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Abstract 

The estimation sound fields over space is of interest in sound field control and analysis, spatial audio, room acoustics 
and virtual reality. Sound fields can be estimated from a number of measurements distributed over space yet this 
remains a challenging problem due to the large experimental effort required. In this work we investigate sensor 
distributions that are optimal to estimate sound fields. Such optimization is valuable as it can greatly reduce the num-
ber of measurements required. The sensor positions are optimized with respect to the parameters describing a sound 
field, or the pressure reconstructed at the area of interest, by finding the positions that minimize the Bayesian Cramér-
Rao bound (BCRB). The optimized distributions are investigated in a numerical study as well as with measured room 
impulse responses. We observe a reduction in the number of measurements of approximately 50% when the sensor 
positions are optimized for reconstructing the sound field when compared with random distributions. The results 
indicate that optimizing the sensors positions is also valuable when the vector of parameters is sparse, specially com-
pared with random sensor distributions, which are often adopted in sparse array processing in acoustics.

Keywords Optimal sensor selection, Sound field reconstruction, Sparsity, Compressive sensing, Room impulse 
response, Bayesian estimation

1 Introduction
A room impulse response (RIR) describes the acoustic 
transfer function between a sound source and a receiver 
inside a room. The RIR is a function of both the source 
and receiver positions, so that there is a different RIR for 
each source-receiver combination. Knowledge of RIRs 
over space is required in sound field control and spatial 
audio, where the goal is to modify, control or reproduce 
the sound field in a given area, taking its spatial charac-
teristics into account [1–3]. Furthermore, characterizing 

acoustic fields over space is also central to other applica-
tions within acoustic engineering and signal processing, 
such as room acoustics, sound field analysis, acoustic 
holography, in-situ characterization of acoustic proper-
ties, and dereverberation. However, measuring the acous-
tic pressure at many closely spaced locations is, if at all 
possible, very time consuming and expensive. In addi-
tion, there are often restrictions as to where the measure-
ments can be collected, so that it might not be possible to 
place sensors inside the area of interest. Because of this, 
the acoustic field over space is often estimated from a 
small set of pressure measurements. That is, sound field 
reconstruction corresponds to estimating the acoustic 
pressure at unobserved locations by interpolating and/or 
extrapolating the pressure values at a set of sampled loca-
tions using a suitable model for the propagation of acous-
tic waves.

This study is concerned with the selection of the meas-
urement positions for estimating sound fields over space. 
Given the sensor budget (i.e., the maximum number of 
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spatial locations that can be sampled), and the candi-
date positions (i.e, the positions in which measurements 
can potentially be collected), optimal sensor placement 
aims at finding the combination of measurement posi-
tions that is optimal for estimating the sound field. It is 
highly valuable to optimize the sensor positions, as this 
can extend the bandwidth and size of the reconstructed 
sound field for a fixed number of sensors, or alternatively, 
lessen the sampling requirements for a given reconstruc-
tion accuracy, ultimately reducing the experimental effort 
and costs.

Previous studies have shown that, in general, it is ben-
eficial to place a large fraction of the sensor budget close 
to the boundary of the measurement domain [4, 5]. The 
rest of the available sensors are distributed inside the 
domain for increased stability, since distributions with 
all the measurements on the boundary are unstable at 
the eigenfrequencies of the domain shape1. The optimi-
zation of interior positions to increase the array stabil-
ity has been investigated for a number of domain shapes 
[5, 6]. Besides stability, statistical criteria are generally 
adopted in the optimization of measurement distribu-
tions and design of measurement set selection [7–12]. In 
particular, as the parameters describing the sound field 
are estimated from a finite set of noisy measurements, it 
is of interest to optimize the measurement positions with 
respect to the statistics, such as variance, of the estima-
tor. Multiple optimal sensor placement algorithms based 
on statistical criteria have been developed and applied to 
sound field control and reproduction [13–17]. Yet, the 
highly sparse structure present in many sound fields of 
interest is normally not accounted for in these optimal 
sensor placement strategies.

Compressive sensing (CS) is a relevant framework that 
makes it possible to vastly reduce the number of meas-
urements required to reconstruct a signal [18]. CS is 
based on the assumption that the signal is sparse in a 
given basis—which implies a certain underlying struc-
ture—and that the sampling process is incoherent. The 
application of CS to the sound field reconstruction prob-
lem has been investigated in a number of studies [19–25], 
yet the placement of sensors remains an open question. 
Randomized measurement positions are usually favored 
over regular distributions, as this helps to lower the 
coherence of the sampling matrix. Nonetheless, high 
coherence between the columns of the sampling matrix 
is often unavoidable as this stems from the interpolation 
functions used (e.g., plane waves) rather than from the 

sampling locations. On the other had, coherence might 
not be a good indicator of how well a signal can be recon-
structed [26]. At any rate, naive random selections of 
measurements do not provide any optimality guarantees.

Recently, data-driven approaches to the sensor place-
ment problem have been proposed [27]. In this case, sen-
sor selection algorithms are applied to a basis learned 
from representative data. Data-driven sensor placement 
has proved successful in exploiting patterns in the data, 
resulting in large reductions in the number of measure-
ments. On the downside, data-driven methods require 
large datasets that are generalizable, and a new tailored 
basis must be learned for each problem. A different 
data-driven approach is active learning, in which data is 
gathered sequentially and used to train the model as the 
signal is sampled. In this case, the learner has the abil-
ity to select which data point to sample next, sequentially 
gathering the most informative data to add to the training 
set [28]. In acoustics, active learning has recently been 
applied to design microphone arrays for source localiza-
tion [29].

In this work we investigate optimal sensor distribu-
tions that are generalizable across different sound fields, 
rooms and source positions. We study two approaches, in 
which the sensor positions are optimized with respect to 
the estimation of (a) the parameters describing a sound 
field, or (b) the pressure reconstructed at the positions of 
interest. In the optimization problem, we seek to mini-
mize average variance (of the estimated parameters or 
the reconstructed pressure, respectively), which is akin 
to minimizing the (sum of the diagonal elements of the) 
Bayesian Cramér-Rao bound (BCRB). The optimal sensor 
placement is approximately found by convex relaxation 
of the original combinatorial problem. Formulating the 
problem in a Bayesian probabilistic framework enables us 
to easily include prior information, e.g., the amplitude of 
the sound field relative to the noise level, or data obtained 
through an active learning approach. We discuss whether 
this framework could be used to take into account the 
structure/sparsity of sound fields when selecting the sen-
sor positions. The optimization procedure is investigated 
in a numerical study as well as with measured RIRs. We 
observe a reduction in the number of measurements 
by approximately one half when the sensor positions 
are optimized for reconstructing the sound field when 
compared with uniform and random distributions. The 
results indicate that optimizing the sensors positions is 
also valuable when the vector of parameters is sparse, 
specially compared with a random distribution, often 
adopted in CS studies.

