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Abstract

In this paper, a novel approach is proposed based on the probability density function (PDF) concept to achieve the
capacity of a correlated ergodic multi-input multi-output (MIMO) channel with Nakagami-m fading. In our proposed
method, channel parameters are unknown, and they are initially estimated by using the PDF of the received samples
in the receiving antennas. The copula theory is employed to estimate the parameters of the channel in the proposed
PDF-based approach. By appealing to copula, the notion of PDF estimation is simplified in the computation technique
when we are faced with correlated signals. Since we are working on a correlated channel, the copula concept results
in a powerful estimation approach for the PDF of the signals in the receivers. Accurate PDF estimation leads to having
a precise calculation for channel parameters. Hence, the new approach guarantees that the capacity of a correlated
ergodic channel is predicted reliably. In the previous works, either the capacity of simple uncorrelated Nakagami-m
channels is presented or an asymptotic formulation is suggested for a correlated Nakagami-m channel. However, our
proposed method introduces an analytic expression for the capacity of the MIMO correlated Nakagami-m fading
channel relying on copula. All the results in both channel parameter estimation and channel capacity prediction are
validated with some simulations.
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1 Introduction
The transmission over multi-input multi-output (MIMO)
channels offers significant increases in data throughput
and link range without additional bandwidth or increased
transmit power and results in higher capacity [1,2]. It is
often supposed that the channel state information (CSI)
is perfectly known at the receiver. However, in the actual
environment, the channel has to be estimated. Precise
estimation of the channel parameters critically helps in
obtaining an appropriate design for the communication
systems. Since there are more channel parameters in
MIMO channels, a more powerful approach is required
for the estimation.
There is another idealized assumption about channel

coefficients that are considered to be independent and
identically distributed (i.i.d) [3,4]. However, the men-
tioned assumption is not practical, on the other hand,
in many practical situations, there exists a correlation
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among the antennas. This is due to poor scattering con-
ditions or physical vicinity among the antennas [5]. Thus,
the investigation about the behavior of MIMO systems in
correlated fading environments is of interest [6].
Since the Rayleigh model is a reasonable assumption for

the fading in many wireless communication systems, it is
often supposed that the MIMO channel fading is Rayleigh
distributed [6,7]. Nevertheless, themeasurements [8] con-
clude that the Nakagami-mmodel presents a better fitting
to the fading channel distribution. Achieving more simi-
larity to the actual environment, the usual uniform proba-
bility density function (PDF) assumption for the phase of
the Nakagami-mmodel is not adopted in this paper, and a
more reliable PDF is considered [9].
In this paper, a 2 × 2 MIMO channel is considered in

which the transmitting antennas are close and correlated,
and the receiving antennas are far and independent [7,10].
Note that it is able to be generalized to arbitrary num-
ber of transmitters and receivers. The Nakagami-mmodel
is also assumed for the fading environment. In addition
to changing the amplitude of the transmitting signal due
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to the fading, it also results in a nonuniform phase shift-
ing in the transmitting signal. A new PDF-based approach
is applied to derive the Nakagami-m parameters related
to two different paths from transmitters to two isolated
receivers. This method is also capable of estimating the
correlation parameter between the signals sent from two
near transmitters.
Since we are faced with the correlated signals and our

method is PDF-based, the powerful concept of copula
effectively improves the proposed estimation method.
The copula theory is suitable when two or several ran-
dom variables are dependent. Thus, to calculate the total
PDF of the received signal in the receivers, which includes
some correlated parts, the copula theory helps us to attain
a more precise PDF, and it results in having more reliable
estimated parameters.
After estimation, the MIMO channel capacity is pre-

dicted relying on the estimated parameters. Since we have
a correlated Nakagami-m channel, the copula theory is
again employed to achieve the PDF of eigenvalues of
the channel matrix, and by using the obtained PDF, the
capacity is calculated.
The organization of the paper is in the following form:

Section 2 includes some facts about the dependency prob-
lem and the role of copula theory in such problems. In
Section 3, the MIMO channel that we are faced with
is defined, and we discuss the correlation between the
signals in the channel and the fading of the channel envi-
ronment. The PDF of the received signal in each receiver is
obtained based on the copula theory in Section 4, and the
fading and correlation parameters are determined. The
channel capacity is specified in Section 5 by using the PDF
related to eigenvalues of the channel matrix. Some simula-
tion results are presented in Section 6 to approve the pro-
posed approach, and finally, some results are concluded in
Section 7. For reader convenience, Table 1 provides a list
of symbols and mathematical notations.

