurate asT increases. Hence, the value ofT should
be sufficiently large. However, owing to the rapid expo-
nential decay of the overflow probability estimate with T ,
we can set T to a moderate value for the sake of acquiring
an accurate overflow probability estimate. The experi-
mental results in the section of ‘Performance evaluation’
demonstrate that T ≥ 60 is appropriate.
In the next section, we show how to online estimate the

overflow probability based on (20).

Online estimation of the queue overflow probability
According to (20), estimating the overflow probability
requires the values of gk , ck , and πk

i . It is easy to calculate
gk according to (14). However, we have to estimate ck and
πk
i because there is no prior knowledge about Ik(t). There-

fore, the historical observations are utilized to estimate
these parameters by applying a sliding window-based
method.
Suppose the observed sequence is given by {I1, I2,

I3, · · · }. The sliding window covers the Ts most recent
entries in this sequence, which is slid over this sequence.
For the nth window, the observation vector is denoted by
Wn =[ In, In−1, In−2, · · · In−Ts+1].

For the parameter ck , we use the sample mean as its
estimate, i.e.,

ĉk =
∑n

i=n−Ts+1 Ik(i)
Ts

. (21)

Following the similar steps in [32], we can apply the large
deviation principle to analyze the confidence interval of
ck .
Below, we will estimate πk

i (i ∈ {−mV , . . . , 0, 1, . . . ,
mA}). Let Tk

i denote the number of Ik(t) = i events during
the Ts slots, which can be calculated by

Tk
i =

n∑
t=n−Ts+1

1i(Ik(t)). (22)

where 1i(·) is a indicator function. When Ik(t) = i, it has
a value of 1, otherwise 0. Then, the frequency of Ik(t) = i
can be estimated as

ûki (t) = Tk
i

Ts
. (23)

If the value of Ts is too small, it may result in a large
estimate error of ûki (t), while too large, it may reduce the
sensitivity to queue variations. Hence, Ts should be set to
a moderate value. We set it to 60 in our experiments. We
apply an exponential smoothing method to smoothen the
estimated value, which is written as

π̂k
i (t) = ρπ̂k

i (t − 1) + (1 − ρ)ûki (t). (24)

where the parameter ρ ∈[ 0, 1]. If ρ approaches to 1, the
value of π̂k

i (t) largely depends on the past estimation,
while if ρ=0, π̂k

i (t) totally depends on the current estimate
ûki (t). According to Gardner’s report [33], ρ ∈[ 0.7, 0.9] is
usually recommended.
The above steps assist us to derive the online

measurement-based method to estimate the queue over-
flow probability Pt+T

koverflow based on (20) in the (t + T) slot,
by setting T to a moderate value in a practical application.
The experimental results show that T ≥ 60 is appropriate.

User priority determination algorithm
In the case of ĉk ≥ gk , the average growth length of the
kth user queue in each slot, ĉk , is higher than the achiev-
able average growth length of the kth user queue per slot,
gk , in the forthcoming T slots. This implies that if keep-
ing the current queue configuration unchanged with the
bit service rate Vk(t), after T slots, the queue will be more
likely to have an overflow situation. Therefore, in this sce-
nario, we should improve the bit service rate to prolong
the remaining life time. In this paper, remaining life time
Rk(t) can be calculated by (5) to rank the queue priority of
resource allocation.
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However, in the case of ĉk < gk , the average growth
length of the kth user queue in each slot, ĉk , is lower
than the achievable average growth length of the kth user
queue, gk , in the forthcoming T slots. But this does not
necessarily imply that no overflow will happen in the
futureT slots, since ĉk is the average growth per slot which
cannot characterize the specific queue length growth
in a single time slot. Hence, the queue overflow might
still occur. Since we have gk > ĉk , the queue overflow
remains a rare event, and the queue overflow probabil-
ity in the (t + T) slot, Pt+T

koverflow , can be approximated
by (20).
The buffer-aware priority determination algorithm

determines a priority value for each user, where the user
in the case of ĉk ≥ gk is more emergent than in the case
of ĉk < gk . The smallest value of Rk(t) indicates the high-
est priority of the kth user. The value in ascending order
represents that the users’ priority is from high to low. The
smaller value is Pt+T

koverflow , the lower priority is the kth user.
The value in descending order indicates that the users’ pri-
ority is from high to low. According to the user queues’
different priorities, in the next section, we show how to
dynamically allocate the RBs to adjust the service rate
for each user queue for improving the system through-
put subject to providing QoS guarantee while keeping a
certain fairness.