In earlier studies [30, 31], we developed an optimal selec-
tion method for sampling and reconstructing sound fields. 
In the current work, we focus on the generalizability across 

1 The instabilities are a well-known issue common to all open array configu-
rations. For example, arrays with all the measurements on the surface of an 
open sphere are unstable at the frequencies that make the Bessel function 
null.
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sound fields (rooms, source positions, etc.), and we derive 
general advice for sampling distributions in sound field 
control scenarios. In addition, we thoroughly investigate 
optimal selections for reconstructing the sound field, rather 
than estimating the wave parameters, which has been the 
main focus in the general sensor selection literature. We 
show that distributions optimized for reconstruction out-
perform other optimization approaches. This is very valu-
able as the end goal of many applications is to recover the 
acoustic pressure rather than the wave parameters. Fur-
thermore, we introduce a hierarchical Bayesian model in 
the optimal sensor selection methodology, which makes it 
possible to take into account potential prior information 
about the sampled sound field.

The following notation is used throughout: I , 0 , and 1 are 
the appropriate-size identity matrix, vector of zeros and 
vector of ones, respectively. Furthermore, Diag(a) is the 
square diagonal matrix with vector a in its main diagonal, 
diag(A) is the main diagonal of matrix A in vector form, ◦ 
represents the Hadamard product, Ex{·} indicates expecta-
tion with respect to the probability law of the random vari-
able x, and ∇x is the gradient with respect to x.

2  Wave propagation model
Let us define a measurement region, �A ⊂ R

3 , in which 
acoustic sensors can be placed, and a reconstruction 
region, �B ⊂ R

3 , in which the acoustic pressure is to be 
determined. The measurement and reconstruction region 
may overlap, completely or partially, or they can be sepa-
rate from one another. It is important to clarify that this 
study is not concerned with solving a boundary value prob-
lem. Instead, the sound field reconstruction problem is for-
mulated as the interpolation or extrapolation in between or 
away from points of measured pressure values. For that, a 
model for the propagation of acoustics waves is introduced.

The acoustic pressure at any position r ∈ �A ∪�B can 
be expressed as

where y(r,ω) is the pressure at position r and frequency 
ω . The pressure field is modeled as the superposition of 
propagating plane waves [32]. Accordingly, y(r,ω) can be 
expressed as

where x(k) is the wavenumber spectrum, k is the wave-
number vector, S is the surface of the radiation sphere 
with radius ω/c , and c is the speed of sound. The plane 
wave model is physically motivated, as plane waves are 
elementary solutions to the wave equation. The model 

(1)ŷ(r, t) =
1

2π

∞

−∞

y(r,ω)ejωtdω,

(2)y(r,ω) =

∫ ∫

S
x(k)ejk·rdS,

does not assume specular reflections on the boundaries 
of the room nor any specific room geometry, yet it is 
required that �A ∪�B does not include the source posi-
tion and can be inscribed in a star-convex region [4].

We define m candidate positions, r1, . . . , rm ∈ �A , in 
which sensors can potentially be placed. The follow-
ing system of equations is then formed by discretizing 
the integral in (2) and introducing a term to account for 
measurement noise,

where y ∈ C
m is the vector of pressure values at the can-

didate positions, with the ith element yi = y(ri,ω) . The 
vector x ∈ C

n contains the amplitudes of the n plane 
waves taken in the approximation, xj = x(kj) , where 
k1, . . . , kn are uniformly sampled over S. The elements 
of A are the complex exponential terms, aij = ejkj ·ri , and 
the vector e ∈ C

m represents the measurement noise. It 
is noted that for each frequency ω there is one system like 
the one in (3).

3  Sound field reconstruction
Sound field reconstruction consists in (a) estimating the 
parameters x from a small number of pressure meas-
urements, and then (b) estimating the pressure in �B by 
multiplying the estimated parameter vector x with the 
reconstruction matrix B , with bij = ejkj ·ri and ri ∈ �B.

The estimation of x is an ill-posed problem that 
requires regularization or prior information about x in 
order to arrive to a unique, stable solution. The ill-pos-
edness stems from having a number of measurements, k, 
smaller than the number of parameters to estimate, n.

Sparse signal recovery methods, such as CS, can 
recover apparently undersampled signals ( k < n ). In par-
ticular, CS theory determines that an undersampled sig-
nal can be recovered under two conditions: the signal x is 
sparse (i.e., it has few non-zero elements), and the sens-
ing process is incoherent (i.e., the columns of A are suf-
ficiently uncorrelated). The less sparse the signal is, the 
more restrictive the incoherence condition [18]. Several 
sparse representations, including elementary wave func-
tions [19–22] and functions learned from representa-
tive data [23, 24, 33], have been exploited to reconstruct 
sound fields from a small number of measurements. It 
has been shown that the RIR at low frequencies can be 
sparsely represented by a plane wave expansion, like the 
one in (2) and (3), in acoustically damped rooms [22] 
and as well as in rectangular rooms [20]. Yet, the num-
ber of non-zero elements in x depends on the frequency, 
size, geometry and acoustic treatment of each particular 
room.

In this work, we do not assume a priori that x is sparse 
in order to keep the optimized sensor distributions as 

(3)y = Ax + e,
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general as possible. We study two approaches to the sen-
sor selection problem: one optimizes the sensor positions 
with respect to the estimation of x , while the other one 
does it with respect to the estimation of Bx . In sound 
field reconstruction (as in many other reconstruction 
problems [26]), it is not the exact recovery of x , as much 
as the estimation of Bx what is of interest. Thus, opti-
mizing the sensor distribution to estimate Bx could be 
advantageous.

4  Bayesian estimation
The estimation of x is formulated in the Bayesian proba-
bilistic framework. The measurement noise is assumed 
to be i.i.d. complex, circularly symmetric Gaussian with 
variance β−1 ∈ R , i.e., e ∼ CN (0,β−1I) . From (3) and the 
Gaussian noise assumption, the likelihood function can 
be written as

where ai denotes the ith row of A . A hierarchical prior is 
assigned to x so that each parameter xj follows an inde-
pendent Gaussian distribution with variance α−1

j ∈ R,

where ααα ≡ [α1, . . . ,αn]
T is the vector of hyperparameters 

that control the strength of each xj (e.g., an element xj 
that is zero or very small will have a large associated αj , 
resulting in a normal prior with zero mean and very small 
variance). To complete the hierarchical prior, we assign 
non-informative hyperpriors on ααα and β,

and

where Gamma(α; a, b) ≡ Ŵ(a)−1baαa−1e−bα , and Ŵ(a) is 
the gamma function. The parameters a, b, c, and d are set 
to a small value so that the hyperpriors are broad/non-
informative. The hierarchical prior described by (5) and 
(6) permits solutions with a small number of non-zeros 
(i.e., a sparse x ), should the data support this. Such a 
model is the basis of sparse Bayesian learning [34, 35].

Given the likelihood and prior of (4) and (5), it can be 
shown that the posterior over the parameters is also a 
Gaussian distribution [34],

(4)p(y|x,β) =
∏

i

CN

(

yi|aix,β
−1

)

,

(5)p(x|ααα) =
∏

j

CN

(

xj|0,α
−1
j

)

,

(6)p(ααα) =
∏

j

Gamma(αj; a, b),

(7)p(β) = Gamma(β; c, d),

(8)p(x|y,ααα,β) = CN (x|µµµ,���),

where the mean is

and the covariance matrix is

In this study, we choose the maximum a posteriori as 
point estimate, which coincides with the mean, x̃ = µµµ.

The hyperparamerters, ααα and β , can be determined 
by finding the values that maximize the marginal likeli-
hood [34]

Therefore, the number of non-zeros and support of x , 
as well as the noise level are learned from the data y.