2 Copula
One of the popular methods in modeling the dependen-
cies is the copula approach. The copula was first employed
by Sklar in mathematical and statistical problems [11].
Copula is a mathematical function that combines uni-
variate PDFs to produce a joint PDF with a particular
dependency structure. In this paper, the estimation of fad-
ing parameters is done by using the PDF of the received
signal, given that the received signal is one of the MIMO
system outputs including the sum of several correlated
signals transmitted through the MIMO channel. More-
over, this signal is corrupted by an independent noise.
Due to the correlated nature of the received signal, we are
required to determine the PDF of a signal that is com-
posed of several dependent components. Thus, the copula
concept is a powerful tool that is suitable for our problem,

Table 1 Symbols andmathematical notations

Notation Meaning

(.)T Transpose of matrix

(.)† Complex conjugate transpose of matrix

|R| Determinant of matrix R

tr(.) Trace operator

E Expectation value

C Copula function

c Copula density function

F Cumulative distribution function

f Probability density function

I Identity matrix

H Channel matrix

Ct Channel capacity

ρ Linear correlation parameter

α Clayton copula parameter

ν t copula parameter

and it facilitates the PDF estimation procedure. The fun-
damental theorem for copula was given by Sklar. Based on
the Sklar theorem, for a given joint multivariate PDF and
the relevant marginal PDFs, there exists a copula function
that relates them. In a multivariate case, Sklar’s theorem is
as follows:
Let F be an n-dimensional cumulative distribution func-

tion (CDF) with margins F1, . . . , Fn. Then there exists a
function C : [0, 1]n → [0, 1] such that:

F (x1, . . . , xn) = C (F1 (x1) , . . . , Fn (xn)) . (1)

Conversely, if C is a copula and F1, . . . , Fn are CDFs, then
the function F defined by (1) is an n-dimensional CDF with
margins F1, . . . , Fn.
The proof of the theorem could be seen in [12]. Func-

tion C has some inherent properties, a description of
which can be found thoroughly in [12]. Based on the cop-
ula properties, we can state that a copula is itself a CDF,
defined on [0, 1]n, with uniform margins.
The construction of multivariate CDFs by employing

the copula function provides a suitable flexibility, because
we can select the margins and their dependence relation-
ship separately [13]. For any copula function, there is a
corresponding copula density function. To derive the cop-
ula density function, we firstly compute the joint PDF by
taking the nth derivative of function C in (1) as:

f (x1, . . . , xn) = ∂nC (F1 (x1) , . . . , Fn (xn))
∂x1 · · · ∂xn . (2)
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By applying the chain rule to (2):

f (x1, . . . , xn) = ∂nC (F1 (x1) , . . . , Fn (xn))
∂F1 (x1) · · · ∂Fn (xn)

×
∏n

i=1
dFi (xi)
dxi

= c (F1 (x1) , . . . , Fn (xn))
∏n

i=1
fi (xi), (3)

where f1 (x1) , . . . , fn (xn) are the marginal PDFs and c(.) is
the copula density function. It is shown in (3) that a multi-
variate PDF is constructed by multiplying a copula density
function and a set of marginal PDFs in which the cop-
ula density function can be selected independent of the
margins.
The copulas are divided into two groups. The first one is

the family of elliptical copulas. The most prominent ellip-
tical copulas are normal and Student’s t. We can specify
different levels of dependency between the margins in an
elliptical copula, and it is a suitable feature of this group.
The second class of copulas is known as the Archimedean
copulas. The ease with which they are constructed, the
great variety of copulas that belong to this class, and mod-
eling the dependence in arbitrarily high dimensions with
only one parameter are the popular properties of this
family [12].
In this paper, three kinds of copula, i.e., normal, Clayton,

and t copula, are applied for the estimation. The math-
ematical relationships for the normal copula density
function are presented in the following, and the relation-
ships related to the other two copulas could be seen in
Appendix A. The normal copula density function is given
by:

c (x1, . . . , xn) = 1
|R| 12

exp
{
−1
2
uT

(
R−1 − I

)
u
}
, (4)

where R is the correlation matrix, u is the vector u =[
u1, . . . ,un

]
in which the ith element is ui = �−1 (Fi (xi))

that �−1 is the inverse of the univariate standard normal
CDF. |.| and (.)T denote the determinant and transpose of
the matrix, respectively.
It is called the normal copula because similar to nor-

mal distribution, it also enforces dependency by using
pairwise correlations among the variables. However, in
the normal copula, the marginal distributions are arbi-
trary. After discussing the copula concept and correlation
modeling, a correlated channel is presented in the next
section, and the parameters of the mentioned channel are
estimated by using the copula function.