Onlinemeasurement-based algorithm for dynamic
RBs allocation
In this section, we will present the proposed online esti-
mation based dynamic service rate control algorithm,
which relies on a strategy of mitigating the overflow prob-
ability or extending the remaining life time.
Suppose there are K user queues indexed by the set

� = {1, 2, . . .K} and N SBs indexed by the set � =
{1, 2, . . .N}. For any k ∈ �, we calculate the value of Rk(t)
and Pt+T

koverflow in the case of ĉk ≥ gk and ĉk < gk , respec-
tively. Then, the resource allocation strategy operates as
follows:

1. In the proposed buffer-aware resource allocation
scheme, at the slot t we seek the user

k1 = argmin
k∈�

{Rk(t)}. (25)

2. The SB having the maximum SINR can be obtained
by

n1 = argmax
n∈�

{γn,k1}. (26)

Then, we can calculate the transmission rate rn1k1 (t)
according to (6).

3. If Ak1(t) > rn1k1 (t), it means that allocating SB is not
enough to transmit the bits in the buffer for the most

emergent user queue. Let � = �\{n1} (which means
removing the element n1 from the set �), then we
choose the SB n2 = argmaxn∈�{γn,k1} and calculate
the transmission rate rn2k1 (t). Compare the value of
Ak1(t) with the value of rn1k1 (t)+ rn2k1 (t). If Ak1(t) ≤ rn1k1
(t) + rn2k1 (t), execute the step 4. Otherwise, let
� = �\{n2}. Choose the SB n3 = argmaxn∈�{γn,k1}
and calculate the transmission rate rn3k1 (t). Compare
the value of Ak1(t) with the value of rn1k1 (t) + rn2k1 (t)+
rn3k1 (t), and repeat the above procedure until Ak1(t) ≤
rn1k1 (t) + rn2k1 (t) + · · · + rnmk1 (t).

4. If rn1k1 (t) + rn2k1 (t) + · · · + rnmk1 (t) ≤ Qk1(t) + Ak1(t),
the bit number transmitted in the slot t can be
calculated as

Vk1(t) = rn1k1 (t) + rn2k1 (t) + · · · + rnmk1 (t). (27)

Otherwise rn1k1 (t) + rn2k1 (t) + · · · + rnmk1 (t) > Qk1(t)+
Ak1(t), the bit number transmitted in the slot t can
be calculated as

Vk1(t) = Qk1(t) + Ak1(t). (28)

5. Then, let � = �\{k1}, � = �\{nm}, we seek the
user k2 = argmink∈�{Rk(t)}, by repeating the
procedures 2, 3, and 4, and allocate several SBs for
transmitting the data of the k2th user. Repeat the
procedure 5 until all the users which have the value
of Rk(t) have been allocated with the SBs.

6. After that, we further allocate SBs to the users who
have the value of Pt+T

koverflow . We choose the user

kl = argmax
k∈�

{
Pt+T
koverflow

}
. (29)

and repeat the similar procedures 2, 3, 4, and 5 to
allocate the resource and schedule users until � = ∅.

7. If � 
= ∅ and � = ∅, it means that there are RBs
which have not be used. In order to make the best
utilization of RBs, we choose the users who have
Vk(t) < Qk(t) + Ak(t) and constitute a new user set
�̄. We seek the user

kw = argmax
k∈�̄

{Qk(t) + Ak(t) − Vk(t)}. (30)

8. Then the remaining SB with the maximum SINR can
be obtained via

nw = argmax
n∈�

{γn,kw}. (31)

According to (6), we can calculate the transmission
rate rnwkw (t).