5  Sensor selection
In this work, the sensor positions are optimized in 
terms of the BCRB, which states that the mean-square 
error matrix of any estimator, R(x̃) , is lower bounded 
by the inverse of the Fisher information matrix,

where the matrix inequality indicates that (R − F−1) is a 
non-negative definite matrix. The Bayesian Fisher infor-
mation matrix is defined as [36]

In the selection problem, the hyperparameters ααα,β 
are considered to be fixed variables, previously learned 
from data or preselected, and therefore they do not 
appear in (13). The estimator described by (9) and (10) 
is unbiased, which means that ��� = R , and Bayesian 
efficient, which means that R = F−1 . This can be shown 
by inserting p(y|x) and p(x) in (13). Therefore, the diag-
onal elements of F−1 contain the variance of the esti-
mator, i.e., they correspond to the mean-square error 
when estimating the parameters x1, . . . , xn.

We introduce the binary selection vector, z ≡ [z1, . . . , zm]
T ,  

with zi ∈ {0, 1}, i = 1, . . . ,m . The elements of the selec-
tion vector indicate whether the ith sensor is selected or not. 
The selected measurements can be expressed as

where Z ∈ {0, 1}k×m is the selection matrix that results 
from removing the zero-rows from Diag(z) . The BCRB as 
a function of the selection vector is

(9)µµµ = β���AHy,

(10)��� =
[

βAHA + Diag(ααα)
]−1

.

(11)p(y|ααα,β) =

∫

p(y|x,β)p(x|ααα)dx.

(12)R � F−1,

(13)F ≡ Ey,x

{

[∇x ln p(y, x)][∇x ln p(y, x)]
H
}

.

(14)Zy = ZAx + Ze,
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which follows from (10) and (14).
Therefore, by finding the sensors that minimize the 

trace of F−1(z) one effectively minimizes the average 
variance when estimating the parameters x . The optimal 
sensor selection problem is therefore formulated as

Sound field reconstruction involves estimating the 
pressure in some region of interest �B by multiply-
ing the estimated parameters x with the reconstruction 
matrix B . Therefore, as discussed in Section 2, it can be 
advantageous to optimize the sensor selection for recon-
structing the pressure, instead of for estimating x . If the 
reconstructed pressure is yB = Bx , its covariance can be 
expressed as a function of the covariance matrix for x , 
such that cov(yB, yB) = B���BH = BF−1BH . The optimal 
sensor placement problem for reconstruction is therefore

It is worth noting that objective functions other 
than the average estimation variance (i.e., tr

(

F−1
)

 and 
tr
(

BF−1BH
)

 ) can be used for optimizing the sensor loca-
tions as well. In this study, the average variance is chosen 
because it is easy to interpret and very general. Should 
one use a different the sound field model (e.g., other 
physically motivated models like equivalent sources, 
or models learned from data), the overall optimization 
problem would not change, and the method could be 
readily applied. In addition, the mean-square error pro-
vides a good way of describing the average reconstruc-
tion error over a reconstruction area, and it is a common 
metric to assess the sound field reconstruction accuracy.

5.1  Sensor selection for sparse signals
A distribution of sensors tailored to recover a particular 
sound field can easily be designed using the hierarchical 
model described in (4)–(7). The number of non-zeros and 
support of x enter in the selection procedure through the 
role of the hyperparameters ααα in forming F . This would 
involve having information about ααα prior to selecting the 
measurement positions. An active sequential selection 
based on this idea is summarized as follows: after initial-
izing ααα and β , the sensor position that minimizes tr(F−1) 
or tr(BF−1BH) is added to the selection. The pressure at 
such position is then measured, and the values of ααα and 

(15)F−1(z) =
[

βAHZHZA + Diag(ααα)
]−1

,

(16)
minimize

z
tr
(

F−1
)

subject to 1Tz = k ,
zi ∈ {0, 1}, i = 1, . . . ,m.

(17)
minimize

z
tr
(

BF−1BH
)

subject to 1Tz = k ,
zi ∈ {0, 1}, i = 1, . . . ,m.

β are updated through (11). The process is repeated until 
the number of selected sensors is equal to k. As the data is 
gathered, the sparsity and support of x is learned through 
the update of the hyperparameters ααα , such that the result-
ing distribution of sensors adapts to the particular sound 
field.

However, the active scheme described above is not 
well suited for designing sensor distributions to estimate 
RIRs: the support and number of non-zeros of x is dif-
ferent for each room and source position, resulting in a 
sensor distribution that is not generalizable. Every room 
and every source position would lead to a different selec-
tion of sensors. In this study we consider a prior in which 
all the hyperparameters ααα share the same value, such that 
αi = α, i = 1, . . . , n , α ∈ R . The only assumed prior infor-
mation is a (rough) approximation of the measurements 
signal-to-noise ratio (SNR), from which the ratio β/α is 
obtained. The resulting optimal sensor distribution is gen-
eralizable across rooms and source positions, as all param-
eters in x are regarded equally. It is worth remarking that 
even though the sensor selection does not assume spar-
sity, a sparse x can still be obtained (should the data sup-
port this) through the Bayesian estimation described in 
Section 4. The experimental results of Section 6.1 show an 
improved reconstruction accuracy also for sparse x , spe-
cially when compared to random distributions normally 
adopted in CS studies.

5.2  Approximate solution
Finding the exact solution to the optimization problems 
(16) and (17) is normally not feasible. Given m candidate 
positions and a sensor budget k, an exhaustive search over 

all 
(

m
k

)

 possible combinations is computationally intrac-

table, unless m and k are very small. In this section, we 
describe a two-stage method for approximating the opti-
mal solution of (16) and (17). The first stage is based on the 
convex relaxation of the original (non-convex) problem, 
originally proposed by Joshi and Boyd [9]. The second stage 
takes the the convex relaxed solution as input and performs 
a greedy search to select an integer number of sensors.

5.2.1  Convex relaxation
The objective function of problems (16) and (17) is con-
vex, and the only non-convexity stems from the constraint 
zi ∈ {0, 1}, i = 1, . . . ,m . The relaxation of such constraint 
in (16) results in

(18)
ẑ = arg min

z
tr
(

F−1
)

subject to 1Tz = k ,
0 ≤ zi ≤ 1, i = 1, . . . ,m.
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A convex relaxation of (17) can be done in a similar 
manner. The optimization problem (18) is convex, and a 
global optimum can be found via suitable convex opti-
mization algorithms [37]. The convex-relaxed inequality 
constraint, 0 ≤ zi ≤ 1, i = 1, . . . ,m , implies that the ele-
ments of the relaxed selection vector, ẑ , might take val-
ues between 0 and 1. There are several ways of selecting 
an integer number of sensors. The simplest one consists 
on setting the k largest entries of ẑ to one and the rest 
to zero, forming the approximate, thresholded solution z̃ . 
While this simple thresholding method works well when 
the approximate solution ẑ has values close to one and 
close to zero, this is not always the case. In the following 
section, we describe a more elaborate way of selecting k 
integer sensors via a greedy search.

