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Abstract 

Spoken language recognition has made significant progress in recent years, for which automatic speech recogni-
tion has been used as a parallel branch to extract phonetic features. However, there is still a lack of a better training 
strategy for such architectures of two individual branches. In this paper, we analyze the mostly used two-stage train-
ing strategies and reveal a trade-off between the recognition accuracy and the generalization ability. Based on the 
analysis, we propose a three-stage training strategy and an orthogonality regularization method. The former adds a 
multi-task learning stage to the traditional two-stage training strategy to extract hybrid-level and noiseless features, 
which can improve the recognition accuracy on the basis of maintaining the generalization ability, while the latter 
constrains the orthogonality of base vectors and introduces prior knowledge to improve the recognition accuracy. 
Experiments on the Oriental Language Recognition (OLR) dataset indicate that these two proposed methods can 
improve both the language recognition accuracy and the generalization ability, especially in complex challenge tasks, 
such as cross-channel or noisy conditions. Also, our model, which combines these two proposed methods, performs 
better than the top three teams in the OLR20 challenge.

Keywords  Spoken language recognition, Automatic speech recognition, Three-stage training, Orthogonality 
regularization, Multi-task learning

1  Introduction
Spoken language recognition (also called Language Iden-
tification, LID) is to identify the language spoken in an 
utterance [1], which can be used as a pre-processing step 
in many multilingual applications, such as speech trans-
lation [2] and multilingual speech recognition [3].

Classical end-to-end LID methods are composed of 
a feature extractor that maps variable-length speech 

segments to fixed-length embeddings [4], and an identifi-
cation module which makes the decision. Different levels 
of features are beneficial for LID [5, 6], including acous-
tic features [7, 8], phonetic features [9], syntactic features 
[10], and prosodies [11]. Among them, acoustic features 
are the most commonly used features in classical end-to-
end LID systems [4, 12, 13].

Although classical end-to-end LID methods directly 
utilize acoustic features as input, phonetic features can 
better reveal the basic difference between languages, 
that is, the distribution or frequency of phones [5]. Since 
phonetic features represent information at a higher level 
than acoustic features, they are more robust for noise 
and channels [9]. Therefore, recent end-to-end methods 
mainly focus on phonetic features [14] (also called bottle-
neck features [15]), which are extracted by an automatic 
speech recognition (ASR) task.

While the classical end-to-end LID methods using 
acoustic features can implicitly learn phonetic knowledge 
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as well, phonetic features are more easily discovered by 
an ASR task with frame-level phonemic labels, consider-
ing utterance-level linguistic labels might be too coarse 
[16]. ASR tasks can efficiently extract phonetic features, 
and noise such as speaker information can be filtered. 
Phonetic features extracted from one of the hidden layers 
of a pre-trained ASR model can be interpreted as com-
pression of phonetic information [17–19], and they are 
much richer, that is, they are at frame-level and involve 
compacted information of all phones [9].

Lately, end-to-end ASR models have achieved out-
standing performances and largely simplified multilin-
gual models by learning shared representations directly 
from data [20, 21]. These studies have greatly simplified 
the process of extracting phonetic features for LID tasks, 
making it one of the hot-spots in recent years. Watan-
abe et al. [22] present a single multilingual model with a 
unique vocabulary that can recognize speeches of 10 lan-
guages. Multi-task learning that jointly learns linguistic 
and phonetic information is studied in [23, 24]. Ren et al. 
[25] build a two-stage language identification system that 
outperforms the baseline multi-task system. Wang et al. 
[26] analyze different conformer-based architectures 
and demonstrate the great improvement of a two-stage 
system, named transfer learning in their experiments. 
Duroselle et  al. [16, 27] study different modeling and 
training strategies and show that bottleneck features 
can be greatly improved by using language identification 
loss during the training of the feature extractor. Alum 
et  al. [28] incorporate a large pre-trained multilingual 
XLSR-53 wav2vec2.0 model and reveal its excellent mod-
eling abilities, that is, fine-tuning the model with just 
one utterance per target language already outperforms 
the baseline model that does not use pre-training but is 
trained with around 10,000 utterances per language.

Although ASR has been applied as an auxiliary task to 
LID, how to better optimize these two independent LID 
and ASR neural networks has not yet been well stud-
ied. Most of the existing methods use a two-stage train-
ing strategy, which is not optimal and faces a trade-off 
between the recognition accuracy and the generalization 
ability.

