
Ostermann et al.
EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:13
https://doi.org/10.1186/s13636-023-00278-7

EMPIRICAL RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

EURASIP Journal on Audio,
Speech, and Music Processing

AAM: a dataset of Artificial Audio Multitracks
for diverse music information retrieval tasks
Fabian Ostermann1*   , Igor Vatolkin1    and Martin Ebeling2 

Abstract 

We present a new dataset of 3000 artificial music tracks with rich annotations based on real instrument samples and
generated by algorithmic composition with respect to music theory. Our collection provides ground truth onset
information and has several advantages compared to many available datasets. It can be used to compare and opti-
mize algorithms for various music information retrieval tasks like music segmentation, instrument recognition, source
separation, onset detection, key and chord recognition, or tempo estimation. As the audio is perfectly aligned to
original MIDIs, all annotations (onsets, pitches, instruments, keys, tempos, chords, beats, and segment boundaries) are
absolutely precise. Because of that, specific scenarios can be addressed, for instance, detection of segment bounda-
ries with instrument and key change only, or onset detection only in tracks with drums and slow tempo. This allows
for the exhaustive evaluation and identification of individual weak points of algorithms. In contrast to datasets with
commercial music, all audio tracks are freely available, allowing for extraction of own audio features. All music pieces
are stored as single instrument audio tracks and a mix track, so that different augmentations and DSP effects can be
applied to extend training sets and create individual mixes, e.g., for deep neural networks. In three case studies, we
show how different algorithms and neural network models can be analyzed and compared for music segmentation,
instrument recognition, and onset detection. In future, the dataset can be easily extended under consideration of
specific demands to the composition process.

Keywords  Artificial music dataset, Multitrack audio mixes, Algorithmic composition, Music segmentation, Instrument
recognition, Source separation, Onset detection, Tempo estimation, Chord detection

1  Introduction
Annotated datasets are required to evaluate, compare,
and optimize algorithms for various supervised music
classification, regression, and event detection tasks: rec-
ognition of instruments and vocals, music segmentation,
onset and chord detection, tempo and key estimation,
and many more. Lots of datasets with annotations were
introduced in recent years and decades, however, often
with limitations.

First of all, many annotations focus on only one or
few aspects, because most datasets have been created
for an individual music information retrieval (MIR)
task like tempo estimation or music segmentation. For
instance, it is not possible to evaluate instrument and
harmony recognition methods, when only onsets and
segment boundaries are annotated. Second, for many
reasons the annotations are not always precise. Some-
times, they are created by non-experts, and even expert
annotations may be ambiguous. Third, the annotations
seldom contain detailed reasoning for provided labels.
For example, annotated segment boundaries usually
do not describe directly whether these boundaries are
related to timbral, harmonic, temporal, or rhythmic
properties, which makes it hard to exhaustively evalu-
ate the algorithms and to identify their individual weak

*Correspondence:
Fabian Ostermann
fabian.ostermann@tu-dortmund.de
1 Department of Computer Science, TU Dortmund University, Dortmund,
Germany
2 Department of Arts Science, Institute of Musicology, TU Dortmund
University, Dortmund, Germany

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13636-023-00278-7&domain=pdf
http://orcid.org/0000-0002-8365-3634
http://orcid.org/0000-0002-9454-9402

Page 2 of 12Ostermann et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:13

points; for such scenarios, “synthetic data generation
allows you to address the problem in a more targeted
way” [1]. Fourth, some datasets contain only lists of
commercial music tracks which are not publicly avail-
able. Even if audio previews or previously extracted
features are released with these datasets, it is not pos-
sible to extract further features for complete music
pieces. Fifth, only seldom audio multitracks, which
contain all single instrument tracks from the mix, are
provided. In particular for deep neural networks, which
benefit from large and augmented training sets, mul-
titracks make it possible to develop more robust algo-
rithms, because individual augmentation methods like
loudness change or digital audio effect processing can
be separately applied on different instrument tracks
to create individual mixes with the same annotations.
Finally, the acquiring and labeling of new data is typi-
cally a costly, exhausting, and error-prone procedure
that may include the purchase of commercial music
tracks and manual efforts on annotating ground truth
events. In contrast, our dataset can easily be extended
under consideration of specific music properties,
e.g., increasing the number of simultaneously playing
instruments, allowing non-harmonic tones, or intro-
ducing non-Western scales, in order to perfectly match
desired use cases.

Our new dataset AAM1 (Artificial Audio Multitracks)
addresses all aforementioned issues and is designed for
the evaluation of various MIR tasks: music segmenta-
tion and structure analysis, instrument recognition and
source separation, onset detection, key and chord recog-
nition, or tempo estimation. AAM contains both audio
and symbolic data, which are perfectly aligned.

However, it is important to note that some applica-
tions like genre recognition cannot be performed with
AAM, because all music pieces were algorithmically
generated and, therefore, do not represent “real-world”
human compositions. The dataset is not fully competi-
tive to them and will probably not generalize well (at
this first stage of development). Nevertheless, its great
strength is that it allows for an exhaustive testing, indi-
vidual optimization, and profound interpretation of
classification algorithm’s performance before or along-
side their successful application on real (commercial)
music.

This paper is organized as follows: In Section 2, we
provide an overview of currently available datasets for
diverse MIR tasks. In Section 3, we present theoreti-
cal and technical backgrounds as well as insights to the
implementation details of the algorithmic composition

framework, that generated AAM. Section 4 describes the
algorithmic composition process. Section 5 shows three
example applications for algorithm comparison with our
dataset. Ideas for future work are discussed in the con-
cluding Section 6.

2 � State‑of‑the‑art audio datasets
Table 1 provides a selection of datasets with ground
truth event annotations (without datasets which have
only high-level annotations like genres). Please note that
we focus only on datasets which have been presented in
peer-reviewed publications and contain at least 50 com-
plete music audio tracks.2

With regard to the richness of annotations, no indi-
vidual dataset provides all information available in AAM.
Most annotations were created by human experts or
mining from the Internet. Some annotations were gen-
erated automatically from aligned MIDIs or multitracks
(DALI, MedleyDB, MusicNet), some are very precise
because of audio generated from MIDIs (MAPS, MSMD,
NES-MDB, Slakh). For many datasets, no audio tracks
are available, sometimes on request, or as Youtube video
clips. Only three datasets contain multitracks (Har-
greaves, MedleyDB, Slakh).