3 MIMO systemmodel
A wireless MIMO channel model with Nt transmitting
and Nr receiving antennas is described by:

q = Hs + n, (5)

whereH is theNr×Nt channelmatrix with random entries
hk� denoting the gain of the radio channel between the
�th transmitting antenna and the kth receiving antenna.
The vectors s ∈ CNt and q ∈ CNr are the transmitted
and received signal vectors, respectively. The vector n is a
complex Nr-dimensional noise vector whose elements are
complex white Gaussian noise samples with zero-mean
and variance σ 2

n , and E [nn†]= σ 2
n I, where † denotes the

complex conjugate transpose, I is the identity matrix, and
E denotes expectation. The entries of the channel matrix
H are supposed to be signals with the following general
form:

Z = R exp(j	), (6)

where the envelope R and phase 	 are independent.
Assume:

X � R cos(	) and Y � R sin(	). (7)

Thus, X and Y are the in-phase and quadrature compo-
nents of the signal Z. For integerm, also:

X2 =
m∑
i=1

X2
i , and Y 2 =

m∑
i=1

Y 2
i , (8)

where Xi and Yi are i.i.d. zero-mean Gaussian sam-
ples with variance 
/2m. Therefore, the PDF of R is
Nakagami-m distribution:

fR(r) = 2mm r2m−1


m�(m)
exp

(
−mr2




)
, (9)

and phase 	 has the following PDF [9]:

f	(θ) = �(m)| sin(2θ)|m−1

2m�2(m/2)
. (10)


 = E[R2] and m = 
2

E[(R2−
)2] are the scale and shape
parameters, respectively, and � (·) is the gamma function.
Based on the density functions in (9) and (10), the PDF of
the in-phase and quadrature components of the signal Z
are the same and given by [9]:

fX(x) = mm/2|x|m−1


m/2�(m/2)
exp

(
−mx2




)
, −∞ < x < ∞,

(11)

and

fY (y) = mm/2|y|m−1


m/2�(m/2)
exp

(
−my2




)
, −∞ < y < ∞.

(12)

While the PDFs are derived for integer values ofm, there
are no mathematical constraints for (11) and (12) to be
used for any m > 0.5. For uncorrelated MIMO chan-
nels, the entries of H are independent. However, there is
generally no such ideal case in practice. Hence, a study
of the correlation among these entries is of interest [14].
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When the receiving antennas are correlated, the columns
ofH are independent random vectors, but there exists the
correlation among the elements of each column. On the
other hand, if the transmitting antennas are correlated, the
rows of the channel matrix are independent and the ele-
ments of each row are correlated. In this paper, as depicted
in Figure 1, the transmitting antennas are assumed to be
adjacent and correlated, but, the receiving antennas are
far enough from each other that they could be considered
independent [7,10].

4 Channel parameter estimation
In this section, the PDF of the received signals in receiv-
ing antennas is employed in order to estimate the MIMO
channel parameters. To transmit information over a
MIMO channel, there are different methods to modu-
late the information. Quadrature amplitude modulation,
phase shift keying, frequency shift keying, and continu-
ous phase modulation are some prominent modulation
methods. All these methods use a sinusoidal function as
the carrier signal. Hence, we base signaling assumption on
a sinusoidal transmission entering a multipath environ-
ment infested by noise. Thus, the procedure is extensible
to all of the above types of modulation schemes. For sim-
plicity, it is supposed that there are two transmitters and
two receivers, i.e., Nt = 2 and Nr = 2. Assume that the
transmitting antennas transmit a signal with the following
form:

s� (t) = A cos (ωct + θ�) , � = 1, 2 , (13)

where A > 0, ωc and θ� are the amplitude, carrier
frequency and the phase of the transmitted signal, respec-
tively, and � is the number of the transmitter. It is con-
cluded that the fading effect turns the signal in (13) to the
following signal [15]:

s′� (t) = R (t) A cos (ωct + 	 (t)) . (14)

q1

q2

qs1
s2

s

m1

m2

MIMO correlated Nakagami channel

Figure 1 A 2 × 2 MIMO correlated Nakagami-m fading channel.

Since the Nakagami fading model is supposed for our
MIMO environment, the random processes R (t) and
	 (t) in (14) have the obtained PDFs in (9) and (10),
respectively. Thus, the received signals in the two
receivers are given by:

qk (t)=
2∑

�=1
Rk� (t) A cos (ωct+	k� (t))+nk (t) , k = 1, 2 ,

(15)

where nk (t) is an independent zero-mean normally dis-
tributed random process, and � and k are the numbers of
the transmitter and the receiver, respectively. The enve-
lope Rk� (t) and phase 	k� (t) of Nakagami fading model
include the shape parametermk� and scale parameter 
k�
that should be estimated.
The second-order moment of the Nakagami-m fad-

ing envelope is equal to the scale parameter. Thus, it is
obtained simply. However, the estimation of the shape
parameter is not straightforward and should be noticed
more. We focus on estimating it, and we call it the fading
parameter.
As shown in Figure 1, the adjacency of transmitting

antennas leads to actually having similar fading parame-
ters between the transmitters and a particular receiver:

mk1 = mk2
�= mk , for k = 1, 2. (16)

Therefore, the estimation of the channel parameters is
reduced to obtaining the parametersmk for k = 1, 2.
Since our parameter estimation is PDF-based, the PDF

of the received signal qk (t) in (15) is required. For sim-
plicity, the noise-free part of the received signal in (15) is
defined by q′

k
(t), and therefore, the received signals could

be given by:
qk (t) = q′

k
(t) + nk (t) , k = 1, 2 . (17)

Assume that fq′
k

(
q′
k

)
and fnk (nk) are the PDF of random

processes q′
k
(t) and nk (t) at time t, respectively. The inde-

pendence of signals q′
k
(t) and noise nk (t) leads to having

the PDF of the received signal qk (t) from the convolution
of the PDFs fq′

k

(
q′
k

)
and fnk (nk). The PDF of the normal

distributed noise, i.e., fnk (nk), is known. Thus, the prob-

lem is the calculation of the PDF fq′
k

(
q′
k

)
.