Therefore, in this paper, we introduce a three-stage 
training strategy with an orthogonality regulariza-
tion method to overcome the problem of the trade-off 
between the recognition accuracy and the generalization 
ability, which we analyze is caused by a trade-off between 
hybrid-level knowledge, that is, various mixed-level fea-
tures including phonetic information and prosodies, and 
noise embedded in a shared encoder. Existing methods 
can learn only single-level phonetic features or only noisy 
hybrid-level features, but the methods proposed in this 
paper can learn hybrid-level and noiseless features, so 

they overcome the trade-off mentioned above and out-
perform the existing methods.

The main contributions of this paper are summarized 
as follows.

•	 This paper systematically analyzes the phonetic fea-
tures and hybrid-level features extracted by the ASR 
task and discusses the trade-off between the recogni-
tion accuracy and the generalization ability for opti-
mizing the LID model with an auxiliary ASR task.

•	 A novel three-stage training strategy is proposed to 
learn hybrid-level knowledge by adding a multi-task 
learning stage to the traditional two-stage strategy. 
The supervision of the ASR task makes an encoder 
encode hybrid-level features and exclude most of 
noise. Meanwhile, a frozen encoder in the final stage 
ensures that there is almost no new noise being 
learned. Such hybrid-level and noiseless features can 
guarantee both the recognition accuracy and the 
generalization ability.

•	 The orthogonality regularization method is intro-
duced to improve the performances of both the two-
stage and three-stage training strategies. By adding 
prior knowledge to model a better embedding space, 
the language classifier can achieve a higher accuracy.

The rest of the paper is organized as follows. An overview 
of joint speech and language recognition architectures is 
described in Section 2. Then, our proposed methods are 
discussed in Section 3. Section 4 details our whole multi-
task architecture, and the experiments are illustrated in 
Section 5. Finally, in Section 6, we conclude this paper.

2 � Related works
2.1 � The ASR‑LID parallel branches architecture
Although the end-to-end LID architecture (as shown in 
Fig. 1a) has achieved great success in the past few years, 
it still has the problem of domain mismatch [29, 30]. 
Domain information about speakers, genders, channels, 
and other kinds of noise may have different distribu-
tions between the training set and the real environment. 
An ideal LID system should ignore such domain-related 
noise, which may cause a poor generalization ability. As 
phonetic features are independent of noise, they can be 
used to boost the LID performance [9].

Directly using LID to extract frame-level phonetic 
information from raw acoustic features is quite inef-
ficient, for the utterance-level language labels are too 
coarse to provide sufficient supervision [9]. Considering 
the ASR task runs at the frame level, the output of hid-
den layers from a well-trained ASR model can incorpo-
rate phonetic information and be robust to noise. Such 
an architecture can provide a dramatic performance 
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improvement over end-to-end LID systems [9, 23, 26, 
31–33].

The architecture of phonetic LID is generally com-
posed of two branches: the one for the LID task and the 
other for the ASR task, as shown in Fig. 1b. Phonetic fea-
tures and other high-level knowledge are extracted by 
the shared encoder and then fed into the two branches. 
The ASR branch tends to model phonetic features to the 
encoder, but the LID branch tends to model hybrid-level 
features with domain noise. How to optimize the two 
individual tasks is still worth studying.

2.2 � Training strategies
Traditional training methods utilize a two-stage training 
strategy [15], which updates parts of the neural network 
using ASR-loss and LID-loss one after another. In the first 
stage, the shared encoder is trained with an ASR decoder 
using a hybrid CTC/attention loss. Acoustic features are 
compassed into phonetic features, and other information 
is treated as noise and filtered out. In the second stage, 
the LID model, with or without the shared encoder, is 
trained using a softmax cross-entropy loss.

Both frozen and unfrozen encoders are selected in 
recent years, as shown in Table 1 (“-F” means the frozen 
encoder is used, otherwise the unfrozen encoder). If the 
shared encoder is frozen, it will not be trained in the sec-
ond stage, and features extracted by the encoder are still 
single-level phonetic features. Otherwise, if the shared 
encoder is unfrozen and is trained together with the fol-
lowing LID model, the model can extract other higher-
level features, including phonetic features, and all the 
extracted features are called hybrid-level features. Pre-
dictably, noise is naturally included in such end-to-end 
learning.

3 � Proposed methods
3.1 � A trade‑off between the recognition accuracy 

and the generalization ability
Table 1 lists the details of the recent proposed methods. 
It can be observed that these methods differ in whether 
the ASR encoder is frozen or not during the second stage 
of training. It is shown in [16] that the unfrozen encoder 
is superior in the recognition accuracy. In our prelimi-
nary experiments, we tried these two training strategies 
mentioned above and extracted fixed-length embed-
dings from some cross channel test data. Visualizations 
of these embeddings are shown in Fig. 2, with each color 
representing one language. While the ideal language 
identification model should ignore channel differences, 
embeddings in the same color should be gathered into 
one cluster, even if they are from different channels. 
From Fig. 2a, it can be observed that the model trained 
using a frozen encoder is relatively compact within each 
category, and the classification boundaries are relatively 
smooth. The unfrozen encoder strategy, as shown in 
Fig.  2b, exhibits multiple sub-centers within each cat-
egory, and the distance between cross-channel data is far, 