Further restrictions include a rather small number of
tracks (only five datasets contain more than one thousand
tracks), but also genre limitations: GiantSteps contains
only electronic dance music, Harmonix only Western
pop songs, Isophonics Beatles only Beatle songs, MAPS
and MSMD piano pieces, NES-MDB game soundtracks.
Even if it is hard to assign genres to artificially generated
AAM tracks, the generation process was based on very
different music properties (like instruments, tempo, and
key, see Section 4). That is why AAM provides more vari-
ation than datasets with tracks of only a few genres or
artists.

The only dataset which has most similar richness of
annotations while also providing (synthesized) audio
multitracks is Slakh. In contrast to our dataset, Slakh
is built on existing MIDIs manually gathered from the
Internet. AAM is based on automatic composition and,
therefore, can be easily extended with further tracks
adjusting desired properties for specific investigations
about when and why algorithms fail. Actually, both data-
sets can be used in a complementary way, e.g., optimizing
a neural network for instrument recognition using both
AAM and Slakh tracks.

1  Find our dataset at: https://​doi.​org/​10.​5281/​zenodo.​57946​29
2  For a more exhaustive (and regularly updated) list, see https://​github.​com/​
ismir/​mir-​datas​ets (accessed: 02/02/2023).

https://doi.org/10.5281/zenodo.5794629
https://github.com/ismir/mir-datasets
https://github.com/ismir/mir-datasets

Page 3 of 12Ostermann et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:13 	

3 � AAM dataset
3.1 � Motivation and musicological background
As stated in the introduction, artificial music pieces can
assist testing and validating classification algorithms
with respect to many musically meaningful aspects while
easily allowing for automatic and precise annotations.
However, such artificial data must stand comparison
and compatibility with real (human-composed) music at
least to some extent.

When computer supported music classification and
analysis is intended to perform high-level tasks, it inher-
ently attempts to emulate human perception. Therefore,
the natural human auditory ability of performing group-
ing mechanisms [26] is involved. For example, the high-
est notes of a song are usually perceived as one coherent
melody line (simultaneous grouping), while a melody
inherently consists of successive notes (successive group-
ing). Respectively, multiple notes played at the same time

are peceived as one coherent chord and whole music
pieces are typically segmented into individual parts that
are perceived as entities. Listeners perceive well-founded
Gestalts ([27], p. 256) which are entities (those very mel-
odies or chords) that become “more than the sum of its
parts (notes)” ([28], p. 75). For example: once heard, the
Gestalt of a melody will be easily recognized even if its
original notes are transposed.

Playing around with these grouping sensations,
that listeners do experience intuitively, is the task of a
music composer. Therefore, our approach of algorith-
mic composition keeps in mind those elementary rules
of auditory Gestalt-perception ([28], p. 76) by defining
specially designed subtasks. We argue that if Gestalts
are (easily) perceivable by humans in the resulting arti-
ficial music pieces, they should also be identified by
pattern recognition algorithms which can be compared
and further tuned using our dataset as a testbed.

Table 1  List with selected state-of-the-art music datasets with distinct annotations. The $ symbol marks proprietarily licensed music
tracks which have to be purchased

Annotations Audio

Name No. Onsets Pitches Instruments Key Tempo Segments Melody Chords Beats Mix Tracks

AAM 3000 � � � � � � � � � � �

ACPAS [2] 2189 � � - � - - - - - � -

ASAP [3] 520 � � - � � - - - � � -

CASD [4] 50 - - - - - - - � - - -

Chordify TapCorrect [5] 101 - - - - - - - - � � -

DALI [6] 5358 - - - - - - � - - � -

GiantSteps Key [7] 604 - - - � - - - - - � -

GiantSteps Tempo [7] 664 - - - � � - - - - � -

Hargreaves [8] 104 - - - - - � - - - � �

Harmonix [9] 912 - - - - � � - - � � -

INRIA RWC Pop [10] 100 - - - - - � - - - $ -

Isophonics Beatles [11] 180 - - - � � � - � � - -

JAAH [12] 113 - - - � - � - � � - -

Jamendo VAD [13] 93 - - - - - � - - - � -

MAPS [14] 238 � - - � � - - � - � -

McGill Billboard [15] 740 - - - - - - - � - - -

MedleyDB [16] 122 - - � - - - � - - � �

MSMD [17] 497 � - - - - - - � - - -

MUSDB18 [18] 150 - - � - - - - - - � �

MusicNet [19] 330 � � � - - - - - - � -

NES-MDB [20] 5000 � � � - - - - - - � -

Rock Corpus [21] 200 - - - - - - � � � - -

SALAMI [22] 1383 - - - - - � - - - - -

Seyerlehner Pop [23] 545 - - - - � - - - - � -

Slakh [24] 2100 � � � � � - - - - � �

SPAM [25] 50 - - - - - � - - - - -

Page 4 of 12Ostermann et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:13

3.2 � Framework overview
Figure 1 sketches the framework3. Beside the final audio
mixes and corresponding annotations of onsets, pitches,
instruments, keys, tempos, and segments, single tracks of
all individual instruments are also included in the data-
set in order to enable researchers to perform dataset aug-
mentation by remixing the tracks with different levels of
loudness for each instrument and with effects like reverb,
chorus, or distortion. Further, we provide all artificially
composed MIDI files (e.g., for resynthesis of audio) and
the configuration files that state compositional settings.

The Algorithmic Composer simulates the composi-
tion of one individual music piece. The algorithm con-
structs relations between musical elements in terms of
repetition, variation, and contrast [29], in order to build
a consistent piece of music, which fulfills the demands
of producing well-founded Gestalts. The task of algo-
rithmic composition is not at all trivial and a topic of
many research investigations [30]. Many of them try to
compete with great human composers with growing suc-
cess. Since our main goal is to create data for algorithm
evaluation and optimization, our composition approach
does not satisfy an ambition to create high-quality music
for listening. Nevertheless, the central demand is reduc-
ing the portion of unrealistic and poor composed pieces.

Furthermore, our work provides a framework designed
to grow over time and allowing for successive improve-
ments of the resulting music compositions with future
releases.