Define:

q′
k�

(t) � Rk� (t) A cos (ωct + 	k� (t)) , � = 1, 2 .
(18)

Using (15), (17), and (18), we have:

q′
k
(t) = q′

k1
(t) + q′

k2
(t) . (19)

Both signals q′
k1

(t) and q′
k2

(t) have similar stochastic
behavior; thus, they possess identical PDFs. Now, the PDF
of the signal q′

k1
(t) is obtained. Define:
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Q1 (t) �= Rk1 (t) ,

Q2 (t) �= A cos (ωct + 	k1 (t)) . (20)

It is concluded in Appendix B that fQ2 (Q2) is given by:

fQ2 (Q2) = 2−m�(m)

A2m−2�2(m/2)
√
A2 − Q2

2

× (|ξ + ζ |m−1 + |ξ − ζ |m−1) , (21)

where:

ξ
�= 2Q2

√
A2 − Q2

2 cos (2ωct) ,

ζ
�= (

2Q2
2 − A2) sin (2ωct) . (22)

The envelope Rk1 (t) and phase 	k1 (t) are independent
processes [9]; therefore, Q1 (t) and Q2 (t) are also inde-
pendent. Since the signal q′

k1
(t) is the product of two

independent signals Q1 (t) and Q2 (t), we have:

fq′
k1

(
q′
k1

)
=
∫ ∞

−∞
1
|η| fQ1Q2 (η, q

′
k1

/η) dη. (23)

Using (21) and (23), the PDF fq′
k1

(
q′
k1

)
is calculated in

the following form:

fq′
k1

(
q′
k1

)
= 21−m

A2m−2 �2 (m/2)

(m



)m ∞∫
q′
k1/A

η√
A2η2 − q′2

k1

× exp
(

−mη2




) (|χ + ψ |m−1 + |χ − ψ |m−1) dη

(24)

where:

χ
�=2q′

k1

√
A2η2 − q′2

k1
cos (2ωct) ,

ψ
�=
(
2q

′2
k1

− A2η2
)
sin (2ωct) .

(25)

As a result, the PDF of signal q′
k1

(t) is obtained. Similar
statistical behavior for the two signals q′

k1
(t) and q′

k2
(t)

results in an identical PDF for the second signal.
Now, we calculate the PDF of signal q′

k
(t) from (19). If

the signals q′
k1

(t) and q′
k2

(t) are assumed to be indepen-
dent, the PDF of q′

k
(t), i.e., fq′

(
q′), would be obtained by

using the convolution of the PDFs fq′
k1

(
q′
k1

)
and fq′

k2

(
q′
k2

)
.

However, since the transmitting antennas are assumed to
be adjacent and correlated, it is more realistic to suppose
that there is a dependency between the signals q′

k1
(t) and

q′
k2

(t), and the convolution could not be employed. The
copula theory is capable to help us in this calculation.
Based on (19), the PDF fq′

k

(
q′
k

)
is given by:

fq′
k

(
q′
k

)
=
∫ ∞

−∞
fq′

k1
q′
k2

(
q′ − q′

k2
, q′

k2

)
dq′

k2
. (26)

Thus, we only require to estimate the joint PDF fq′
k1
q′
k2
,

because when this joint PDF is derived, the integral in (26)
is simply obtained. If the PDFs of the signals q′

k1
(t) and

q′
k2

(t) are considered as the marginal density functions in
the copula theory, the joint PDF fq′

k1
q′
k2

is simply obtained
from (3):

fq′
k1
q′
k2

(
q′
k1
, q′

k2

)
=

fq′
k1

(
q′
k1

)
fq′

k2

(
q′
k2

)
c
(
Fq′

k1

(
q′
k1

)
, Fq′

k2

(
q′
k2

)
; ρk

)
.