9. If Qkw(t) + Akw(t) − Vkw(t) > rnwkw (t), it means that
the number of allocated SB is not enough to transmit



Zhu and Yang EURASIP Journal onWireless Communications and Networking  (2015) 2015:176 Page 8 of 16

the remaining bits in the buffer. Let � = �\{nw}, we
choose the SB nw1 = argmaxn∈�{γn,kw} and
calculate the transmission rate rnw1kw (t). Compare the
value of Qkw(t) + Akw(t) − Vkw(t) with the value of
rnwkw (t) + rnw1kw (t), if Qkw(t) + Akw(t) − Vkw(t) ≤
rnwkw (t) + rnw1kw (t), we allocate the SBs nw, nw1 to the
kwth user, if not, let � = �\{n2}, choose the SB
nw3 = argmaxn∈�{γn,kw} and calculate the
transmission rate rnw3kw (t). Repeat the above
procedure, choose the SBs by using the same method
until Qkw(t) + Akw(t) − Vkw(t) ≤ rnwkw (t)+
rnw1kw (t) + · · · + rnwwkw (t). Accordingly, we allocate the
SBs nw, nw1 , · · · , nww to the kwth user.

10. Let �̄ = �̄\{kw}, � = �\{nw}, and seek the user
kw1 = argmaxk∈�̄{Qk(t) + Ak(t) − Vk(t)}. Repeat
the procedures 8, 9, and 10 until � = ∅ or �̄ = ∅.

11. After allocating SBs to the users in the slot t, we
update the values of ĉk and gk corresponding to all
the users in the slot t + 1. Apply the user priority
determination algorithm in the section III to rank the
users’ queue priority again, and then repeat the above
all procedure.

The workflow of the proposed method is illustrated
in Fig. 3. The proposed method will use the obser-
vations of buffer fullness, data arrival rate Ak(t), and
CQI feedback from user equipments (UEs) to calculate
the users’ queue priority based on their remaining life
time Rk(t) or their queue overflow probability Pt+T

koverflow .
Once the users’ queue priority has been determined, the
dynamic RBs allocation algorithm based on online mea-
surement is applied to adjust the service rate Vk(t) by
making decisions xnk(t). Then, the decisions xnk(t) are
forwarded to eNB Scheduler to execute the resource
scheduling.
The algorithm operates at every beginning of the

scheduling interval. The detail of the strategy is presented
in Algorithm 1.

Algorithm 1 Buffer-aware adaptive resource allocation
algorithm

Transmitted bit number of each user queue in slot t is
denoted by Vk(t), for k = 1, · · · ,K
for k = 1; k ≤ K ; k + + do

if Qk(t) ≥ Qmax then
Calculate C̄k

else
Calculate ĉk , gk
if ĉk ≥ gk then

Calculate Rk(t)
else

Calculate Pt+T
koverflow

end if
end if

end for
while � 
= ∅ or � 
= ∅ do

if the value of Rk(t) exists then
Choose the user k1 = argmink∈�{Rk(t)}

else
Choose the user k1 = argmaxk∈�{Pt+T

koverflow}
end if
Seek the SB n1 = argmaxn∈�{γn,k1} for the k1th user
Calculate rn1k1 (t)
Sumk1(t) = 0
while Sumk1(t) ≤ Ak1(t) do

Sumk1(t) = Sumk1(t) + rn1k1 (t)
� = �\{n1}
Seek the SB n1 = argmaxn∈�{γn,k1}

end while
if Sumk1(t) ≤ Qk1(t) + Ak1(t) then

Vk1(t) = Sumk1(t)
else

Vk1(t) = Qk1(t) + Ak1(t)
end if
� = �\{k1}

end while

Remaining life time:
Buffer overflow probability:

Queue

Input:
Observations
(buffer, , CQI)

( )kR t
overflow

t T
kP

( )kV t ( )n
kx t

Dynamic RBs allocation

Output:
(Service: , Variables: )

Data
Arrival: ( )kA t eNB

Scheduler

( )kA t

Fig. 3 A buffer-aware adaptive resource allocation algorithm for LTE downlink transmission
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Performance evaluation
In this section, we characterize the performance of our
online measurement-based adaptive resource allocation
algorithm, and provide performance comparisons with
other five algorithms, namely CABA algorithm [23],
PF metric(1) algorithm, PF metric(2) algorithm [19],
MaxWeight-Alg(3) [17], and IHRR algorithm [18].We first
describe the simulation setup, and then the metrics used
for performance evaluation are presented.