Beside the Algorithmic Composer module, the system’s
workflow includes the conversion of the music pieces
from their symbolic MIDI form to an audio recording,
which should be as realistic as possible. This is performed
by the module named Recording Studio. Each run of the
Algorithmic Composer composes one music piece. After-
wards, the created piece is converted to single instrument
audio tracks using real instrument samples. This single
track procedure is similar to music production in a pro-
fessional recording studio. Finally, all single instrument
tracks are mixed down to form a full audio representa-
tion (the final mix) of each music piece.

3.3 � Technical backgrounds
The whole project is implemented in Java. The low-
level operations like onset annotation are implemented
using Java Sound API [31]. To handle musical elements
on a higher-level representation than MIDI, the pro-
gramming library JFugue [32], that itself builds on Java
Sound, is utilized. It provides the MIDI abstraction lan-
guage Staccato4, in which all features of the MIDI stand-
ard [33] are represented by string tokens. Furthermore,
JFugue allows for manipulation of parts of the music as
a whole, like sequencing and layering, and therefore sim-
plifies the flexible arrangement of single elements within
a full composition. The conversion from the Staccato for-
mat into MIDI files with JFugue proved to be reliable and
straightforward.

The key aspect in the realistically recording of single
instrument tracks is to avoid static sound samples and to
use intelligent samplers, which aim to simulate human
playing behavior instead. Most samplers used for AAM
are part of the Native Instruments Komplete 11 Ultimate
bundle [34]. Only the guitars were produced with Chris
Hein Guitars samplers [35], and the non-Western instru-
ments come from the Ethno World 5 library [36].

For batch conversion (Recording Studio), we decided
to use a digital audio workstation as used by profes-
sional music producers. We chose Harrison’s Mixbus v6
[37], because it combines a high-quality analog mixing
simulation with scripting features, which were inherited
from its open-source ancestor Ardour [38]. With its inte-
grated console for running Lua scripts [39], we were able
to batch convert our instrument tracks stored as MIDI
files into audio files with a CD-standard sampling rate of

Fig. 1  Modules of the fully automated generation process. The
AAM dataset contains all configurations, symbolic MIDI files, single
instrument audio tracks, mixed tracks and annotations

4  For easy-to-understand examples of Staccato visit: http://​www.​jfugue.​org/​
examp​les.​html (accessed: 02/02/2023).

3  The source-code of the composing framework is publicly available at:
https://​doi.​org/​10.​5281/​zenodo.​75999​41

http://www.jfugue.org/examples.html
http://www.jfugue.org/examples.html
https://doi.org/10.5281/zenodo.7599941

Page 5 of 12Ostermann et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:13 	

44.1 kHz. For compression we used the free lossless audio
codec FLAC [40].

4 � Algorithmic Composer
4.1 � Overview
For practical reasons, constraints are defined in Algorith-
mic Composer to limit the space of possible music pieces
and to preserve a manageable complexity. Currently, the
Algorithmic Composer generates pieces based on rules
typical for the composition of Western popular music.
For this reason, the music contains only steady rhythms,
time signature of 4/4, ordinary major-minor system
chord progressions, easily singable melodies, and a mod-
erate number of different instruments per piece. On the
other side, the variety of music pieces is extended with
several non-Western instruments (cf. Table 2), adding a
world music element to Western pop music style com-
positions. Please note that the limitations in the com-
position process will be reduced in future releases of the
dataset.

For now, the composition process is mainly based on
mathematical models relying on random decisions under
consideration of knowledge-based rules. Since one music
piece is expected to have different parts, which could,
for instance, be identified by an automatic segmentation
algorithm (cf. Section 5.1), the Algorithmic Composer
creates at minimum three and at maximum five such
parts. The bottom limit of three follows the pop music
“rule” that every “good song” is composed of at least cho-
rus, verse, and bridge [41]. This principle is based on the
much older compositional concept of repetition, varia-
tion, and contrast [29] and can be perceived as Gestalts
transforming over time (cf. Section 3.1).

The parameters that define the musical characteristics
of the first part of a music piece are selected by chance
from a uniform distribution and are bound to the main
configuration as listed in Table 3. These parameters
essentially determine the general appearance and the
degree of variation within and between the resulting
music pieces.

Key features of any part are its key, tempo, length (the
number of bars), and instruments. They are chosen

by chance already allowing for a large variety of com-
binations in the current setting. The probabilities are
restricted by the configuration, so that in AAM a key is
randomly selected from all twelve root notes in either
major or minor tonality. The tempo is drawn as equally-
distributed random integer between 60 and 180 BPM.
Predominantly, the bar count of parts in popular music
is powers of 2. Therefore, we chose 4, 8, and 16. 6 and 12
were added as commonly occurring variations. Other
lengths, especially odd-numbered ones, were not allowed
for the creation of AAM (cf. Table 3).

4.2 � Memoization of random decisions
Because we mainly rely on random decisions, we need
a strategy to overcome pure arbitrariness. An example
for the limited expression of mere random composi-
tion is Mozart’s Musical Dice Game [42]. The roll of a
dice decides for each bar which one of the precomposed
phrases is to add to the composition. But, the music
shows an unrelated and incoherent organization which
appears to be just haphazard especially to inexperienced
listeners. This is because a decision to choose a musical
phrase does not respect any of the previous decisions.

Table 2  List of samplers used to produce the dataset ordered by instrument categories and band functions

Category Melody Chords/arpeggio Bass

Bowed Erhu, Jinghu, Morin Khuur, Viola, Violin Cello Double Bass (pizz/arco)

Brass Flugelhorn, Trombone, Trumpet — —

Flute/Pipe Concert, Fujara, Pan, Shakuhachi — —

Guitars Electric Guitar (lead) Acoustic Guitar, Balalaika, Electric Guitar (clean/
crunch), Sitar, Ukulele