(27)

Fq′
k1

(
q′
k1

)
and Fq′

k2

(
q′
k2

)
are the marginal CDFs of the sig-

nals q′
k1

(t) and q′
k2

(t), respectively, and ρk is the linear
correlation parameter between these two signals. The lin-
ear correlation is a measure of dependency in this paper
and is also called Pearson’s correlation. Note that since the
signals in two transmitters are produced independently,
the linear correlation between q′

k1
(t) and q′

k2
(t) are the

same as the linear correlation related to the channel. Thus,
the estimation of this parameter leads to specifying the
channel correlation parameter.
As previouslymentioned, three kinds of copula, i.e., nor-

mal, Clayton, and t copula, are applied for the estimation.
Note that the linear correlation parameter ρk in (27) is not
exactly the copula parameter, and we should obtain the
copula parameter from ρk based on the related copula.
For the normal copula, the entries of the correlation

matrix R in (4) are normal copula parameters, and for-
tunately, these parameters are almost the same as linear
correlation parameters that present pairwise correlations
among the variables.
In t copula, there are two parameters, one of which is

the degrees of freedom and is considered equal to 2 in
our simulations. The other one is exactly the same as the
normal copula parameter and therefore is identical to the
linear correlation parameter.
The Clayton copula has a parameter α which is different

from the linear correlation parameter, and the relationship
between them for the bivariate case is given by:

α = sin−1(ρk)

π − 2 sin−1(ρk)
. (28)

For generalizing (28) to the multivariate case, one can
calculate α for each pair separately and consider the aver-
age of all obtained α values as the main Clayton copula
parameter.
Until now, the PDF fq′

k

(
q′
k

)
is estimated, and thus, the

PDF fqk
(
qk

)
is obtained analytically by using (17). Thus,

the PDF of the received signals in both receivers, fq1
(
q1

)
and fq2

(
q2

)
, are at hand. Using the obtained analytic PDF

of the received signal in the kth receiver, the parameters
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mk and ρk in the route between the transmitters and the
kth receiver could be estimated as follows.
To achieve the parameters mk and ρk , the nonlin-

ear minimum mean square error (NMMSE) estimator is
employed. In addition to analytic PDF, the NMMSE esti-
mator also requires the statistical PDF of the received
signal in the kth receiver, which is calculated based on the
samples of the received signal in the following form:

f̂qk
(
qk

) = 1
Nkh

Nk−1∑
i=0

�

(qk − qki

h

)
. (29)

(29) is the kernel estimator which is noticed as an
approach to estimate the PDF of an arbitrary signal statis-
tically. � is the kernel function that must integrate to 1,
and h is the window width or bandwidth of the kernel. Nk
is the number of the received samples in the kth receiver,
and qki

is the value of the ith sample. Utilizing both analyt-
ical and statistical obtained PDFs, the NMMSE estimator
presents channel parameters:

(
m̂k , ρ̂k

) = arg min
mk ,ρk

∣∣∣fqk (qk

)− f̂qk
(
qk

)∣∣∣2 . (30)

In the next section, a novel method is expressed to cal-
culate the capacity of the proposed MIMO channel based
on the parameters estimated in (30).

5 Capacity analysis
Since our method in the previous section obtains the
channel parameters, i.e., mk , ρk , hence, it is plausible to
assume that the CSI for H channel is perfectly known
at the receiver in the absence of channel knowledge at
the transmitter. On the other hand, assume that a total
transmit power P is uniformly distributed among the Nt
transmitting antennas. The instantaneous capacity for the
ergodic channelH is given by [6]:

CI = log2 det
(
INr + P

σ 2
nNt

HH†
)
, (31)

where P
σ 2
n

is the average signal-to-noise ratio (SNR) at
each receiver branch. Since H is randomly varying, CI is
also randomly varying. Thus, the information theoretic
capacity Ct should be calculated as:

Ct = E

[
log2 det

(
INr + P

σ 2
nNt

HH†
)]

. (32)

Based on (9) and (10), if the entries of H are indepen-
dent, the joint distribution of H entries is computed by
multiplying the PDFs of the entries:

f (H)=C1 exp
(
−mtr

(
HH†

)



) 2∏
i,j=1

∣∣∣∣∣hij∣∣2 sin (2θij)∣∣∣(m−1)
,

(33)

whereC1 =
(

mm

2m−1
m�2(m
2 )

)4
, tr(.) denotes the trace oper-

ator, and θij is the phase of hij. It is supposed in (33) that
all entries have the samem and 
, but it is simply general-
ized to the situation in which we have different values for
the parameters.
When the entries of channel matrix H are dependent,

the copula theory helps us to extract the joint distri-
bution of H by using (33). Only a new term, that is, a
copula density function, is added to (33). Since our pro-
posed MIMO correlated channel is based on Figure 1 in
Section 3, matrixH is 2× 2, and includes four entries h11,
h21, h12, and h22, respectively, with a correlation matrix in
the following form:

R =

⎡
⎢⎢⎣

1 ρ1 0 0
ρ1 1 0 0
0 0 1 ρ2
0 0 ρ2 1

⎤
⎥⎥⎦ . (34)

For simplicity, let us assume ρ1 = ρ2 = ρ. Thus,
the added copula density function should be constructed
based on the correlation matrix. For instance, for the nor-
mal copula, the copula density function of (4) is employed,
in which the correlation matrix is the same as the matrix
R in (34), and is given by:

c (u1,u2,u3,u4) = 1
1−ρ2 exp

(
−1

2
(
1 − ρ2)×

⎡
⎣ρ2

( 4∑
i=1

�−1 (ui)