Experiment setup
We simulated a multiuser scenario, where the maximum
number of communicating users was set toK = 10, 30, 50.
Here, the bit arrival rate for each user is assumed to obey
the Poisson distribution with λ = 50 kbit/ms.
CQI is discretized into 15 levels which correspond to 15

different pairs of modulation choice and code rate. This
implies that there are 15 possible transmission rates. A
mapping between SINR ranges and CQIs is presented in
[34]. The CQI values are used together with the number
of allocated RBs to determine the transmission rates.

Performance metrics
To evaluate the performance of the proposed dynamic
resource allocation, we define three metrics as follows:

• Average bit loss rate: This metric indicates QoS of K
users. It is defined as time average bit loss rate during
a period of 
, i.e.,

C̄k = 1

 + 1

T0+
∑
t=T0

Dk(t)
Ak(t)

. (32)

where Dk(t) denotes the number of bit loss during
the slot t for the kth user. Obviously, smaller C̄ is
preferred.

• Fairness: This metric is measured using Jain’s fairness
index [29], which is widely applied for evaluating the
system fairness. It is described as follows

F(t) =
(∑K

k=1 Vk(t)
)2

K
∑K

k=1 V 2
k (t)

, (33)

where F(t) denotes the fairness at time t. Then, the
system fairness can be calculated according to

F = 1

 + 1

T0+
∑
t=T0

F(t). (34)

• Average throughput: Our aim is improving the
system throughput subject to providing QoS
guarantee for different users. The larger average
system throughput implies better performance.

All the simulation results were averaged over 50 indepen-
dent runs.

Experimental results
Performance comparison for different user index
We used Matlab for implementing the simulations. The
simulation model is based on the 3GPP LTE systemmodel
and it has a single cell with downlink transmission, where
the number of RBs is 50, the carrier frequency is 2 GHz,
and the system bandwidth is 10 MHz. Following the sim-
ilar steps in [32], we can applying the large deviation
principle to analyze the confidence interval of ĉk .
The corresponding simulation parameters are listed in

Table 1. The prediction interval T = 60, the sliding win-
dow length Ts = 60, the forgetting factor ρ = 0.7, and the
average channel SINR of 15 dB. In order to simplify the
calculation, we set Qmax

k = Qmax = 3 × 104 bit.
In Fig. 4, we plotted the average BLR of ten users for

all the resource allocation schemes. The X axis denotes
the user index. It can be seen that the proposed algo-
rithm achieves the best performance with average BLR of
2.12 × 10−3, which is lower than those of PF metric(1)
(about 2.57 × 10−3), CABA (about 2.29 × 10−3), IHRR
(about 2.14×10−3), and PF metric(2) (about 2.13×10−3).
MaxWeight-Alg(3) may perform unfair resource sharing
among users. Hence, the curve of the average BLR for
MaxWeight-Alg(3) is unstable compared with other algo-
rithms. While for the proposed algorithm, we calculate
the priority for each user queue by the remaining life time
or queue overflow probability, which is applied to allocate
RBs. As a result, it helps to reduce the overflow probabil-
ity of the queue with highest priority. Thus, it achieves a
lower value of the average BLR.
In Fig. 5, we show the average throughput correspond-

ing to ten users for different resource allocation algo-
rithms. It can been seen that the average throughput for
each user in the proposed algorithm significantly outper-
forms CABA, PF metric(1), PF metric(2), and IHRR. The
reason for this is that adaptive resource allocation with
the queue priority considers both the buffer status and the
RBs capacity, thus improving all users’ transmission rate
and keeping a high fairness among all users. By contrast,

Table 1 Simulation parameters

Parameter Setting

Carrier frequency 2 GHz

System bandwidth 10 MHz

Transmission time interval 1 ms

Subcarriers per resource block 12

Resource block bandwidth 180 KHz

Number of resource blocks 50

Type of system Single cell

Channel model Urban

Simulation time 1000 TTIs
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Fig. 4 The average BLR for different user

PF metric(1) does not consider the queue length at all,
which lead to the lowest performance. PF metric(2) suf-
fers from the isolated RB assignment strategy, and thus
it fails to improve the system throughput. For CABA,
the weighted factor in the priority function may influ-
ence the performance. Considering that the user priority
determination in IHRR has some limitation for resource
allocation. MaxWeight-Alg(3) performs better than the
other algorithms, but it does not consider the fairness.