Electric Bass

Keys — Electric Piano, Piano (grand/bright) Organ

Sax Alto Sax, Tenor Sax, Clarinet — —

Table 3  Basic configuration parameters used to produce AAM

Parameter Values

Duration 120–180 s

Number of parts 3, 4, 5

Part lengths in bars 4, 6, 8, 12, 16

Key roots All 12

Key tonalities Major, minor

Tempo range 60–180 BPM

Instruments forget 0.33

Arpeggio probability 0.5

Bass probability 0.9

Chord pad probability 0.8

Drums probability 0.8

Melody probability 0.9

Page 6 of 12Ostermann et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:13

Our approach to this problem is to embrace con-
cepts from the field of probabilistic programming [43].
Every random decision that is made, e.g., the choice of
key or tempo, is memoized, which manifests different
world states [44]. Memoization originally terms a com-
putational speed optimization technique in dynamic
programming ([45], p. 365) that relies on caching pre-
vious function call calculations for already used input
parameters. In probabilistic programming, where func-
tion calls with the same parameters can lead to differ-
ent results, this concept sets probabilities to fixed values,
that will from then on not change until the program ter-
minates (in our case: by termination we have generated
one piece of music). This procedure is not describable by
a Markov model or process, since it does not satisfy the
Markov property, which demands that probability distri-
butions are independent from previous states. Instead,
it follows a Bayesian approach of conditional probability
chains, while preserving an adequate coding workflow
[46]. Decision making (in the compositional process)
has impact on later decisions, which can lead to (case 1)
repeating previous decisions, (case 2) relating to them, or
(case 3) deliberately ignoring them. This threesome again
meets the former mentioned compositional demands for
repetition, variation, and contrast.

One simple example of decision memoization is the
generation and variation of the musical key. First, the key
for the first part A is randomly drawn with equal prob-
ability from all roots and tonalities within the configura-
tion’s range, e.g., G minor. Then, the key of the following
part B is drawn using adjusted (conditional) probabili-
ties for all possible root notes with relation to the former
key from A . These relations are mainly based on the
natural harmonics series [47] with a subjectively added
preference of using step-up modulation, which is a typi-
cal pop music climax technique.5 Hence, there will be a
probability of 0.6 to remain within the key of G minor
as established in A (case 1) and different probabilities
(case 2) for a modulation to the keys with root notes C
(0.1, fourth up), D (0.05, fourth down), B (0.03, major
third up), E ♭ (0.02, major third down), B ♭ (0.03, minor
third up), E (0.02, minor third down), A (0.1, whole tone
up), and G ♯ (0.05, half tone up).

This procedure can be easily transferred to the varia-
tion of tempo: With a probability of 0.5, the established
tempo is kept in the next part (case 1). With a probabil-
ity of 0.3, either double or half of the previous tempo is
selected (case 2). That agrees with the typical concept of
double-time and half-time, which is the major reason for

failures of tempo estimators which often produce tempo
octave errors (integer multiple or fraction of the correct
tempo). With a lower probability of 0.1, the tempo is
either multiplied by the triplet factor 2

3
 or 4

3
 , causing the

new tempo to be based on the triplets of the previous
beat (also case 2). With the remaining probability of 0.1,
the tempo is randomly chosen regardless to the tempo in
the previous part (case 3). Besides, a tempo change will
never break the configured tempo range constraints.

These design decisions might seem a bit vague and
unconfirmed regarding Western pop music, and yes they
are. We have not performed formal analysis of real music
(yet), so we are unable to concretely prove property dis-
tributions in AAM are similar to real music. For instance,
the relatively high number of tempo changes in the data-
set can be identified as atypical. However, in this case we
wanted to provide enough data for the tasks of tempo
estimation and detection of boundaries with tempo
changes. If one would aim to test a specific algorithm
identifying segment boundaries without tempo changes,
(s)he can easily identify and omit those specific parts or
complete tracks based on the provided annotation. This
way, AAM is applicable to many different tasks as we are
to show exemplarily in Section 5.

4.3 � Element generators
Because the psychology of Gestalt claims that music is
perceived by grouped events (cf. Section 3.1), the task of
composition is split up in subtasks. We decided to qual-
ify four main roles in a music ensemble: melody, chords,
bass, and drums. They are fulfilled by applying independ-
ent modules named element generators that implement
different music composing algorithms. Because different
elements are intended to sound together as a coherent
part of a music piece, the generators must regard joint
properties specified by the part they are currently com-
posing for. These properties are those of key, tempo, and
length, which are global for each part. Additionally, an
instrument is directly assigned to each element, because
the generator must comply to the specific pitch range.
Finally, all created elements for one part have to match
the same shared chord progression, which is also gener-
ated as global part property beforehand.

In the current implementation, chord progressions
are constructed as random sequences of chords built
from the underlying key’s scale degrees of I–VI. The
half-diminished chord (VII) is omitted, since it is rarely
used in popular music. Furthermore, it would need
more sophisticated treatment than the others, so omit-
ting reduces the complexity of the composition process.
Each chord is given whole or half note values. The end-
ing chord always becomes the key’s tonic. Despite all
the simplification, our approach produces solid chord

5  Parallel upwards key shift is frequently used in pop music compositions,
e.g by Dexys Midnight Runners when reaching the chorus of “Come On
Eileen” or as climax of Michael Jackson’s “Man in the Mirror”.

Page 7 of 12Ostermann et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:13 	

movements, which are quite appealing when enriched
with a matching melody later on.

The currently implemented element generators are able
to produce two kind of chord accompaniment (chord
pads, arpeggiations), simple bass lines, reasonable drum
grooves, and matching melodies. The chord pad gen-
erator arranges the chords from the aforementioned
chord progression as triads. It chooses different chord
inversions to match a randomly determined range. The
arpeggiation generator uses the same voicing method.
Unlike with the chord pad generator, the resulting notes
are not played simultaneously, but in succession with a
repeating pattern. The bass generator provides the root
notes from the chords of the underlying progression. The
drum groove generator constructs various variations of
backbeats. It consists of three instruments: bass drum,
snare drum, and cymbal (hihat or ride). The snare and
cymbal patterns are randomly selected from a list of pre-
composed patterns. The bass drum pattern is composed
by randomly adding hits to the eighth note positions of
a bar (1+2+3+4+) with different probabilities, e.g.,
pbd(1) = 1 , pbd(3+) = 0.3 . For a basic understanding
of the functionality of those four generators, we suggest
listening to some tracks of the AAM dataset. For details,
have a look in the source code. The melody generator is
the most complex one in the current implementation and
will be explained in more detail in Section 4.4.