Fig. 1  a The end-to-end LID architecture. It directly gets utterance-level LID decisions from frame-level acoustic features. b The ASR-LID parallel 
branches architecture. The shared encoder trained with ASR-loss can produce frame-level phonetic information, which helps to improve the LID 
performance dramatically

Table 1  Previous proposed methods

Year encoder ASR-loss Strategy

Ren [25] 2019 ResNet CTC​ 2-stage-F

Zhao [23] 2019 TDNN Cross-entropy Multi-task

Wang [26] 2021 Conformer Hybrid CTC/attention 2-stage

Li [24] 2021 TDNN Cross-entropy Multi-task

Duroselle [27] 2021 Conformer CTC​ 2-stage-F

Duroselle [16] 2021 Conformer CTC​ 2-stage

Alum [28] 2022 Conformer Unknown 2-stage
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indicating a poor generalization performance. However, 
the method with the poor generalization performance 
achieved a higher accuracy, which reflects the trade-off 
between the accuracy and robustness.

Moreover, the methods listed in Table  1 utilize the 
traditional phonetic features [33]. There is a long-stand-
ing hypothesis that phonetic features may be sufficient 
for LID tasks [9], so that the ASR branch is designed to 
extract phonetic features and the LID branch is designed 
to decode these phonetic features, whereas other kinds of 
features are generally ignored. However, it cannot explain 
the trade-off mentioned above and why a higher ASR 
accuracy does not yield a better LID performance [34, 
35]. Therefore, in this section, we analyze the reason why 
the two-stage training strategy can hardly improve both 
the recognition accuracy and the generalization ability.

Figure  3 lists three types of features fed into LID 
under different training strategies. When we directly 
use acoustic features to train an end-to-end LID model, 
the extracted information can be separated into three 
parts, as shown in Fig.  3a. Firstly, according to whether 
the information can be extracted by ASR, two parts 
separated by a vertical line are phonetic information 
and other high-level features. Then, these high-level fea-
tures can further be separated into language discrimina-
tive features and noise, by a horizontal line. Specifically, 
language discriminative features include prosodies and 
some special phone sequences [5], which can hardly be 
extracted by an end-to-end ASR task. Different kinds of 
noise include not only background noise but also the bias 
of the dataset, such as an unbalanced speaker distribu-
tion. While such kind of noise may be useful in a specific 
dataset, the generalization ability of the LID model may 
be affected, too.

If the encoder is frozen in the second stage of the LID 
training, the features fed into LID are still phonetic fea-
tures, just the same as those after the first stage of the 

Fig. 2  The visualization results of language space trained with a 
frozen encoder strategy (a) and an unfrozen encoder (b) strategy, 
respectively

Fig. 3  Three types of features fed into LID. a End-to-end LID tends to learn hybrid-level knowledge, which includes noise. b A pretrained frozen ASR 
encoder can only provide phonetic features for LID. c Ideally, a pretrained unfrozen ASR encoder should provide noiseless hybrid-level features
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ASR training, as shown in Fig. 3b. Because the encoder 
is frozen, the LID model can only make decisions based 
on the extracted phonetic features rather than noise, thus 
ensuring a good generalization ability.

If we train both the encoder and LID in the second 
stage, as shown in Fig. 3c, the encoder is ideally allowed 
to extract hybrid-level information suitable for LID but 
not discriminative for ASR, which explains the superior 
of the unfrozen encoder. Nonetheless, considering that 
stage is actually an end-to-end LID training, the encoder 
will forget the phonetic information and noise will still 
be learned by the encoder after many steps of train-
ing. In this case, overfitting may be caused by the noise, 
which is discovered by our visualization analysis shown 
in Fig. 6, that is, although the unfrozen encoder may have 
better results, the embeddings extracted from the frozen 
encoder models have smoother classification boundaries.

Therefore, there is a trade-off between the recognition 
accuracy and the generalization ability for the traditional 
two-stage training strategy. The features extracted by 
the shared encoder are either only phonetic information 
or hybrid-level information with noise, so that they are 
either too sparse to get a good recognition accuracy or 
too flexible to get a good generalization ability. Hence, 
our goal is to improve the recognition accuracy of LID 
and keep the generalization ability at the same time.