The convex-relaxed approximation can be examined by 
observing that the set of all possible solutions that sat-
isfy the constraints of the relaxed problem, (18), contains 
the set of the possible solutions of the original problem, 
(16). Therefore, the optimal objective value of the relaxed 
problem is upper bounded by the optimal value of the 
original problem. Following the same logic, one can see 
that the objective function evaluated at the approximate, 
thresholded solution is lower bounded by the optimal 
value of the original problem. More concisely,

The difference δ ≡ tr
(

F−1(Qz)
)

− tr
(

F−1(Oz)
)

 indicates 
how far the approximate solution is from the solution to 
the original problem. If δ = 0 then z̃ is the solution to the 
original problem.

Problem (18) can be approximately solved by defin-
ing logarithmic barrier functions for the inequality con-
straints [37], so that it becomes

where the parameter κ ∈ R
+ determines the accuracy of 

the approximation. The problem (20) can be solved very 
efficiently via Newton’s method, for which one has to 
compute the gradient and Hessian of the objective func-
tions. The expressions are given in the Appendix.

5.2.2  Greedy selection
The second stage of the proposed algorithm is a greedy 
search to select k sensors from the convex relaxed solu-
tion ẑ since it is likely that this contains values differ-
ent from zero and one. The greedy stage starts with 
the convex relaxed solution ẑ as input. A threshold is 
applied to remove the candidates with very small ẑi and 
keep only mconvx candidates, where k < mconvx < m . 

(19)tr
(

F−1(Oz)
)

≤ tr
(

F−1(Qz)
)

.

(20)

ẑ = arg min
z

tr
(

F−1
)

− κ1T[log(z)+ log(1− z)]

subject to 1Tz = k ,

Specifically, the selection of mconvx is performed by 
sorting ẑ in descending order, computing the cumula-
tive sum and normalizing it by k. Only the mconvx can-
didates whose cumulative sum is below a certain value 
(e.g., 0.9) are kept to continue with the greedy search. 
These are the most relevant candidates according to the 
convex relaxed procedure. The greedy search is then 
initialized. The first sensor is selected by computing the 
objective value (either tr

(

F−1
)

 or tr
(

BF−1BH
)

 , depend-
ing whether we want to solve (16) or (17)) for each 
one of the mconvx candidates and selecting the one that 
minimizes the objective. The search then progresses by 
computing the objective value with the already selected 
sensors plus one of the remaining (non-selected) can-
didates. A sweep through all the remaining candidates 
is performed and the one that minimizes the objective 
is kept. The process is repeated until the sensor budget 
k is reached. In this way, instead of simply applying a 
threshold to ẑ , the greedy approach sequentially selects 
the sensors that locally minimize the objective function 
one at a time.

In each iteration, the objective needs to be evaluated 
as many times as there are remaining sensors left, which 
can be time-consuming (specially if mconvx is large). The 
efficiency of the greedy search can be improved by per-
forming a rank-one update instead of computing F−1 
from scratch every time the objective needs to be evalu-
ated [9]. When a new candidate is evaluated, the row of A 
that corresponds to the previously tested candidate, ai , is 
replaced by that of the new candidate, aj . To compute the 
updated F−1 one can make use of the Woodbury identity,

where

Therefore, only a 2× 2 matrix, S , has to be inverted 
every time objective function is evaluated.

5.3  Multi‑frequency selection
The estimation and selection framework described so 
far is frequency-dependent, since there is a different sys-
tem (Eq. 3) for each frequency ω . In practice, the sensors 
deployed measure the entire pressure signal, ŷ(r, t) . The 
optimal sensor selection can be modified to take into 
account several frequencies simultaneously, resulting in 
the optimization problem

(21)F−1
updated = F−1 − F−1(US−1V)F−1

U = β

[

−aHi aHj

]

,

V =

[

ai
aj

]

,

S = I+ VF−1U.
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where Fj is the Fisher information matrix at frequency 
ωj , and ωj are the frequency bins after discretization. 
The scalar wj ∈ R represent a weight given to ωj . In pre-
liminary experiments, we observed slightly worse results 
when optimizing for several frequencies simultaneously 
compared to when optimizing only for the highest fre-
quency considered. Since the reconstruction becomes 
more challenging with increasing frequency, it seems 
sensible to focus on the higher frequencies when opti-
mizing the sensor positions. While in our experiments 
we consider optimal distributions with respect to a single 
frequency, we show results over a broadband frequency 
range.

6  Experiments and results
6.1  Numerical study
The selection methods are investigated in a numerical 
study. The reconstruction area �B is defined as the area 
enclosed by two ellipses of principal axes 0.4 m and 0.3 
m, and whose centers are 1 m apart. The measurement 
area �A is defined as the difference between the recon-
struction area and a rectangle of sides 2.4 m and 1.6 m. 
The combined area �A ∪�B is discretized using a grid 
with 5 cm spacing, resulting in m = 1333 candidate posi-
tions ( r1, . . . , rm, ri ∈ �A ), and mB = 284 positions inside 
the reconstruction area ( r1, . . . , rmB , ri ∈ �B ). These areas 
are chosen to showcase the flexibility of the sensor selec-
tion method, where the shape of both the measurement 
and reconstruction regions can be arbitrarily defined. 
While the areas represent a typical setup where the goal 
is to create two different sound zones, the study does not 
directly deal with sound zoning.

The sensor budget is set to k = 101 . The frequency 
used for the optimization is 860 Hz, which is the theo-
retical cut-off frequency for a uniform distribution with 
101 sensors equally spaced over the measurement area. 
The wavenumber vectors k1, . . . , kn , are obtained by uni-
formly sampling the radiation sphere (S in (2)) using 200 
points, so that n = 200 . The matrices A and B (with ele-
ments aij = ejkj ·ri , r ∈ �A , and bij = ejkj ·ri , r ∈ �B , respec-
tively) are then formed. The noise precision is set to 
β = 1 and the parameters precision is set to α = 2 , which 
results in a measurement SNR of 20 dB. It is worth noting 
that in (15), when αi = α, i = 1, . . . , n , α ∈ R , the BCRB 
does not depend on x , so that we can compute the esti-
mator mean-square error without generating instances of 
x as one would do in a Monte Carlo simulation.

(22)
minimize

z

∑

j

wjtr
(

F−1
j

)

subject to 1Tz = k ,
zi ∈ {0, 1}, i = 1, . . . ,m,

6.1.1  Tested methods
The sensor selection methods described in Section 5 are 
compared with other sensor placement strategies. Table 1 
summarizes the examined distributions. A uniform dis-
tribution (uni), where the sensors positions are equally 
spaced forming a regular lattice, is considered (Fig.  1a). 
Uniform distributions are one of the most common 
ways of arranging acoustic sensors due to their simplic-
ity and well-studied performance. A random placement 
strategy (rand), where the selected candidates are drawn 
from a uniform random distribution, is considered as 
well. Random arrays are common in the CS in acoustics 
literature as randomness helps to lower the coherence of 
the sensing matrices. In the numerical study the results 
for rand show the average and standard deviation of 200 
realizations of a random selection. We found this to be 
representative of the expected performance of a naive 
random selection. A selection optimized using a proper 
orthogonal decomposition-based method (pod) is also 
considered (Fig.  1b). Sensor selections operating on a 
dictionary learned from data were recently proposed as 
a way to take into account the structure/sparsity of the 
reconstructed signal in the selection process [27]. As 
the pod selection method incorporates representative 
data of the sound field to be reconstructed, it focuses 
on reconstruction, rather than on parameter estimation. 
For this reason, we found it to be a good benchmark for 
the selection optimized to reconstruct the pressure, i.e., 
the proposed solution to (17). The original pod method 
starts by collecting representative data at the candidate 
locations. A dictionary of pod-modes (i.e., principal com-
ponents) is computed via the singular value decomposi-
tion of the training data. A greedy selection algorithm is 
then applied to the learned dictionary. In our study, we 
modify this method in order to be able to compare it with 
the rest of selection approaches. Training data is gener-
ated by synthesizing 104 random sound fields. The sound 
field coefficients x are drawn from a Gaussian distribu-
tion with variance α−1 , and the pressure data is generated 
by computing Ax and adding Gaussian noise with vari-
ance β−1 . The singular value decomposition of the data 
arranged in a matrix is then computed to obtain the left 