For the sake of higher variety, the parts of a music piece
do not always contain all five elements. Each element gets
added to a part with a certain probability (cf. Table 3), so
that one part may, for instance, consist of only a melody
accompanied by a bass line or just chord arpeggiations
with drums. The instrument is, however, memoized to its
role for all parts of one piece, which means: for all fol-
lowing parts the memoized instrument is likely to be
used again, so that, for instance, the main melody instru-
ment probably remains the same for the complete music
piece. Since compositional rules are never strict and may
be occasionally broken, the memoization is “forgotten”
with a probability of 0.33 (“Instruments forget”). Another
instrument is then chosen to play the music of that cer-
tain element just for that part.

Once all parts for one music piece are produced, they
are arranged to form the full structure of the piece. In the
current implementation, a fully random sequence is pro-
cessed, which allows any combination of the parts. The
only restriction is that the resulting track must have a
playing time between 120 and 180 s. That way, parts are
directly repeated multiple times or different parts get
inserted in between. That creates repetition (AA) and
contrast (AB). Variation (AA’) is implicitly performed
by relying on the chain of memoized randomness when
composing different parts and elements.

To understand the conceptional construction of the
actual music algorithms, the current melody generation
procedure is briefly explained in the following section.
Please note that other parameter settings are possible,
and more generators for any of the four roles can eas-
ily be added and work alongside each other due to our
framework’s design.

4.4 � The melody generator
Melodies are generated by random initialization of eighth
notes, and then successively removing, editing, and copy-
ing sections until we arrive at a final melody.6 The classi-
cal composition concept of the period ([29], p. 55–64) is
adopted to guarantee well-formed Gestalts. All decisions
are driven by random choices with regard to preceding
decisions. Some of the design probabilities are indepen-
dently drawn each time a construction process starts.
These are the melody range and its relation to the last
note, which is considered as the melody’s target note. The
others are memoized until the Algorithmic Composer ter-
minates. This way, a coherence throughout all melodies
of one music piece is established.

At first, the target note is chosen as the root ( p = 0.75 )
or the fifth ( p = 0.25 ) of the last chord (target chord)
from the underlying progression. The melody is mainly
constructed around that note within a randomly chosen
range of a fourth, fifth, or sixth. All eight notes of all bars
are filled with random notes from inside that range, that
diatonically match the given key of the part. In the exam-
ple melody from Fig. 2:1a, the target note is chosen to be
f ’ (the root of chord F). The melody range is chosen as a
sixth ranging from c’ to a’ resulting here in a pool of notes
that is {c’,d’,e’,f ’,g’,a’}. Afterwards, some of the notes are
replaced by rests (Fig. 2:1b). The probability for a rest is
a random value pR between 0.1–0.4 (we denote this here-
inafter with pR = rand(0.1, 0.4) ). This probability, in con-
trast to the target note and melody range, is memoized
for all following melody generator runs within the com-
position of one music piece. The idea behind the random
choice of probabilities with a range restriction is, that
various music pieces can have distinct manifestations of
characteristics, while one piece’s melodies remain similar
to each other resulting in homogeneous appearance. This
is an example for creating a specific world state (cf. Sec-
tion 4.2), in which melodies will (henceforth) always have
specifically similar characteristics.

In the second step (Fig. 2:2), the melodic contour
is smoothened by removing syncopated notes with a
memoized probability ps = rand(0.1, 0.9) . Third (Fig. 2:3),

6  The concrete implementation of the melody generator can be found in the
source code: src/parts/MelodyBow.java

Page 8 of 12Ostermann et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:13

the melody construction is divided into four equal-sized
sections. The starting notes from the first section (yel-
low) are eventually copied over (green) to the second and/
or third section by chance. This is done without memoi-
zation. The length in eighths of the copy content is ran-
domly chosen for both sections and may become zero (no
relation) or even exceed the parts boundary by two eights.
This way, resulting forms like ABAC, AABC, AA’A’B,
and similar ones are possible. The melody in Fig. 2 could
be described as AA’AB.

Fourth (Fig. 2:4), the content of the final bar is replaced
by the initially chosen target note. Finally (Fig. 2:5), the
melody that up to here contains only eighth notes is altered
to quarter and half notes with memoized probabilities of
pq = rand(0.1, 0.8) and ph = pq + rand(−0.2, 0.2) , but
only if an extension is possible without overwriting. This
last step (eventually) alters the melody’s staccato character
towards a more legato one.

5 � Example applications
In the following sections, we show three possible appli-
cations for our dataset. Please note that we do not aim to
solve the selected MIR tasks in a perfect way and exhaus-
tively tune the parameters, but just provide examples how
different algorithms can be compared. All of them are con-
ducted for audio signals; however, also the comparison of
algorithms for symbolic representations is possible using
provided MIDI files. For further examples how shallow
and deep classifiers can be applied to solve diverse music
classification tasks, we refer to [48–50]. Further studies
that make use of AAM include segment detection [51],
genre recognition [52], and neural architecture search for
instrument recognition [53]. These three provide in-depth
examples for possible applications.

5.1 � Music segmentation
The task of music segmentation is to identify bounda-
ries between parts of music pieces which are perceived
as entities. Thus, it is a binary event detection task: each
time frame of a piece can be either a boundary or not.
Note that another related task, music structure analysis,
additionally assigns segment labels and derives relations
between musical segments. For further reading on both
tasks, we recommend [54, 55].

Two methods have been applied for music segmen-
tation. The first one utilizes the self-similarity matrix
(SSM) which compares all time frames of given length in
a music track against each other based on a set of features
which represent those frames. The alignment of SSM
with the Gaussian checkerboard kernel yields a novelty
function whose peaks are considered as segment bound-
aries. For more details, please see [56]. We have applied
the implementation based on [57, 58] for the comparison
of individual feature groups used to build the SSM, to
show their impact on the performance. The feature sets
include the Mel frequency cepstral coefficients (MFCCs)
extracted from 512 samples using MIRtoolbox [59], the
Mel spectrum (2048 samples / Librosa [60]), the semi-
tone spectrum (2048 samples/NNLS Chroma [61]), and
the five peaks of fluctuation patterns (229,376 samples /
MIRtoolbox). The second method is a convolutional neu-
ral network (CNN) after [62]. Table 4 describes the archi-
tecture of layers implemented in Keras.