3.2 � The proposed three‑stage training strategy
In this paper, we propose a three-stage training strategy 
by adding a multi-task learning stage between the first 
ASR stage and the final LID stage, as shown in Fig.  4, 
so that the high-level features suitable for LID can be 

embedded into the encoder before freezing. Meanwhile, 
the phonetic features will not be forgotten and noise 
cannot be learned in the final LID stage after freezing. 
With the proposed three-stage strategy using the frozen 
encoder, the final LID model can have both the good per-
formance of the unfrozen encoder and the generalization 
ability of the frozen encoder.

Firstly, the conformer-based ASR model is trained 
using a hybrid CTC/attention loss function. Then, the 
whole end-to-end model is trained in a multi-task man-
ner. The final loss is composed of the LID loss and the 
ASR loss with an empirical control factor α:

where Lasr is defined in Eq. 4 in Section 4 and Llid is the 
classical softmax cross-entropy loss. Finally, the third 
stage fine-tunes the model with Llid only. The shared 
parameters of two adjacent stages are initialized by the 
values of the parameters of the previous stage using 
transfer learning.

3.3 � Orthogonality regularization
Orthogonality regularization is used in our work to 
improve the LID performance. Specifically, it constrains 
the basis vectors to help model the language space and 
can be used in both the traditional two-stage strategy and 
our proposed three-stage strategy.

Empirically, compared with the unfrozen encoder, the 
frozen encoder has a better generalization ability but is 
poor at the classification ability. We design an embedding 
space with a set of orthogonal basis vectors to facilitate 

(1)L = Lasr + αLlid ,

Fig. 4  The proposed three-stage training strategy. a The first end-to-end ASR training stage. b The second multi-task training stage. c The final 
end-to-end LID training stage
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the frozen encoder to get a better classification ability 
without reducing its generalization ability.

The supervised training of the end-to-end LID method 
is a progress of finding the most language discrimina-
tive embedding space, from a geometric point of view. 
The centers of languages form a set of basis vectors for 
the language space. After the embeddings are extracted 
by the LID model from input utterances, the projection 
of one embedding onto each basis vector corresponds to 
the similarity between the utterance and the center of the 
corresponding language.

The classification loss function used in this paper, that 
is, softmax cross-entropy loss, is presented as follows:

where xi ∈ R
d denotes the embedding feature of the i-th 

sample, belonging to the yi-th language, and n means the 
number of languages. N represents the batch-size. For-
mula eW

T
j xi+bj is the projection mentioned above, and 

W ∈ R
n×d is n language centers or n basis vectors. The 

further the distance between two basis vectors is, the 
larger the between-class variance of their corresponding 
languages is, and the more separable these two languages 
are. Therefore, we speculate the basis vectors are orthog-
onal to each other, which means the value of WTW − I 
should be as less as possible. However, in our preliminary 
experiments, there is not always a reduction of that term, 
especially when the shared encoder is frozen, so we add 
orthogonality regularization into the LID loss:

where � is a hyper-parameter, and σmax(·) denotes the 
spectral norm of a matrix.

4 � The model architecture
This section presents the details of the phonetic LID 
model we design, including a shared encoder and two 
decoders for LID and ASR respectively. The shared 
encoder can be implemented by various structures, and 
in this paper, we use the conformer [36], which integrates 
components from CNNs and transformers, and can effi-
ciently capture both local and global correlations. With 
the hybrid CTC/attention ASR decoder [37, 38], the 
shared encoder has strong capabilities to discriminate 
languages and therefore can improve the performance 
[26].

For the LID decoder, we do not choose complex 
structures such as TDNN [4] or LSTM [39]. We imple-
ment it in a simple but acceptable manner to present 
the relationship between LID and ASR more clearly. 

(2)LCE = −
1

N

N

i=1

log
e
WT

yi
xi+byi

n
j=1 e

WT
j xi+bj

,

(3)Llid = LCE + �σmax(WWT − I),

Frame-level phonetic features extracted by the shared 
encoder are directly aggregated by a statistic pooling 
layer without any kind of transform. The aggregated 
embedding vector has a fixed length and contains lin-
guistic information extracted from phonetic features. 
Then, two fully connected layers are used to make the 
final decision. The first fully connected layer maps the 
fix-length embeddings to a space with the best language 
discrimination, while the second fully connected layer 
projects the transformed embeddings to the centers of 
10 languages, respectively.

As shown in Fig. 5, the architecture for the phonetic 
feature extraction used in this paper is a hybrid CTC/
attention one [38], which consists of three compo-
nents: a shared encoder, an attention-based decoder, 
and a CTC decoder. This model can solve the problem 
caused by the too flexible alignment property of the 
attention-based method with CTC through a regulari-
zation during training and a score correction during 
decoding [40]. The encoder receives acoustic features 
of T frames, that is, X = {xt ∈ R

D1 |t = 1, . . . ,T } , 
and extracts the phonetic features within them, that 
is, H = {ht ∈ R

D2 |t = 1, . . . ,T } . The following two 
decoders are used to deal with the T-length pho-
netic features to an N-length word sequence, that is, 
W = {wn ∈ V|n = 1, . . . ,N } . In X, H, and W, xt is a D1

-dimensional feature vector (e.g., Mel filterbanks) at 
frame t, and ht is a D2-dimensional feature vector con-
taining phonetic information, and wn is a word or sub-
word at position n in Vocabulary V.