Performance at different SINRs
This section investigates the performance of the proposed
algorithm and other compared algorithms under different
channel SINR conditions. In the simulation, the average
channel SINR recorded varies from 11 to 20 dB with a
step-size of 1 dB. The other parameters and simulation
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Fig. 5 The average throughput for different user

settings were the same as those in Section ‘Performance
comparison for different user index’. The average BLR for
all users is calculated by

C̄ = 1
K

k=K∑
k=1

C̄k . (35)

The average BLR versus the average channel SINR for
these resource allocation schemes with ten users were
plotted in Fig. 6. As shown in Fig. 6, the average BLR
of the proposed method decreases as the value of SINR
increases. The reason is that, at low SINR region, the bit
service rate is not sufficient, and the current queue may
have a shorter remaining life time or a larger overflow
probability, which induces a large number of bits lost. As
the average SINR increases, the bit service rate is increas-
ing. Thus, the remaining life time is prolonged as well as
the overflow probability decreases, which may reduce the
average BLR. Compared with other algorithms, the pro-
posed algorithm achieves the lowest BLR. The reason is
that other algorithms fail to consider the priorities of user
queues based on the buffer status and the RBs capacity.
Figure 7 shows the fairness of the proposed algorithm,

CABA, PF metric(1), PF metric(2), MaxWeight-Alg(3),
and IHRR. We applied Jain’s fairness index in the simula-
tion. It is shown that the fairness index of the proposed
algorithm is the highest among these algorithms, which is
approximately 0.998. This indicates that the queue prior-
ity assists the proposed algorithm to balance the resource
allocation among the users, thereby achieving certain
throughput fairness. From Fig. 7, we can see that the pro-
posed algorithm may be insensitive to the value of the
average SINR, but other algorithms undergo a relatively
large variation for the different average SINRs. This also
implies that their performance is subject to the channel
quality.
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Figure 8 shows the average system throughput for dif-
ferent average channel SINR for the different resource
allocation schemes with ten users. As shown in Fig. 8, the
average system throughput increases upon increasing the
average SINR. The results demonstrate that MaxWeight-
Alg(3) performs better than the other strategies in terms
of the overall throughput, but it has a lowest fairness
level as shown in Fig. 7. For the rest algorithms, the pro-
posed algorithm performs the better. The reason is that by
choosing the appropriate RBs for the user queues accord-
ing to their priority, the system throughput is improved.
Combining the results of Figs. 7 and 8, it can be con-
cluded that compared to the other methods, the pro-
posed method both improves the fairness and the system

throughput. This essentially benefits from the technique
of queue priority applied in the proposed method.

Performance for different number of users
This section investigates the performance of the proposed
algorithm and other benchmark algorithms for different
number of users. In the simulation, the number of users K
were chosen in the range [10, 50]. The other parameters
and simulation settings were the same as those in Section
‘Performance comparison for different user index’.
Figure 9 shows that the average BLR decreases as the

number of users increases for the different resource allo-
cation schemes. This reason is that the same amount of
resources has to be shared among a higher number of
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Fig. 8 The average throughput for different average channel SINR
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Fig. 9 The average BLR for different number of users

candidates, which implies that with the increasing num-
ber of users, there is a much higher probability of bit loss.
From Fig. 9, it can be observed that the average BLR of
the proposed algorithm is the lowest among these algo-
rithms, which maintains a small and steady growth trend
with the increasing number of users in the cell. Since PF
metric(1) does not consider buffer fullness, and PF met-
ric(2), MaxWeight-Alg(3), IHRR as well as CABA fail to
characterize the priorities of user data queues based on
the buffer status and the RBs capacity, they have a higher
average BLR than the proposed algorithm.
Figure 10 shows that the fairness index for the different

resource allocation schemes decreases as the number of
users increases. The fairness index of the proposed algo-
rithm is the highest among these algorithms, whichmeans
that it provides high fairness regardless of the user in the
cell. The reason for this is that the queue priority based
on the buffer status and the RBs capacity assists the pro-
posed algorithm to balance the resource allocation among
the users. The algorithm having the worst fairness index is
MaxWeight-Alg(3); the reason is that it aims to maximize
the overall system throughput, rather than the throughput
of a single user.
Figure 11 shows that the average user throughput for all

strategies decreases as the number of users increases. This
result is natural because a higher number of candidates
are sharing the same amount of resources. MaxWeight-
Alg(3) results in the highest throughput, followed by the
proposed, PF metric(2), CABA, IHRR, and PF metric(1).