Table 1 Sensor selections examined

Name Description

uni Uniform lattice of equally spaced sensors, Fig.1a

rand Random selection from candidates

pod Proper orthogonal decomposition-based 
optimization [27]. Figure 1b

optx Optimized w.r.t x , Eq. (16), Fig. 1c

optBx Optimized w.r.t Bx , Eq. (17), Fig. 1d
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singular vectors. The pod dictionary, U , is obtained by 
truncating the singular vectors, keeping only the first 150. 
This number is determined by observing a plateau in the 
(log scaled) singular value decay after 150 modes. A list 
of the sensors sorted by relevance is found by computing 
the QR decomposition with column pivoting of UUH , as 
described in [27]. The pod selection corresponds to the 
first k positions of such list. Once the relevant sensors 

are selected, the analysis is carried out in a similar way as 
the other selection methods (i.e., on a dictionary of plane 
waves rather than on the pod dictionary) in order to be 
able to compare it with the rest of selection approaches.

The distributions obtained from the proposed method 
are shown in Fig. 1c for the selection optimized to esti-
mate the wave amplitudes, optx , and Fig.  1d for the 
selection optimized to reconstruct the pressure, optBx . 

Fig. 1 Sensor distributions studied. a Uniform distribution. b Distribution optimized using the proper orthogonal decomposition-based method 
method. c Distribution optimized to minimize the variance when estimating the parameters x d Distribution optimized to minimize the variance 
when estimating the pressure in the reconstructed area Bx . e Convex relaxed solution ẑx obtained when minimizing tr(F−1) . f Convex relaxed 
solution ẑBx obtained when minimizing tr(BF−1

B
H) . The random distribution is not shown in the figure
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Figure 1e shows the convex relaxed solution ẑx obtained 
from (18). Figure  1f shows the convex relaxed solution 
ẑBx obtained when minimizing tr(BF−1BH).

The pod-based method (Fig. 1b) places most of the sen-
sors close to the outer boundary of the measurement area 
(along the sides of the rectangle), while the remaining 
sensors are placed around the reconstruction area ellip-
ses. The selection optimized for estimating the parame-
ters x (Fig. 1c) distributes the sensors rather evenly across 
the measurement area, yet it is different from the uni-
form distribution (Fig.  1a). The selection optimized for 
estimating the sound field inside the reconstruction area 
Bx  (Fig.  1c) concentrates samples close to the bound-
ary of �B , but many sensors are also placed towards the 
upper-left and lower-right corners of the measurement 

area. An analysis of the convex relaxed solutions, ẑx and 
ẑBx shown in Fig. 1e and f, shows many values in between 
0 and 1. A simple thresholding (without the second-stage 
greedy search) would have resulted in a different selec-
tion, with a higher sampling density on the outer edges 
of the measurement domain for optx and a higher sam-
pling density on the boundary of the reconstruction area 
for optBx.

It may be noted that none of the selection methods 
places all of the sensors on the boundaries of the meas-
urement domain, which could cause instabilities at the 
domain’s eigenfrequencies.

Fig. 2 Normalized root-mean-square error over frequency a 
for the estimation of x and b for the estimation of Bx Fig. 3 Normalized root-mean-square error as a function 

of the number of sensors, for a fixed frequency of 860 Hz. a nrmse(x) . 
Gray line: lower bound for nrmse(x) obtained from the convex 
relaxed solution ẑx b nrmse(Bx) . Gray line: lower bound for nrmse(Bx) 
obtained from the convex relaxed solution ẑBx



Page 10 of 14Verburg et al. EURASIP Journal on Audio, Speech, and Music Processing         (2024) 2024:41 

6.1.2  Results
The selections are compared in terms of the normalized 
root-mean-square error for estimating the parameters x , 
calculated as

and the normalized root-mean-square error for estimat-
ing the pressure in the reconstruction region Bx , calcu-
lated as

(23)nrmse(x)% = 100

√

tr(F−1)α

n
,

(24)nrmse(Bx)% = 100

√

tr(BF−1BH)α

nmB
.

Figure 2a shows the nrmse(x) over frequency. As the fre-
quency increases, the estimation x improves for all selec-
tions. The larger error at low frequencies is due to the high 
correlation of the columns of A , which makes it difficult 
to recover x . Since the acoustic wavelength ( � = 2πc/ω ) 
is large at low frequencies, two wave functions ejki·r and 
ejkj ·r can be highly correlated even when their propagation 
directions, kic/ω and kjc/ω , are not the same. If the two 
columns corresponding to the i and j waves are correlated, 
it is not be possible to distinguish whether the wave is 
propagating in one direction or the other, making the esti-
mation of x challenging and resulting in a larger nmse(x ). 
The uni and optx selections achieve the lowest nrmse(x) , 
performing very similarly up until 800 Hz. Above 800 
Hz, optx performs slightly better. Figure  2b shows the 

Fig. 4 Normalized root-mean-square error as a function 
of the number of parameters that are non-zero over the total number 
of parameters

Fig. 5 a Reconstruction error and b spatial similarity over frequency 
for the experiment in the reverberant room. A smoothing filter 
is applied to the results for better readability (the error and similarity 
shown at frequency f is the average of each metric in a band of 50 Hz 
center around f)
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nrmse(Bx) . For all selections the reconstruction error 
increases with frequency. At low frequencies, the sound 
field does not present large variations over space, which 
results in accurate reconstructions even if x is not recov-
ered exactly. The best performing selection is optBx , with 
improvements of approximately 10 to 25% above 400 Hz 
with respect to the other selection methods.

The nrmse(x) as a function of the number of avail-
able sensors k is shown in Fig.  3a (the uniform selec-
tion is not shown in this figure as in this case k cannot 
be chosen arbitrarily). The optx and pod methods 
achieve similar performance. In this experiment, the 
benefit of optimizing the sensor positions in contrast 
to a naive random selection is clearly seen for a budget 
above 80 sensors. The gray line in Fig.  3a corresponds 
to the nmse(x ) lower bound obtained from the con-
vex relaxed solution, tr(F−1(ẑ)) in (19). As the sensors 
budget increases, the approximate solution z̃ is closer 
to the solution to the original problem (16). In Fig. 3b, 
the nrmse(Bx) as a function of k is shown. In this fig-
ure, the gray line corresponds to the nmse(Bx ) lower 
bound obtained from the convex relaxed solution. The 
largest improvement of optBx over the other selections 
is around k = 80 (approximately 20% improvement). 
The selection optBx achieves a nrmse(Bx) of 40% with 
a budget of k = 80 measurements, while pod requires 
k = 120 and rand requires k = 200 to achieve the same 
performance.