)2

−2ρ
(
�−1(u1) �−1 (u2)+ �−1 (u3) �−1(u4)

)])
,

(35)

where:

u1 = Fh11 (|h11|) ,u2 = Fh21 (|h21|) ,
u3 = Fh12 (|h12|) ,u4 = Fh22 (|h22|) , (36)

and F denotes CDF. When ρ1 and ρ2 are different, (35)
is simply generalized. After extracting the PDF of matrix
H, the PDF of HH† should be determined. To derive the
matrixHH†, it is better that matrixH be decomposed into
a product H = LHQH by using LQ decomposition, where
LH is a complex lower triangular matrix with real positive
diagonals in the following form:

LH =
(
l11 0
l21 l22

)
, (37)

where l11 and l22 are real and l21 is complex. QH is a
complex orthogonal matrix that could be given by [16]:

QH =
(

ejφ1 cos (δ) ejφ2 sin (δ)

−ej(φ3−φ2) sin (δ) ej(φ3−φ1) cos (δ)

)
, (38)

where 0 ≤ φ1,φ2,φ3 ≤ 2π , and 0 ≤ δ ≤ π/2.
To derive the joint PDF f (LH ,QH), the Jacobian of the
transformation from f (H) to f (LH ,QH) is required and is
given by [17]:
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J1 = l311l22 sin (δ) cos (δ) . (39)

Thus:

f (LH ,QH) = l4m−1
11 l22sin2m−1 (2δ)

× C1

22m−1 (1 − ρ2) exp
⎛
⎝−

m tr
(
LHL†H

)



− Temp5
2
(
1 − ρ2)

⎞
⎠

× (
l222cos2 (δ) + l221sin2 (δ) − Temp6

)m−1

× (
l221cos2 (δ) + l222sin2 (δ) + Temp6

)m−1

×
2∏

i,j=1

∣∣sin (2θij)∣∣(m−1),

(40)

where:

Temp5 = ρ2
( 4∑

i=1
�−1 (ui)

)2

− 2ρ
(
�−1 (u1)�−1 (u2)

+ �−1 (u3)�−1 (u4)
)
,

(41)

and:

Temp6 = l22 sin (2δ) × (� (l21) sin (φ1 + φ2 − φ3)

−� (l21) cos (φ1 + φ2 − φ3)) ,
(42)

where � and � denote the real part and the imaginary
part, respectively. Note that the parameters uis in (41) and
θijs in (40) should also be written in terms of l11, l21, l22,
φis, and δ. Therefore, the PDF f (LH) is given as:

f (LH) =
∫ π/2

0

∫ 2π

0

∫ 2π

0

∫ 2π

0
f (LH ,QH) dφ1dφ2dφ3dδ.

(43)

Now, define:

W � LHL†H . (44)

The Jacobian of the transformation from LH toW is J2 =
4l311l22. Using J2, the PDF of matrix W is simply obtained
from f (LH) in (43). The eigenvalue decomposition helps
us to have:

W = ���†, (45)

where the eigenvalue matrix � is defined in the following
form:

� =
[

λ1 0
0 λ2

]
, (46)

and thematrix� could be supposed in the following form:

� =
[

cos (γ ) −ejμ sin (γ )

e−jμ sin (γ ) cos (γ )

]
, (47)

where 0 ≤ μ ≤ 2π , and 0 ≤ γ ≤ π/2.

The Jacobian of the transformation in (45) is calculated
as:

J3 = 1
2
(λ1 − λ2)

2 sin (γ ) . (48)

Using J3, the PDF f (λ1, λ2,μ, γ ) is obtained. By integrat-
ing over μ and γ , we obtain the PDF f (λ1, λ2) as:

f (λ1, λ2) =
∫ π/2

0

∫ 2π

0
f (λ1, λ2,μ, γ ) dμdγ . (49)

Now, we return to (32) for specifying the capacity. The
capacity in (32) could be expressed in terms of the eigen-
values of positive definite matrixW, i.e., λ1 and λ2:

Ct = E

[ 2∑
i=1

log2
(
1 + P

σ 2
nNt

λi

)]

= 2E
[
log2

(
1 + P

σ 2
nNt

λ

)]
, (50)

where λ is one of the eigenvalues λ1 and λ2 which is ran-
domly selected uniformly. Thus, the capacity is given as:

Ct = 2
∫ ∞

0
log2

(
1 + P

σ 2
nNt

λ

)
f (λ) dλ, (51)

where:

f (λ) =
∫ ∞

0
f (λ1, λ2) dλ′, (52)

where λ′ is one of the eigenvalues λ1 and λ2 which is
not selected as λ. Since f (λ1, λ2) is obtained in (49), the
capacity is calculated.
Finally, the asymptotic case is also noticed. First, assume

that the average SNR in (31), i.e., SNR = P
σ 2
n
, tends to zero.