The loss functions are expressed as:

where hyper-parameter α represents the weight of the 
CTC loss, and pctc can be computed using dynamic pro-
gramming [41], and patt is the output of the attention-
based decoder. It is shown that the introduction of the 
CTC module helps to ensure appropriate alignments and 
fast converge [42].

The building of Vocabulary V is a tricky problem, 
especially for multilingual ASR tasks. Considering the 
out-of-vocabulary problem, the vocabulary should 
be large enough and its units are typically at char-
acter level [22, 38], while the sub-word level units 
like byte-pair encoding used in [28] can also achieve 
an acceptable performance. There are 10 languages 
in our experiments, and we use a byte-pair encod-
ing vocabulary shared over all languages, which is 

(4)Lasr = (α)Lctc + (1− α)Latt ,

(5)Lctc = −logpctc(W |X),

(6)Latt = −logpatt(W |X),
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composed of sub-vocabularies, with each correspond-
ing to a language. There are 1200 to 3500 units in each 
sub-vocabulary.

5 � Experiments
5.1 � The OLR dataset
We train and evaluate the model on the OLR data-
set [43–46]. Table  2 details the contents of the data-
set. ASR-train refers to the subset used for training the 
ASR system, composed of AP16-OL7 and AP17-OL3. 
Other non-transcript subsets in the OLR dataset, includ-
ing AP17-OLR-test, AP18-OLR-test, and AP19-OLR-
test, are added to ASR-train and used for LID training, 
and all of them are collectively named LID-train in our 

experiments. In ASR-train, there are 10 languages, that 
is, Cantonese, Mandarin, Indonesian, Japanese, Rus-
sian, Korean, Vietnamese, Kazakh, Tibetan, and Uyghur, 
consisting of about 71.42 h of speech signals recorded 
by mobile phones. channel-test and noisy-test are two 
standard test sets for OLR20 challenge [43], used for the 
validation of different recording equipments and envi-
ronments, and for the validation of noisy environments 
(low SNR), respectively.

5.2 � Training setup
We conduct all experiments on the WeNet platform [47]. 
Eighty-dimensional FBank is extracted from every speech 
frame with a 25-ms window and a stride of 10 ms. Data 

Fig. 5  The architecture of the end-to-end multi-task model

Table 2  Details of the OLR dataset

Subset Data composition [43] Number of utterances Duration (h) Channel

ASR-train AP16-OL7, AP17-OL3 50,071 71.42 Mobile

LID-train ASR-train, AP17-OLR-test, AP18-OLR-test, 
AP19-OLR-test

176,354 205.25 Mobile

dev subset of ASR-train 2992 4.53 Mobile

channel-test AP20-OLR-channel-test 11,848 17.84 Cross-channel

noisy-test AP20-OLR-noisy-test 9496 13.1 Mobile
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augmentation methods, including speed and volume per-
turbation and specAugment [48], are used before train-
ing. For speed perturbation, we apply speed factors of 0.9 
and 1.1 respectively to slow down or speed up the origi-
nal recording. For volume perturbation, the random vol-
ume factor is applied. For specAument, a time wrap with 
the max width of 80, 2 time masks with the max width of 
50, and 2 frequency masks with the max width of 10 are 
applied. No voice activity detection (VAD) is used. The 
cepstral mean and variance normalization [49] is applied 
to the input features.

We use the conformer as the ASR encoder and the 
transformer as the ASR decoder. The parameters are 
listed in Table 3.

For the LID model, we use a statistic pooling followed 
by two fully connected layers with ReLu activation and 
BatchNorm per layer. The dimensions of the input and 
output of the first fully connected layer are both 256, cor-
responding to the output dimension of the conformer. 
For the second fully connected layer, its input dimension 
is 256, and its output dimension is 10. The dropout rate is 
set to 0.5 before the cross-entropy loss.