The results shown in Figs. 2 and 3 consider an equal α 
for all the parameters, so that the computed errors are 
the average error when estimating all the n parameters. 
We study the case in which x is sparse, i.e., when only a 

few of the parameters are non-zero, by generating dif-
ferent realizations of x with a varying number of non-
zeros. For each number of non-zeros considered, 1000 
realizations of a sparse x are generated, where the sup-
port is randomly selected. Therefore, the results depend 
on the sparsity degree of x but are generalizable over 
different rooms and source positions. The nrmse is then 
computed as in (23) and (24) but only taking the rel-
evant rows in A and B (the rows corresponding to the 
non-zeros in x ) and replacing n by the number of non-
zeros. Figure 4 shows the error as a function of the spar-
sity degree for k = 101 and 860 Hz. When the number 
of non-zeros is very small (about 10% of all the param-
eters) there are no large differences between selections, 
as x is easily recovered. When the number of non-zeros 
is larger than approximately 20% of the total number 
of parameters, the differences between distributions 
become significant. The largest improvement in terms 
of reconstruction error corresponds to optBx (green line 
in Fig. 4b).

For the estimation of x , Fig. 4a, the uni and optx selec-
tions outperform the random selection. For the estima-
tion Bx , Fig. 4b, the random selection is (by far) the worst 
performing from the studied selections. This results indi-
cate that a random distribution of sensors is very likely 
suboptimal for recovering x or Bx , even when x is sparse.

6.2  Sound field in a room
The selection methods are investigated with RIR data 
measured in a reverberant room. The setup (reconstruc-
tion and measurements areas and discretization) is the 
same as for the numerical study (Section 6.1). The RIRs 

Fig. 6 Room frequency response at the center of the right ellipse in the reconstruction area for a the optBx selection and b pod selection. Black: 
reference (measured response). Color: reconstruction
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are processed to mimic an acoustically damped room, 
since the original RIRs were acquired in a highly rever-
berant laboratory room that is not representative of 
common rooms. The processing consists on applying a 
time window to the RIRs so that the reverberation time 
is reduced. Details about the dataset can be found in [24] 
and [38].

The reconstruction performance is assessed in terms of 
the spatially averaged normalized error,

and the spatial similarity [39],

where x̃ is the maximum a posteriori estimate (Eq.  9), 
and the reference yB are the measured RIRs in the 

(25)error(Bx)% = 100
�Bx̃ − yB�2

�yB�2
,

(26)similarity% = 100
|yHB Bx̃|

2

[yHB yB][(Bx̃)
HBx̃]

,

reconstruction area. The similarity takes values between 
0 (reference and reconstruction are orthogonal) and 100 
(reference and reconstruction are parallel).

Figure  5 shows the reconstruction results over fre-
quency. The optBx selection achieves the best perfor-
mance, with improvements of 10 to 20% for frequencies 
above 600 Hz with respect to the other selections, both in 
terms of error and similarity. The second best perform-
ing methods is optx , followed by pod, uni and rand. The 
frequency response at the center of the right ellipse of 
the reconstruction region is shown in Fig. 6. The recon-
struction using the optBx selection is shown at the top of 
the figure, and the reconstruction corresponding to the 
pod selection is shown at the bottom. The optBx recon-
struction is closer to the reference frequency response, 
particularly at frequencies above 500 Hz. The sound 
field over space at the optimization frequency (860 Hz) 
is studied in Fig.  7. The optBx reconstruction (Fig.  7b) 
recovers the spatial pattern of the reference sound field 
(Fig.  7a) while the pod reconstruction (Fig.  7c) differs 

Fig. 7 Sound field over space for a fixed frequency of 860 Hz (absolute values). a Reference sound field (measured). b Reconstructed with optBx 
selection. c Reconstructed with pod selection. d Difference between reference and optBx reconstruction. e Difference between reference and pod 
reconstruction
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significantly. This can also be seen in Fig. 7d and e, which 
show the difference between reference and reconstruc-
tion for the two methods.

7  Conclusions
In this work, we have investigated the optimal posi-
tioning of sensors for sound field reconstruction. We 
examined two approaches: one optimizes the sensor 
positions with respect to the estimation of the param-
eters that describe the sound field, while the other one 
does it with respect to the reconstructed pressure in the 
area of interest. The results show a clear advantage of 
taking into account the reconstruction area when opti-
mizing the sensors positions, specially compared to dis-
tributing the sensors randomly over space. It is worth 
noticing that this type of random microphone arrays are 
commonly used in CS and sparse recovery in acoustics 
as a means to lower the coherence of the sensing matrix.

While the selection optimized for estimating the 
parameters distributes the sensors evenly over the 
measurement area, the selection optimized for estimat-
ing the pressure concentrates more samples close to the 
reconstruction area. This type of distributions were also 
observed for geometries and frequencies different from 
the ones reported in Section  6. As a general guiding 
advise for designing sampling strategies, it seems to be 
advantageous to distribute the available sensors over the 
entire measurement domain, with a higher sensor den-
sity closer to the reconstruction area.

A hierarchical Bayesian formulation makes it possible 
to include sparsity promoting priors in the estimation 
problem. In this study, we focused on optimal distribu-
tions that are generalizable across rooms and source 
positions, and thus, we consider a prior in which all the 
hyperparameters share the same value. Nonetheless, a 
sensor selection tailored to a given sound field could eas-
ily be obtained as well via this formulation when suffi-
cient data is available.

While this study focused on the reconstruction of 
RIRs, the sensor selection method can easily be applied 
to other types of sound field reconstruction problems 
(e.g., acoustic holography, sound field analysis, and in situ 
characterization of acoustic materials) by using a suitable 
model for the studied sound field (e.g., equivalent sources 
and data-driven models).

An implementation of the sensor selection method as 
well as the code necessary to reproduce the results of this 
study are available in the repository https:// github. com/ 
samuel- verbu rg/ optim al_ sensor_ place ment. git.

Appendix
The gradient of the objective function in (16) is

and the Hessian is

For (17), the expressions for the gradient and Hessian 
are

and

where C ≡ AF−1BH.

Acknowledgements
Not applicable.

Authors’ contributions
SAV, FE, TVW and EFG conceptualized the work. SAV and FE jointly developed 
the sensor selection methodology. SAV performed the numerical and experi-
mental study and drafted the manuscript. FE, TVW and EFG substantively revised 
and edited the manuscript. All authors read and approved the final manuscript.

Funding
The work was supported by a research grant from the VILLUM foundation, 
grant number 19179, Large-scale acoustic holography. The research leading 
to these results has also received funding from KU Leuven internal funds 
C14/21/075 and from the European Research Council under the European 
Union’s Horizon 2020 research and innovation program / ERC Consolidator 
Grant: SONORA (no. 773268). This paper reflects only the authors’ views and the 
Union is not liable for any use that may be made of the contained information.