We used 6-fold cross validation in the experiments:
The dataset was randomly split into non-overlapping
partitions of 500 tracks. Each partition was used once as
a test set to validate the performance of both methods.
For the CNN, the remaining part of the dataset was used
to train the network (with four partitions) and validate
its parameters on one partition by early stopping after

Fig. 2  Step-wise construction of a melody. Red areas mark note removals, yellow areas are notes to copy, and green areas mark replacements

Page 9 of 12Ostermann et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:13 	

three epochs with no loss reduction. Table 5 lists evalu-
ation measures estimated with a 3 s tolerance boundary.
FA , PA , RA report F-measure, precision, and recall for
all boundaries. Indices I, K, T correspond to measures
estimated only for boundaries with instrument, key, and
tempo change, respectively.

The results show that the CNN performs at best with
respect to F and P for all boundary types, but the R-val-
ues (i.e., the share of correctly predicted boundaries)
were better for specific boundaries, when novelty-based
segmentation with semitone spectrum was applied. How-
ever, this method has predicted far more false positives,
so that the precision values were less than half of these
values for CNN. When we compare different features for
novelty-based segmentation, MFCCs seem to perform at
best for F and P.

5.2 � Instrument recognition
Instrument recognition is applied here as a multi-label
classification task which predicts occurrences of nine

instrument groups in classification time frames of a
polyphonic audio signal. Other application scenarios
can be the prediction of predominant instruments or
their relative contribution to the energy of the mixed
signal.

We have applied several CNNs based on [64]. Beyond
the adjusted implementation from [65], we have tested
the slight changes of architecture inspired by AlexNet
[63] (larger convolution filters) and VGG16 [66] (more
convolution layers). Table 4 lists details of the layers
implemented in Keras. The Mel spectrogram extracted
with Librosa [60] was used as input. As a traditional
method to compare with, we have applied also random
forest with a set of timbre-related features available in
AMUSE [67]: zero-crossing rate, spectral characteristics,
MFCCs, delta MFCCs, etc., all together 157 dimensions,
which were stored separately from two time frames,
one with the onset event, and another one in the middle
between the current and next onset event.

The six partitions of 500 tracks from the music segmen-
tation experiments are used again. For random forest, the
trees were trained with all partitions except the former
test partition. For CNNs, 4 of 6 partitions were used for
training and one partition for validation; the training was
continued until no progress of loss was measured during
three epochs. Table 6 reports mean test cross-validation
balanced classification errors at the individual prediction
of eight instrument groups (the average errors for sam-
ples with at least one instrument in the group to predict
and samples without such instruments).

Table 4  Architecture blocks for four networks inspired by previous
work. Music segmentation: CNN-GrillSchlüter: adaptation after
[62]. Instrument recognition: CNN-AlexNet: adaptation after [63];
CNN-Han: adaptation after [64, 65]; CNN-VGG16: adaptation after
[66]. Keras layers: C(i,j): Conv2D(i,j); P(m,n): MaxPooling2D(m,n);
d: Dropout(0.25); D: Dropout(0.5); F: Flatten; G: GlobalMaxPooling2D;
Rr: Dense(activation=‘relu’); Rs: Dense(activation=‘sigmoid’). The
numbers of output neurons are provided in square brackets

CNN-GrillSchlüter
C(8,6)[16] p(3,6)

C(6,3)[32]

F D Rs[128] D Rs[1]

CNN-AlexNet
C(11,11)[32] P(1,2) d

C(5,5)[64] P(1,2) d

C(3,3)[128] C(3,3)[128] C(3,3)[128] G d

Rr[1024] D Rs[9]

CNN-Han
C(3,3)[32] C(3,3)[32] P(1,2) d

C(3,3)[64] C(3,3)[64] P(1,2) d

C(3,3)[128] C(3,3)[128] P(2,2) d

C(3,3)[256] C(3,3)[256] G

Rr[1024] D Rs[9]

CNN-VGG16
C(3,3)[32] C(3,3)[32] P(1,2) d

C(3,3)[64] C(3,3)[64] P(1,2) d

C(3,3)[128] C(3,3)[128] C(3,3)[128] P(2,4) d

C(3,3)[256] C(3,3)[256] C(3,3)[256] G d

Rr[1024] D Rs[9]

Table 5  Evaluation measures for music segmentation with
respect to different boundaries. F-measure (F), precision (P), and
recall (R) are estimated for all boundaries (A) and boundaries
coming with instrument (I), key (K), or tempo (T) change.
Abbreviations for the feature groups: MelS: the Mel spectrum;
SemS: the semitone spectrum; Fluct: fluctuation patterns. Best
values are marked with bold font

Meas. MFCCs MelS SemS Fluct CNN

FA 0.646 0.577 0.615 0.470 0.914
PA 0.568 0.473 0.506 0.397 0.950
RA 0.810 0.803 0.850 0.615 0.899
FI 0.600 0.531 0.571 0.418 0.925
PI 0.484 0.401 0.432 0.322 0.947
RI 0.871 0.870 0.926 0.644 0.921

FK 0.520 0.469 0.510 0.374 0.822
PK 0.399 0.338 0.370 0.274 0.798
RK 0.863 0.887 0.951 0.666 0.901

FT 0.387 0.357 0.377 0.299 0.846
PT 0.272 0.237 0.251 0.201 0.895
RT 0.840 0.912 0.947 0.718 0.857

Page 10 of 12Ostermann et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:13

We can observe that random forest performs worst.
The architecture inspired by VGG16 is the best candi-
date, followed by Han; however, the differences in abso-
lute error values are small. The architecture inspired by
AlexNet performs worse than both other CNN architec-
tures except for drums.

5.3 � Onset detection
Onset detection is a binary event recognition task which
identifies time frames with new beginning notes. To illus-
trate the progress of classification performance of algo-
rithms developed over recent decades, we compare more
recent approaches from Librosa [60] and MIRtoolbox
[59] (mironsets method) with their default parameters
to the former setup by [68] in Table 7. Since we annotate
MIDI note-on events, all methods were applied in attack
detection mode. The tolerance boundary is set to 50 ms.

Beyond the best overall performance of the Librosa
method, it performs better for slower songs, while MIR-
toolbox and Klapuri tend to work better for faster tem-
pos. The Librosa method benefits from the presence of
drums. The outdated method from [68] generally per-
forms worst as expected, which by considering its age
reveals the quality leap in research.