Both ASR and LID models are trained with the ADAM 
optimizer. ASR models are trained with the warm-up 
schedule [50] of 25,000 warm-up steps, and the peak 
learning rate is 1e−2. For the LID model, a relatively 
low learning rate of 1e−5 is used. We train the models 
for 240, 80, and 40 epochs for the first, second, and third 
stages, respectively. 240 is the default number of epochs 
for training an ASR model in the wenet framework [47], 
and we also use this number because the model con-
verges well after 240 epochs in our experiments. Eighty 
and 40 are our empirical values set according to the 

convergence rate of the training set after the preliminary 
experiments, which ensures that all systems in this paper 
can converge under these parameters. We use a dynamic 
batch size to suit our NVIDIA 1080Ti with 11GB mem-
ory. Model average is computed by averaging the 10 best 
models according to the loss on the dev set, and based on 
it, the methods in our experiments are fairly compared.

5.3 � Evaluation metrics
As in the OLR20 challenge [51], we use two metrics to 
evaluate the language recognition systems: Cavg as the 
principal evaluation metric, and the Equal Error Rate 
(EER) as the secondary evaluation metric. Consider-
ing that language recognition tasks need to keep both 
the false alarm rate and the false rejection rate as low as 
possible, Cavg and EER comprehensively measure these 
two rates. Among them, EER does not consider the per-
formance of individual languages, and the scores of all 
samples are mixed for calculation. However, since the 
optimal threshold for each language may not be the same 
for the best metric, Cavg calculates the error rate sepa-
rately for each language and then averages them, result-
ing in a more precise evaluation.

5.3.1 � Cavg
In most language recognition challenges, such as LRE 
[52] and OLR [43], Cavg is chosen as the principle evalu-
ation metric. The pair-wise loss of a specific target/non-
target language pair is defined as:

where Lt and Ln are the target and non-target languages, 
respectively; PMiss and PFA are the missing and false 
alarm probabilities, respectively. Ptarget is the prior prob-
ability for the target language, which is set to 0.5 in the 
evaluation.
Cavg is defined as follows:

where N is the number of languages and 
PNontarget = (1− PTarget)/(N − 1).

5.3.2 � Equal error rate
EER is widely used in many recognition tasks [24]. In 
order to define EER, false rejected ratio (FRR) and false 

(7)
C(Lt , Ln) =P Target PMiss (Lt)+

(

1− P Target

)

PFA(Lt , Ln),

(8)

Cavg =
1

N







P Target ·
�

Lt

PMiss (Lt)+

�

Lt

�

Ln

P Nontarget PFA(Lt , Ln)







,

Table 3  Parameters of the conformer ASR model

Conformer encoder

Number of blocks 12

Linear dimensionality 2048

Output size 256

Number of attention heads 4

Dropout rate 0.1

Type of activation Swish

Type of the positional encoding layer Relative

Transformer decoder

Linear dimensionality 2048

Number of blocks 6

Number of attention heads 4

ASR Training

CTC weight 0.3

Label smoothing 0.1
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accepted ratio (FAR) need to be considered first, written 
as:

If we use PFRR as the vertical axis and PFAR as the hori-
zontal axis, a continuous curve of FAR corresponding to 
FRR is obtained, named Detect Error Trade-off (DET).

EER is defined as the value in the DET curve, where 
PFRR = PFAR.

5.4 � Experimental results under different training 
strategies

The experimental results under different training strate-
gies and our proposed orthogonality regularization are 
listed in Table 4.

We first implement the traditional two-stage strat-
egy with two different encoders: the frozen encoder and 
the unfrozen encoder, as reported in No. 0 and No. 1 in 
Table 4. We get the same conclusion as [16], that is, fine-
tuning the LID task with the unfrozen encoder outper-
forms that with the frozen encoder. Note that although 
No. 1 has better results on Cavg, we believe that it may 
come from overfitting to some languages, and overall, 
EER is increased.

Then, the orthogonality regularization with � = 0.1 
is added to the above two experiments, reported as No. 
2 and No. 3. From Table  4, we see that our orthogo-
nality regularization brings improvements to the fro-
zen encoder method, while the results of the unfrozen 
method decrease slightly. The reason may be that the 
frozen encoder cannot get enough information and our 

(9)PFRR =
Number of target trials rejected

Number of Total target trials
,

(10)PFAR =
Number of nontarget trials accepted

Number of Total nontarget trials
,

regularization can be deemed as extra prior knowledge, 
while the unfrozen method already has the flexibility to 
explore any kinds of knowledge they need, so it cannot 
benefit from the regularization.

In our proposed three-stage training strategy, a multi-
task learning stage is added between the traditional two 
stages. It can also be trained with the frozen encoder or 
the unfrozen encoder, as reported in No. 4 and No. 5 
respectively in Table 4. Compared with their correspond-
ing two-stage experiments, that is, No. 0 and No. 1, the 
proposed three-stage strategy obtains obvious better 
performances, which implies the additional knowledge is 
beneficial. However, there is one exception. By compar-
ing No. 0 and No. 4 on the noisy-test set, we see that the 
two-stage strategy “asr-lid-F” performs better than the 
three-stage-stategy “asr-mt-lid-F”. The reason may be 
that noise is not completely filtered by the ASR task, so 
they can be involved in the end-to-end LID training dur-
ing the multi-task learning stage and then are fixed by the 
frozen encoder and finally affect the performance.