Thus, (51) turns to:

Ct = 2
∫ ∞

0
log2 (1 + 0) f (λ) dλ = 2

∫ ∞

0
0× f (λ) dλ= 0.

(53)

On the other hand, when average SNR grows to infinity,
(51) could be expressed as:

Ct = 2
∫ ∞

0
log2

(
1 + SNR

λ

Nt

)
f (λ) dλ

= 2
∫ ∞

0
log2

(
SNR

λ

Nt

)
f (λ) dλ

= 2
∫ ∞

0

[
log2 (SNR) + log2 (λ/Nt)

]
f (λ) dλ. (54)

In actual environment, there is a large M that the value
of PDF f (λ) is almost near to zero for the λs larger than
thatM. Thus, the upper bound of the integral in (54) could
be decreased from infinity toM:

Ct = 2
∫ M

0

[
log2 (SNR) + log2 (λ/Nt)

]
f (λ) dλ. (55)
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Therefore, since the parameter λ in (55) can not be
greater than M and the parameter SNR tends to infinity,
we have:

log2 (SNR) >> log2 (λ/Nt). (56)

Thus, the last relationship in (54) could be given by:

Ct = 2
∫ M

0
log2 (SNR) f (λ) dλ

= log2 (SNR)

∫ M

0
2f (λ) dλ = 2 log2 (SNR) . (57)

Thus, the capacity is obtained for asymptotic values of
SNR.
Although we discussed a MIMO system with two trans-

mitters and two receivers, it is able to be generalized to
arbitrary number of transmitters and receivers. For exam-
ple, in a 3 × 3 MIMO channel, we should estimate two
correlation parameters from the samples of each receiver
in (30), and in capacity prediction, matrix H in (33) is
3 × 3, and the copula density function in (35) has nine
variables. Note that the procedure is the same as the case
2 × 2 MIMO channel. However, more transmitters and
receivers lead to complicated mathematical calculations
that could be sometimes cumbersome. In the next section,
there are some simulations to approve the results related
to both parameter estimation and capacity calculation.

6 Simulation and result
It is essential to assess the proposed approach by employ-
ing some simulations. The simulations should cover both
discussions, channel parameter estimation and channel
capacity prediction. At first, the ability of the proposed
algorithm in Nakagami-m and correlation parameter esti-
mation is evaluated. Suppose we have a 2 × 2 MIMO
channel as the communication system to transfer the
cosine signal 2 cos

(
2π fct

)
with fc = 100 MHz. Two

adjacent antennas send this signal to two receiving anten-
nas which are far from each other. This arrangement for
transmitters and receivers leads to having two different
environments from the transmitters to each one of the
receivers (Figure 1). Thus, we suppose the path to the
first receiver has a Nakagami behavior with parameterm1,
and the second one is affected by a Nakagami model with
parameter m2. On the other hand, since at each receiver,
we have the sum of two signals from two near transmit-
ters, these two signals are correlated. In the simulation, we
suppose the correlation parameter between two signals in
the first receiver is ρ1 and in the second one is ρ2.
Now, the fading and correlation parameters, i.e.,m1 and

ρ1, in the path to the first receiver are estimated based on
the PDF of the received signal q1(t) in (17), and the results
are depicted in Figures 2 and 3. In Figures 2 and 3, the
actual values ofm1 and ρ1 are 4 and 0.5, respectively. The

0 2 4 6 8 10
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−3

10
−2

10
−1

SNR

M
SE

Clayton copula
t copula
normal copula

Figure 2 MSE ofm1 estimation by using three copulas for ρ1 =0.5.

simulation is done for the sample size N = 10, 000 and
SNR values from 0 to +10 dB.
Figures 4 and 5 contain the results related to the esti-

mation of parametersm2 and ρ2 in the path to the second
receiver based on the PDF of the received signal q2(t) in
(17). In Figures 4 and 5, the actual values ofm2 and ρ2 are
2 and 0.1, respectively. The sample size and SNR values
are the same as Figures 2 and 3.
The index of performance, in all four figures, is pre-

sented by mean square error (MSE). All estimations are
done with three kinds of copula, i.e., normal, Clayton, and
t copula. The comparison between the copulas guarantees
that the simulation results are reliable based on all men-
tioned copulas. However, for example, in our simulation,
the normal copula has almost better fit with the corre-
lation model compared with other copulas. Thus, when
more accuracy is required, copula goodness-of-fit test-
ing is done and the optimized selection about the various
kinds of copula is performed [18].
In the second part of the simulation, the channel capac-

ity should be calculated. The results are depicted in
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M
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t copula
normal copula

Figure 3 MSE of ρ1 estimation by using three copulas for actual
value ρ1 = 0.5.
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Figure 4 MSE ofm2 estimation by using three copulas for ρ2 = 0.1.