6 � Concluding remarks and outlook
In this paper, we have presented a large dataset of
3000 artificially generated sample-based audio tracks
together with original MIDIs, which were created using
an algorithmic composition strategy.

Our generation procedure is intended to produce
a large number of audio tracks in a short time. Thus,
some “blind spots” of the current state of the dataset,

such as constant rhythms, the limited number of instru-
ment bodies, or the bias of melody lines towards West-
ern popular music can be addressed in future work. We
might closely analyze or even learn real music’s property
distributions. The proposed framework is designed to be
easily extendable with further music composing mod-
ules (element generators) and the source code is publicly
available. This offers a great potential for advancements
in quality and realism of the generated music. New
modules may therefore implement concepts of (knowl-
edge-based) grammars, (bio-inspired) transformation of
existing music, (evolutionary) optimization approaches,
(deep) machine learning or any imaginable hybridiza-
tion. Another significant step towards realism would be
achieved by adding singing voices, e.g., by automatic gen-
eration of accompaniment to pre-recorded human vocals
or even the artificial creation of realistic voices. Further
experiments may also include data augmentation and
combination of AAM with data from other datasets to
create more robust classification models.

Abbreviations
AAM	� Artificial Audio Multitracks
CNN	� Convolutional neural network
MFCC	� Mel frequency cepstral coefficient
MIDI	� Musical Instrument Digital Interface

Table 6  Balanced classification errors for recognition of
instrument groups. CNN-AlexNet: adaptation after [63]; CNN-Han:
adaptation after [64, 65]; CNN-VGG16: adaptation after [66]. Best
values are marked with bold fonta

aCNN-Han is better than CNN-VGG16 for pipe at the 6th position after the fix
point

Instr. Random CNN- CNN- CNN-
Group Forest Han AlexNet VGG16

Bass 0.192 0.017 0.021 0.016
Brass 0.270 0.043 0.094 0.035
Drums 0.159 0.036 0.028 0.035

Guitar 0.346 0.106 0.169 0.095
Organ 0.101 0.002 0.004 0.001
Piano 0.388 0.099 0.162 0.094
Pipe 0.418 0.087 0.145 0.087

Reed 0.389 0.106 0.172 0.117

Strings 0.168 0.030 0.051 0.029

Table 7  Evaluation measures for onset detection on subsets of
the AAM dataset. F-measure (F), precision (P), and recall (R) are
provided for all three methods on all available dataset tracks (A),
as well as on subsets of specific tempo segments (S: slow, M:
medium, F: fast) and segments with and without drums ( D , D ).
Best values are marked with bold font

Measure Kla99 Librosa MIRtoolbox

FA 0.224 0.787 0.515

PA 0.228 0.834 0.473

RA 0.226 0.752 0.582

FS 0.105 0.821 0.424

PS 0.095 0.861 0.355

RS 0.122 0.796 0.552

FM 0.196 0.793 0.506

PM 0.192 0.841 0.459

RM 0.205 0.762 0.577

FF 0.333 0.742 0.599

PF 0.369 0.806 0.596

RF 0.311 0.702 0.611

FD 0.222 0.804 0.517

PD 0.223 0.830 0.480

RD 0.225 0.782 0.575

F
D

0.228 0.673 0.522

P
D

0.258 0.851 0.473

R
D

0.218 0.603 0.625

Page 11 of 12Ostermann et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:13 	

MIR	� Music information retrieval
SSM	� Self-similarity matrix

Acknowledgements
Not applicable.

Authors’ contributions
FO: design, implementation, and description of the music framework; execu-
tion of onset detection. IV: overview of existing datasets; design, execution,
and evaluation of application experiments. ME: musicological background and
consultant on composing strategies. The authors read and approved the final
manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Availability of data and materials
Find our dataset at: https://​doi.​org/​10.​5281/​zenodo.​57946​29. The source code
of the composing framework is available at: https://​doi.​org/​10.​5281/​zenodo.​
75999​41

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 15 November 2022 Accepted: 3 March 2023

References
	1.	 E. Strickland, Andrew ng, ai minimalist: The machine-learning pioneer

says small is the new big. IEEE Spectr. 59(4), 22–50 (2022)
	2.	 L. Liu, V. Morfi, E. Benetos, in Society for Music Information Retrieval Confer-

ence, ISMIR, Late-breaking Demo 2021, ACPAS: A dataset of aligned classical
piano audio and scores for audio-to-score transcription (2021)

	3.	 F. Foscarin, A. McLeod, P. Rigaux, F. Jacquemard, M. Sakai, in International
Society for Music Information Retrieval Conference (ISMIR), ASAP: a dataset
of aligned scores and performances for piano transcription (2020), pp.
534–541

	4.	 H.V. Koops, W.B. de Haas, J.A. Burgoyne, J. Bransen, A. Kent-Muller, A. Volk,
Annotator subjectivity in harmony annotations of popular music. J. New
Music. Res. 48(3), 232–252 (2019)

	5.	 J. Driedger, H. Schreiber, W.B. de Haas, M. Müller, in Proceedings of the 20th
International Society for Music Information Retrieval Conference, ISMIR, Delft,
The Netherlands, November 4-8, Towards automatically correcting tapped
beat annotations for music recordings (2019), pp. 200–207

	6.	 G. Meseguer-Brocal, A. Cohen-Hadria, G. Peeters, in Proceedings of the 19th
International Society for Music Information Retrieval Conference, ISMIR, Paris,
France, September 23-27, ed. by E. Gómez, X. Hu, E. Humphrey, E. Benetos.
DALI: A large dataset of synchronized audio, lyrics and notes, automati-
cally created using teacher-student machine learning paradigm (2018),
pp. 431–437

	7.	 P. Knees, Á. Faraldo, P. Herrera, R. Vogl, S. Böck, F. Hörschläger, M.L. Goff, in
Proceedings of the 16th International Society for Music Information Retrieval
Conference, ISMIR, Málaga, Spain, October 26-30, ed. by M. Müller, F. Wier-
ing. Two data sets for tempo estimation and key detection in electronic
dance music annotated from user corrections (2015), pp. 364–370

	8.	 S. Hargreaves, A. Klapuri, M.B. Sandler, Structural segmentation of multitrack
audio. IEEE Trans. Audio Speech Lang. Process. 20(10), 2637–2647 (2012)