The experimental results of the three-stage training 
strategy with orthogonality regularization are reported in 
No. 6 and No. 7. It can be observed that the trends are 
similar to those in the above two-stage training strate-
gies, that is, orthogonality regularization dramatically 
improves the performance of the frozen method, but it 
seems useless in the unfrozen method. Moreover, com-
pared with the two-stage training methods, that is, No. 
2 and No. 3, the proposed three-stage training methods 
achieve better performances on both channel-test and 
noisy-test.

The experimental results of the two-stage strategy 
involving multitask learning following LID fine-tuning, 
that is, mt-lid, are reported in No. 8 and No. 9. Since its 
multitask learning stage tends to learn hybrid-level and 
noiseless features, it should theoretically achieve results 

Table 4  Experimental results under different training strategies

ID Strategy � channel-test noisy-test

Cavg% EER% Cavg% EER%

0 asr-lid-F 0 8.37 14.83 2.73 5.96

1 asr-lid 0 7.64 18.24 2.13 6.32

2 asr-lid-F 0.1 5.41 14.15 1.92 9.39

3 asr-lid 0.1 7.93 19.64 2.22 6.52

4 asr-mt-lid-F 0 7.25 12.76 4.93 6.19

5 asr-mt-lid 0 5.10 9.58 2.01 5.34

6 asr-mt-lid-F 0.1 4.48 8.18 1.78 3.34

7 asr-mt-lid 0.1 5.30 10.66 2.02 5.74

8 mt-lid-F 0 8.14 15.78 2.67 6.15

9 mt-lid 0 7.92 15.44 2.52 5.74
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similar to the three-stage strategy. However, its results 
are worse, which verify the effectiveness of the three-
stage strategy.

5.5 � Hyperparameter analysis
To find the optimal strategy of the proposed methods, 
the hyperparameter � in Section  3.3 is experimentally 
and theoretically analyzed.

As described in Section 3.3, � is the weight of orthogo-
nality regularization in Llid . We hope that the embedding 
space is a space formed by a set of orthogonal basis vec-
tors, so that the correlation between any two language 
centers is as small as possible. However, considering 
the natural similarities between languages, completely 
orthogonal basis vectors may not directly lead to better 
classification results. Therefore, we use � to control the 
strength of the constraint.

To explore the optimal value of � , we set it to be 0, 
0.01, 0.1, and 1.0, respectively. As shown in Table 5, No. 
0 to No. 3 denote the three-stage strategy with the fro-
zen encoder in the final stage. The results are as expected, 
that is, setting � to be 0 or 1 cannot bring the best results, 
and setting � to be 0.1 is optimal. Also, using orthogonal-
ity regularization ( �  = 0 ) is better than without it ( � = 0 ), 
showing the advantages of the introduction of orthogo-
nality regularization.

No. 4 to No. 7 denote the three-stage strategy with the 
unfrozen encoder in the final stage. The best results on 
the two test sets appear in No.7 and No.5, respectively. 
Still, consistent with the results in Table 4, for the unfro-
zen encoder, the strategies with orthogonality regulariza-
tion (No. 5 to No. 7) do not show better performances 
than the strategy without orthogonality regularization 
(No. 4), as the unfrozen encoder already gives mod-
els enough flexibility to learn the optimal embedding 
space, so orthogonality regularization cannot bring bet-
ter results. However, it is not worse either. For exam-
ple, when � = 1 (No. 7), the best results on channel-test 

are achieved. Observing that the results of No. 7 on the 
noisy-test set decrease, we suspect that the prior knowl-
edge introduced by the orthogonal constraint still has 
some impact on modeling the language space, which is 
worth further analysis in future work.

5.6 � Visualizing analysis
As mentioned in Section  3.1, when the pre-trained 
encoder is unfrozen in the second stage, it may achieve 
a higher performance but a poor generalization ability. 
We compare the models’ generalization abilities through 
visualizing analysis of the distributions of language 
embeddings. The models yielding smoother classification 
boundaries are considered to have better generalization 
abilities. Language embeddings are extracted from the 
penultimate layer of the corresponding LID model and 
plotted after dimension reduction. T-Stochastic Neigh-
bor Embedding (t-SNE) is used as the non-linear dimen-
sion reduction algorithm.