Figures 6 and 7. In Figure 6, the correlation parameters
are supposed to be ρ1 = 0.1 and ρ2 = 0.1. The variance
of the independent zero-mean normally distributed noise
is assumed to be σ 2

n = 1, and the total transmit power
P is from 0 to 20 dB. The capacity in three cases is com-
pared in Figure 6. The three cases are a)m1 = 2,m2 = 2,
b)m1 = 4,m2 = 2, and c)m1 = 4,m2 = 4. As can
be seen, the channel capacity increases when the fading
parameters are raised.
Figure 7 includes the same simulations for the correla-

tion parameters ρ1 = 0.5 and ρ2 = 0.5, where there is also
capacity increasing when either the total transmit power
or fading parameter increases. It is also obvious that the
capacity in Figure 7 is totaly less than the capacity in the
same cases in Figure 6. This is because of the larger cor-
relation between the transmitted signals. Fortunately, the
proposed procedure presents the value of channel capac-
ity in the Nakagami-mMIMO system by using the copula
concept even when there is a large correlation between the
signals.
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Figure 5 MSE of ρ2 estimation by using three copulas for actual
value ρ2 = 0.1.
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Figure 6 The channel capacity for the ρ1=0.1 and ρ2 =0.1.

To have a comparison with conventional methods, our
method is examined when m1 = m2 = 1. Since the
Nakagami-m correlated MIMO channel is equivalent to a
Rayleigh correlated MIMO channel for m1 = m2 = 1, it
could be compared with the method of [7] in Figure 8. The
simulation is done for the correlation parameters ρ1 = 0.5
and ρ2 = 0.5. Figure 8 indicates that the conventional and
new results are almost equal in a similar environment. The
small difference between the results at low values of trans-
mit power is due to a trivial error in PDF estimation at low
values of SNR. If the sample size is considered larger, there
is no difference anymore. Thus, our proposed approach
covers conventional methods in addition to presenting
a new improved algorithm for a more reliable channel
environment.

7 Conclusions
In this paper, a new approach is proposed to estimate
simultaneously the fading parameters in every route in
a MIMO system and also the correlation parameter
between these routes. The proposed method is based on
the PDF estimation and the copula theory. The copula
concept facilitates the PDF estimation when we are faced
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Figure 7 The channel capacity for the ρ1=0.5 and ρ2 =0.5.
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Figure 8 Comparison between the channel capacity prediction in
two proposed and conventional methods for the ρ1 =0.5 and
ρ2 =s0.5.

with the correlation between some parameters. Hence,
the combination of PDF estimation and copula concept
creates a novel method to identify a correlatedMIMO sys-
tem with Nakagami-m fading. Moreover, we calculate the
capacity of the ergodic MIMO channel by using the esti-
mated parameters. Precise estimated parameters result in
a suitable prediction for the channel capacity. Some sim-
ulations are also presented to depict the validity of our
proposed procedure in both fading parameter estimation
and channel capacity prediction.

Appendix
A The copula relationships
The Clayton copula function is given by:

C (u1, . . . ,un) =
(
1 − n +

n∑
i=1

u−α
i

)− 1
α

, (58)

where α > 0 is the Clayton copula parameter.
The t copula function is also given by:

C (u1, . . . ,un) =
t−1
ν (u1)∫
−∞

· · ·
t−1
ν (un)∫
−∞

�
(

ν+n
2
)

�
(

ν
2
)√

(πν)n |R|

×
(
1 + xTR−1x

ν

)− ν+n
2

dx,

(59)

where t−1
ν (.) denotes the inverse function of a standard

univariate tν distribution, matrix R is the correlation
matrix, x is a vector that is defined as x �= [x1, . . . , xn],
and ν is the t copula parameter that is called degrees of
freedom.

B The proof for (21)
Define the signal Q2 (t) as the following:

Q2 (t) = A cos (ωct + 	k1 (t)) �= g(	k1 (t)). (60)

It is provable that the PDF fQ2 (Q2) is determined by
[19]:

fQ2 (Q2) = f	(	1)

|g′(	1)| + . . . + f	(	n)

|g′(	n)| + . . . , (61)

where 	is are the real roots of the equation Q2 = g(	),
g′(	) is the derivative of g(	), and f	(	) is the PDF of the
signal phase that is presented in (10).
Using (60) and (61), we have:

fQ2 (Q2) = 1√
A2 − Q2

2

∞∑
n=−∞

f	(	n), |Q2| < A. (62)

In this paper, 	 is distributed over [ 0, 2π). Thus, only
two solutions, which are in the interval [ 0, 2π), are accept-
able:

	1 = cos−1
(
Q2
A

)
− ωct,

	2 = 2π − cos−1
(
Q2
A

)
− ωct. (63)

If the function f	(	) is obtained by (10) for these two
values, the PDF fQ2 (Q2) could be calculated as:

fQ2 (Q2) = 2−m�(m)

A2m−2�2(m/2)
√
A2 − Q2

2

2∑
i=1

|sin (2	i)|.

(64)

By using (64), the proof of (21) is concluded.
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