Availability of data and materials
The dataset analyzed during the current study is available in the repository 
Acoustic frequency responses of an empty cuboid room [38]: https:// doi. org/ 10. 
11583/ DTU. 13315 289. v1.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 31 January 2024   Accepted: 4 August 2024

References
 1. T. Betlehem, T.D. Abhayapala, Theory and design of sound field repro-

duction in reverberant rooms. J. Acoust. Soc. Am. 117(4), 2100–2111 
(2005). https:// doi. org/ 10. 1121/1. 18630 32

 2. S. Spors, H. Buchner, R. Rabenstein, W. Herbordt, Active listening room 
compensation for massive multichannel sound reproduction systems 
using wave-domain adaptive filtering. J. Acoust. Soc. Am. 122(354), 
354–369 (2007). https:// doi. org/ 10. 1121/1. 27376 69

(27)∇tr
(

F−1
)

= −βdiag
(

AF−1F−1AH
)

,

(28)∇2tr
(

F−1
)

= 2(βAF−1AH) ◦ (βAF−1F−1AH).

(29)∇tr
(

BF−1BH
)

= −βdiag
(

CCH
)

(30)
∇2tr

(

BF−1BH
)

= 2
(

βAF−1AH
)

◦
(

σ−2CCH
)

,

https://github.com/samuel-verburg/optimal_sensor_placement.git
https://github.com/samuel-verburg/optimal_sensor_placement.git
https://doi.org/10.11583/DTU.13315289.v1
https://doi.org/10.11583/DTU.13315289.v1
https://doi.org/10.1121/1.1863032
https://doi.org/10.1121/1.2737669


Page 14 of 14Verburg et al. EURASIP Journal on Audio, Speech, and Music Processing         (2024) 2024:41 

 3. T. Betlehem, W. Zhang, M.A. Poletti, T.D. Abhayapala, Personal sound 
zones. IEEE Signal Process. Mag. 32(2), 81–91 (2015). https:// doi. org/ 10. 
1109/ MSP. 2014. 23607 07

 4. G. Chardon, A. Cohen, L. Daudet, Sampling and reconstruction of solu-
tions to the Helmholtz equation. Sampl. Theory Signal Image Process. 
13(1), 67–89 (2014). https:// doi. org/ 10. 1007/ BF035 49573

 5. G. Chardon, W. Kreuzer, M. Noisternig, Design of spatial microphone 
arrays for sound field interpolation. IEEE J. Sel. Topics Signal Process. 
9(5), 780–790 (2015). https:// doi. org/ 10. 1109/ JSTSP. 2015. 24120 97

 6. B. Rafaely, Analysis and design of spherical microphone arrays. IEEE 
Trans. Audio, Speech, Lang. Process. 13(1), 135–143 (2005). https:// doi. 
org/ 10. 1109/ TSA. 2004. 839244

 7. V. Fedorov, Theory of Optimal Experiments (Academic Press, New York, 
1972)

 8. Y. Yang, R. Blum, Sensor placement in Gaussian random field via 
discrete simulation optimization. IEEE Signal Process. Lett. 15, 729–732 
(2008). https:// doi. org/ 10. 1109/ LSP. 2008. 20018 21

 9. S. Joshi, S. Boyd, Sensor selection via convex optimization. IEEE Trans. 
Signal Process. 57(2), 451–462 (2009). https:// doi. org/ 10. 1109/ TSP. 2008. 
20070 95

 10. S.P. Chepuri, G. Leus, Sparsity-promoting sensor selection for non-linear 
measurement models. IEEE Trans. Signal Process. 63(3), 684–698 (2015). 
https:// doi. org/ 10. 1109/ TSP. 2014. 23796 62

 11. S. Liu, S. Chepuri, M. Fardad, E. Maşazade, G. Leus, P. Varshney, Sensor 
selection for estimation with correlated measurement noise. IEEE Trans. 
Signal Process. 64(13), 3509–3522 (2016). https:// doi. org/ 10. 1109/ TSP. 
2016. 25500 05

 12. J. Swärd, F. Elvander, A. Jakobsson, Designing sampling schemes for 
multi-dimensional data. Signal Process. 150, 1–10 (2018). https:// doi. 
org/ 10. 1016/j. sigpro. 2018. 03. 011

 13. K.H. Baek, S.J. Elliott, Natural algorithms for choosing source locations 
in active control systems. J. Sound Vib. 86(2), 245–267 (1995). https:// 
doi. org/ 10. 1006/ jsvi. 1995. 0447

 14. F. Asano, Y. Suzuki, D.C. Swanson, Optimization of control source con-
figuration in active control systems using gram-schmidt orthogonali-
zation. IEEE Trans. Speech Audio Process. 7(2), 213–220 (1999). https:// 
doi. org/ 10. 1109/ 89. 748126

 15. S. Koyama, G. Chardon, L. Daudet, Optimizing source and sensor 
placement for sound field control: an overview. IEEE/ACM Trans. Audio, 
Speech, Lang. Process. 28, 696–714 (2020). https:// doi. org/ 10. 1109/ 
TASLP. 2020. 29649 58

 16. K. Ariga, T. Nishida, S. Koyama, N. Ueno, H. Saruwatari, in Proc. 2020 
IEEE International Conference on Acoustics, Speech and Signal Processing 
(ICASSP). Mutual-information-based sensor placement for spatial sound 
field recording (IEEE, Barcelona, 2020), pp. 166–170. https:// doi. org/ 10. 
1109/ ICASS P40776. 2020. 90537 15

 17. T. Nishida, N. Ueno, S. Koyama, H. Saruwatari, Region-restricted sensor 
placement based on gaussian process for sound field estimation. IEEE 
Trans. Signal Process. 70, 1718–1733 (2022). https:// doi. org/ 10. 1109/ 
TSP. 2022. 31560 12

 18. E.J. Candès, M.B. Wakin, An introduction to compressive sampling. IEEE 
Signal Process. Mag. 25(2), 21–30 (2008). https:// doi. org/ 10. 1109/ MSP. 
2007. 914731

 19. R. Mignot, L. Daudet, F. Ollivier, Room reverberation reconstruction: 
interpolation of the early part using compressed sensing. IEEE Trans. 
Audio, Speech, Lang. Process. 21(11), 2301–2312 (2013). https:// doi. 
org/ 10. 1109/ TASL. 2013. 22736 62

 20. R. Mignot, G. Chardon, L. Daudet, Low frequency interpolation of room 
impulse responses using compressed sensing. IEEE/ACM Trans. Audio, 
Speech, Lang. Process. 22(1), 205–216 (2014). https:// doi. org/ 10. 1109/ 
TASLP. 2013. 22869 22

 21. N. Antonello, E. De Sena, M. Moonen, P.A. Naylor, T. van Waterschoot, 
Room impulse response interpolation using a sparse spatio-temporal 
representation of the sound field. IEEE/ACM Trans. Audio, Speech, 
Lang. Process. 25(10), 1929–1941 (2017). https:// doi. org/ 10. 1109/ TASLP. 
2017. 27302 84

 22. S.A. Verburg, E. Fernandez-Grande, Reconstruction of the sound field 
in a room using compressive sensing. J. Acoust. Soc. Am. 143(6), 
3770–3779 (2018). https:// doi. org/ 10. 1121/1. 50422 47

 23. E. Zea, Compressed sensing of impulse responses in rooms of 
unknown properties and contents. J. Sound Vib. 459 (2019). https:// 
doi. org/ 10. 1016/j. jsv. 2019. 114871