We take the channel-test test set as an example and 
extract language embeddings from the strategies listed in 
Table 4, as shown in Fig. 6. Each color represents a dif-
ferent language. To make it clear, we slightly adjust the 
order of the strategies and put those using the frozen 
encoder together. The two-stage strategies and the three-
stage strategies are divided into two lines.

Generally speaking, the classification boundaries of 
the proposed three-stage strategies (e–h) in Fig.  6 are 
smoother and clearer than those of the traditional two-
stage strategies (a–d). The strategies trained with the 
frozen encoder (c, d, g, and f ) show better generalization 
abilities, and the strategies trained with orthogonality 
regularization (b, d, f, and h) have higher between-class 
variances and lower within-class variances.

Specifically, a and c in Fig. 6 compare the difference in 
the generalization ability with freezing the encoder or not 
in the traditional two-stage strategy. Although the for-
mer is more accurate, its uneven classification boundary 

Table 5  Experimental results with different values of the hyperparameter �

ID Strategy � channel-test noisy-test

Cavg% EER% Cavg% EER%

0 asr-mt-lid-F 0 7.25 12.76 4.93 6.19

1 asr-mt-lid-F 0.01 5.06 9.23 2.10 3.17

2 asr-mt-lid-F 0.1 4.48 8.18 1.78 3.34

3 asr-mt-lid-F 1 5.10 9.43 2.48 5.07

4 asr-mt-lid 0 5.10 9.58 2.00 5.34

5 asr-mt-lid 0.01 5.50 10.23 1.99 5.67

6 asr-mt-lid 0.1 5.30 10.66 2.02 5.74

7 asr-mt-lid 1 4.03 8.12 2.27 5.68
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brings about a poor generalization ability. The strate-
gies trained with orthogonality regularization reduce the 
within-class variance, which is quite obvious for Viet-
namese (vi-vn) in e and f. Whether or not orthogonal-
ity regularization is used, the three-stage strategies show 
better generalization abilities than the two-stage strate-
gies, especially when using the unfrozen encoder.

5.7 � Comparison with state‑of‑the‑arts
Usually, back-end processing can improve the model’s 
performance and hence is widely used in previous OLR 
challenges [51]. However, back-end processing is com-
putationally complex because it needs to extract the 
embeddings of the entire training set. Therefore, in our 
experiments, we only apply back-end processing to our 
best two-stage and three-stage models to compare with 
other state-of-the-art models which also do back-end 
processing.

In our back-end processing, after training, the output 
of the penultimate layer of the LID model is extracted 

as language embeddings. Linear discriminant analysis 
(LDA) is applied using embeddings of the training set 
and the embeddings are projected to 100 dimensions. 
After LDA projection and centering, Logistic Regression 
(LR) is used to generate the scores.

Table 6 gives the comparison of our best two-stage and 
three-stage models with the top three models reported 
on the OLR20 Challenge [51]. From the comparison, we 
see that both the best two-stage and three-stage models 
are comparable with the top three models on noisy-test. It 
is worth mentioning that our best three-stage model with 
orthogonality regularization shows obvious advantages 
on both channel-test and noisy-test, showing the effec-
tiveness of our proposed three-stage training and orthog-
onality regularization methods.

6 � Conclusions
In this paper, we extended the input features of lan-
guage recognition from phonetic features to hybrid-
level features, and the traditional two-stage training 

Fig. 6  Language embeddings of different training strategies, plotted by t-SNE on channel-test. Each color represents a different language. Models 
are named by their strategies plus the value of � and correspond to those in Table 4

Table 6  The comparison of our best model with the best two-stage model and the top three models on the OLR20 challenge

ID Model � channel-test noisy-test

Cavg% EER% Cavg% EER%

0 Top 1 on the OLR20 Challenge [51] - 2.39 2.47 3.47 4.07

1 Top 2 on the OLR20 Challenge [51] - 4.21 4.51 4.76 4.87

2 Top 3 on the OLR20 Challenge [51] - 4.77 4.82 5.38 5.60

3 The best two-stage model 0.1 3.90 7.25 2.06 4.20

4 The best three-stage model (ours) 0.1 1.88 3.57 1.86 3.74
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strategy was analyzed. Preliminary experiments showed 
that the traditional two-stage strategy was not enough 
to ensure both the recognition accuracy and the gener-
alization ability. Therefore, we proposed two methods 
to solve this problem: the three-stage training strat-
egy and the orthogonality regularization. A multi-task 
learning stage was added between the traditional two 
stages, which can extract hybrid-level but noiseless 
features for the following LID task. Then, we com-
bined orthogonality regularization with the three-
stage training strategy to get our end-to-end multi-task 
architecture. The experimental results demonstrated 
that our proposed model achieved significant perfor-
mance improvements, compared with the baseline two-
stage model and the top three models on the OLR20 
Challenge.
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