From Figs. 9, 10, and 11, it can be concluded that com-
pared to the other methods, the proposed method both
improves the fairness and the average user throughput, at
the same time reduces the average BLR.

Effect of prediction interval (T)
In this section, we carried out an experiment in order
to investigate the effect of the prediction interval by set-
ting T = 20, 40, 60, 80, 100. The other parameters and
the simulation settings were the same as those in Section
‘Performance comparison for different user index’.
Figures 12 and 13 show the simulation results for the
different prediction intervals. Observe in Fig. 12 that as
the prediction interval duration increases, the average
BLR decays rapidly. Although the prediction interval, T ,
should be sufficiently large according to the large devi-
ation approximation in (20), the simulation results show
that a choice T ≥ 60 allows the proposed algorithm
to achieve a reduced bit loss rate. Figure 13 shows that
the average throughput increases upon increasing the
interval T . This is because as T increases, the queue over-
flow probability estimate becomes more accurate, which
results in more accurate resource allocation for achieving
a higher average throughput.

Effect of buffer size (Qmax)
In this section, we carried out an experiment in order to
analyze the different performance obtained by changing
the buffer size Qmax from (0.5 × 104) bit to (5 × 104)
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bit with a step-size of (0.5 × 104) bit. The other param-
eters and the simulation settings were the same as those
in Section ‘Performance comparison for different user
index’. The simulation results were plotted in Figs. 14
and 15.
From Fig. 14, we can see that the average BLR decreased

rapidly as the buffer size increased from (0.5 × 104) bit
to (2 × 104) bit. This mean that too small buffer size is
more likely to incur queue overflow and bit loss. As Qmax

continues to increase, the average BLR reduces slowly.
The reason is that larger capacity of the buffer has a
lower probability of buffer overflow. Figure 14 shows that
the proposed algorithm outperform the other methods in
terms of average BLR. This benefits from the application
of the user queue’s priority calculated by the remaining life
time or queue overflow probability.
We also observe from Fig. 15 that the average system

throughput for all strategies is improved by increasing the
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buffer size. The proposed algorithm performs better than
other algorithms except for MaxWeight-Alg(3). The rea-
son is that increasing the buffer size decreases the queue
overflow probabilities. The proposed algorithm chooses
the appropriate RBs for the user queues according to their
remaining life time or queue overflow probability, and the
system throughput is improved. From Figs. 14 and 15, we
can concluded that compared with other algorithms, the
proposed method reduces the average BLR and improves
the average system throughput as increasing the buffer
size.

Conclusion
In this paper, we jointly consider user queue priority
and the RBs capacity to develop a buffer-aware adaptive
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resource allocation scheme in LTE transmission systems.
Under the constraint of finite buffer space, the proposed
scheme aims for improving both the overall system
throughput and the statistic QoS while keeping certain
fairness among users. We derived an analytical formula
based on the large deviation principle invoked for esti-
mating the overflow probability as a function of the buffer
variance. Also, the remaining life time of a queue was
defined, and its estimation model was presented. Both
the queue overflow probability and remaining life time
were applied to determine the queue priority. Accord-
ing to the queue priority, an online measurement based
algorithm was proposed to schedule RBs for adjusting
the service rate of the user queues. The proposed algo-
rithm does not rely on any prior knowledge about network
conditions. Numerical results show that compared to tra-
ditional scheduling schemes, the proposed algorithm has
a better tradeoff among throughput, fairness, and QoS. It
improves the average system throughput and keeps a bet-
ter fairness among users, while reducing the average BLR.
It should be pointed out that this paper considered all the
traffic at the eNodeB. However, the emerging technology
of SDN and middle deep packet inspection (DPI) boxes
can be applied to identify the traffic. Hence, we will con-
sider the application aware scheduling in our future work
with the aid of SDN and DPI.
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