 24. M. Hahmann, S.A. Verburg, E. Fernandez-Grande, Spatial reconstruction 
of sound fields using local and data-driven functions. J. Acoust. Soc. 
Am. 150(6), 4417–4428 (2021). https:// doi. org/ 10. 1121/ 10. 00089 75

 25. F. Katzberg, A. Mertins, in Compressed Sensing in Information Processing. 
Applied and Numerical Harmonic Analysis, ed. by G. Kutyniok, H. Rauhut, 
R.J. Kunsch. Sparse recovery of sound fields using measurements from 
moving microphones (Birkhäuser, Cham, 2022), pp. 471–505. https:// 
doi. org/ 10. 1007/ 978-3- 031- 09745-4_ 15

 26. E.J. Candes, Y.C. Eldar, D. Needell, P. Randall, Compressed sensing with 
coherent and redundant dictionaries. Appl. Comput. Harmon. Anal. 
31(1), 59–73 (2011). https:// doi. org/ 10. 1016/j. acha. 2010. 10. 002

 27. K. Manohar, B.W. Brunton, J.N. Kutz, S.L. Brunton, Data-driven sparse 
sensor placement for reconstruction. IEEE Control Syst. Mag. 38(3), 
63–86 (2018). https:// doi. org/ 10. 1109/ MCS. 2018. 28104 60

 28. D.A. Cohn, G.Z. Ghahramani, M.I. Jordan, Active learning with statistical 
models. J. Artif. Intell. Res. 4, 129–145 (1996). https:// doi. org/ 10. 1613/ 
jair. 295

 29. M. Courcoux-Caro, C. Vanwynsberghe, C. Herzet, A. Baussard, Sequen-
tial sensor selection for the localization of acoustic sources by sparse 
bayesian learning. J. Acoust. Soc. Am. 152(3), 1695–1708 (2022). 
https:// doi. org/ 10. 1121/ 10. 00140 01

 30. S.A. Verburg, F. Elvander, T. van Waterschoot, E. Fernandez-Grande, 
in Proceedings of the 24th International Congress on Acoustics, ICA, 
Gyeongju, Korea (2022)

 31. S.A. Verburg, F. Elvander, T. van Waterschoot, E. Fernandez-Grande, 
in Proceedings of the 10th Convention of the European Acoustics 
Association, Forum Acusticum 2023, ed. by A. Astolfi, F. Asdrubali, L. 
Shtrepi. https:// asmp- euras ipjou rnals. sprin gerop en. com/ submi ssion- 
guide lines/ prepa ring- your- manus cript/ metho dology

 32. E.G. Williams, Fourier Acoustics (Academic Press, San Diego, 1999)
 33. F. Lluis, P. Martinez-Nuevo, M.B. Møller, S.E. Shepstone, Sound field 

reconstruction in rooms: inpainting meets super-resolution. J. Acoust. 
Soc. Am. 148(2), 649–659 (2020). https:// doi. org/ 10. 1121/ 10. 00016 87

 34. M.E. Tipping, Sparse bayesian learning and the relevance vector 
machine. J. Artif. Intell. Res. 1, 211–244 (2001). https:// doi. org/ 10. 1162/ 
15324 43015 27482 36

 35. C.M. Bishop, Pattern Recognition and Machine Learning (Springer, New 
York, 2006)

 36. H.L. Van Trees, K.L. Bell, Bayesian Bounds for Parameter Estimation and 
Nonlinear Filtering/Tracking (Wiley-IEEE Press, New York, 2007)

 37. S.P. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University 
Press, Cambridge, 2006)

 38. M. Hahmann, S.A. Verburg, E. Fernandez-Grande, Acoustic frequency 
responses of an empty cuboid room. (Technical University of Denmark, 
2021). https:// doi. org/ 10. 11583/ DTU. 13315 289. v1

 39. P. Vacher, B. Jacquier, A. Bucharles, in Proceedings of the international con-
ference on noise and vibration engineering, Extensions of the mac criterion 
to complex modes (ISMA Leuven, Belgium, 2010), pp. 2713–2726

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/MSP.2014.2360707
https://doi.org/10.1109/MSP.2014.2360707
https://doi.org/10.1007/BF03549573
https://doi.org/10.1109/JSTSP.2015.2412097
https://doi.org/10.1109/TSA.2004.839244
https://doi.org/10.1109/TSA.2004.839244
https://doi.org/10.1109/LSP.2008.2001821
https://doi.org/10.1109/TSP.2008.2007095
https://doi.org/10.1109/TSP.2008.2007095
https://doi.org/10.1109/TSP.2014.2379662
https://doi.org/10.1109/TSP.2016.2550005
https://doi.org/10.1109/TSP.2016.2550005
https://doi.org/10.1016/j.sigpro.2018.03.011
https://doi.org/10.1016/j.sigpro.2018.03.011
https://doi.org/10.1006/jsvi.1995.0447
https://doi.org/10.1006/jsvi.1995.0447
https://doi.org/10.1109/89.748126
https://doi.org/10.1109/89.748126
https://doi.org/10.1109/TASLP.2020.2964958
https://doi.org/10.1109/TASLP.2020.2964958
https://doi.org/10.1109/ICASSP40776.2020.9053715
https://doi.org/10.1109/ICASSP40776.2020.9053715
https://doi.org/10.1109/TSP.2022.3156012
https://doi.org/10.1109/TSP.2022.3156012
https://doi.org/10.1109/MSP.2007.914731
https://doi.org/10.1109/MSP.2007.914731
https://doi.org/10.1109/TASL.2013.2273662
https://doi.org/10.1109/TASL.2013.2273662
https://doi.org/10.1109/TASLP.2013.2286922
https://doi.org/10.1109/TASLP.2013.2286922
https://doi.org/10.1109/TASLP.2017.2730284
https://doi.org/10.1109/TASLP.2017.2730284
https://doi.org/10.1121/1.5042247
https://doi.org/10.1016/j.jsv.2019.114871
https://doi.org/10.1016/j.jsv.2019.114871
https://doi.org/10.1121/10.0008975
https://doi.org/10.1007/978-3-031-09745-4_15
https://doi.org/10.1007/978-3-031-09745-4_15
https://doi.org/10.1016/j.acha.2010.10.002
https://doi.org/10.1109/MCS.2018.2810460
https://doi.org/10.1613/jair.295
https://doi.org/10.1613/jair.295
https://doi.org/10.1121/10.0014001
https://asmp-eurasipjournals.springeropen.com/submission-guidelines/preparing-your-manuscript/methodology
https://asmp-eurasipjournals.springeropen.com/submission-guidelines/preparing-your-manuscript/methodology
https://doi.org/10.1121/10.0001687
https://doi.org/10.1162/15324430152748236
https://doi.org/10.1162/15324430152748236
https://doi.org/10.11583/DTU.13315289.v1

	Optimal sensor placement for the spatial reconstruction of sound fields
	Abstract 
	1 Introduction
	2 Wave propagation model
	3 Sound field reconstruction
	4 Bayesian estimation
	5 Sensor selection
	5.1 Sensor selection for sparse signals
	5.2 Approximate solution
	5.2.1 Convex relaxation
	5.2.2 Greedy selection

	5.3 Multi-frequency selection

	6 Experiments and results
	6.1 Numerical study
	6.1.1 Tested methods
	6.1.2 Results

	6.2 Sound field in a room

	7 Conclusions
	Appendix
	Acknowledgements
	References