	9.	 O. Nieto, M. McCallum, M.E.P. Davies, A. Robertson, A.M. Stark, E. Egozy, in
Proceedings of the 20th International Society for Music Information Retrieval
Conference, ISMIR, Delft, The Netherlands, November 4-8, ed. by A. Flexer,
G. Peeters, J. Urbano, A. Volk. The harmonix set: Beats, downbeats, and
functional segment annotations of western popular music (2019), pp.
565–572

	10.	 F. Bimbot, E. Deruty, G. Sargent, E. Vincent, in Proceedings of the 12th
International Society for Music Information Retrieval Conference, ISMIR, ed.

by A. Klapuri, C. Leider. Methodology and resources for the structural
segmentation of music pieces into autonomous and comparable blocks
(University of Miami, Miami 2011), pp. 287–292

	11.	 C. Harte, Towards automatic extraction of harmony information from
music signals. Ph.D. thesis (Queen Mary University of London, UK, 2010)

	12.	 Y. Broze, D. Shanahan, Diachronic changes in jazz harmony: A cognitive
perspective. Music. Percept. Interdiscip. J. 31(1), 32–45 (2013)

	13.	 M. Ramona, G. Richard, B. David, in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing, ICASSP, Vocal detec-
tion in music with support vector machines (IEEE, Las Vegas, 2008), pp.
1885–1888

	14.	 V. Emiya, R. Badeau, B. David, Multipitch estimation of piano sounds using
a new probabilistic spectral smoothness principle. IEEE Trans. Audio
Speech Lang. Process. 18(6), 1643–1654 (2010)

	15.	 J.A. Burgoyne, J. Wild, I. Fujinaga, in Proceedings of the 12th International
Society for Music Information Retrieval Conference, ISMIR, ed. by A. Klapuri,
C. Leider. An expert ground truth set for audio chord recognition and
music analysis (University of Miami, Florida, 2011), pp. 633–638

	16.	 R.M. Bittner, J. Salamon, M. Tierney, M. Mauch, C. Cannam, J.P. Bello, in
Proceedings of the 15th International Society for Music Information Retrieval
Conference, ISMIR, ed. by H. Wang, Y. Yang, J.H. Lee. Medleydb: A multitrack
dataset for annotation-intensive MIR research (Taipei, Taiwan, 2014), pp.
155–160

	17.	 M. Dorfer, J. Hajič jr., A. Arzt, H. Frostel, G. Widmer, Learning audio–sheet
music correspondences for cross-modal retrieval and piece identification.
Trans. Int. Soc. Music. Inf. Retr. 1(1), 22–33 (2018)

	18.	 Z. Rafii, A. Liutkus, F.R. Stöter, S.I. Mimilakis, R. Bittner. The MUSDB18 corpus
for music separation (2017). https://​doi.​org/​10.​5281/​zenodo.​11173​72

	19.	 J. Thickstun, Z. Harchaoui, S.M. Kakade, in 5th International Conference on
Learning Representations, ICLR, Learning features of music from scratch
(OpenReview.net, Toulon, 2017)

	20.	 C. Donahue, H.H. Mao, J. McAuley, in Proceedings of the 19th International
Society for Music Information Retrieval Conference, ISMIR, Paris, France,
September 23-27, The nes music database: A multi-instrumental dataset
with expressive performance attributes (2018)

	21.	 T.D. Clercq, D. Temperley, A corpus analysisof rock harmony. Pop. Music.
30(1), 47–70 (2011)

	22.	 J.B.L. Smith, J.A. Burgoyne, I. Fujinaga, D.D. Roure, J.S. Downie, in Pro-
ceedings of the 12th International Society for Music Information Retrieval
Conference, ISMIR, ed. by A. Klapuri, C. Leider. Design and creation of
a large-scale database of structural annotations (University of Miami,
Florida, 2011), pp. 555–560

	23.	 K. Seyerlehner, G. Widmer, D. Schnitzer, in Proceedings of the 8th Interna-
tional Conference on Music Information Retrieval, ISMIR, ed. by S. Dixon,
D. Bainbridge, R. Typke. From rhythm patterns to perceived tempo
(Austrian Computer Society, Vienna, 2007), pp. 519–524

	24.	 E. Manilow, G. Wichern, P. Seetharaman, J. Le Roux, in Proceedings of the
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics
(WASPAA), Cutting music source separation some Slakh: A dataset to
study the impact of training data quality and quantity (2019)

	25.	 O. Nieto, J.P. Bello, in Proceedings of the 17th International Society for Music
Information Retrieval Conference, ISMIR, New York City, United States, August
7-11, ed. by M.I. Mandel, J. Devaney, D. Turnbull, G. Tzanetakis. Systematic
exploration of computational music structure research (2016), pp. 547–553

	26.	 A.S. Bregman, Auditory Scene Analysis: The Perceptual Organization of
Sound (Bradford Books, MIT Press, Cambridge, 1990)

	27.	 C. Stumpf, Erkenntnislehre, vol. 2 (S. Hirzel Verlag, Leipzig, 1940)
	28.	 M. Ebeling, in Music Data Analysis: Foundations and Applications, ed. by

C. Weihs, D. Jannach, I. Vatolkin, G. Rudolph. Musical structures and their
perception. (Chapman & Hall/CRC Computer Science & Data Analysis
Taylor & Francis Group, New York, 2019)

	29.	 C. Kühn, Formenlehre der Musik (Bärenreiter Verlag, Kassel, 1998)
	30.	 A. McLean, R.T. Dean, The Oxford handbook of algorithmic music (Oxford

University Press, New York, 2018)
	31.	 Oracle, Java Documentation – Java Sound Programmer Guide (1993/2001).

https://​docs.​oracle.​com/​javase/​8/​docs/​techn​otes/​guides/​sound/​progr​
ammer_​guide/. Accessed 02 Feb 2023

	32.	 D. Koelle, JFugue (2002–2020). http://​www.​jfugue.​org. Accessed 2 Feb
2023

	33.	 MMA, MIDI Manufacturers Association – Musical Instrument Digital Interface
(1983). https://​midi.​org/​speci​ficat​ions. Accessed 02 Feb 2023

https://doi.org/10.5281/zenodo.5794629
https://doi.org/10.5281/zenodo.7599941
https://doi.org/10.5281/zenodo.7599941
https://doi.org/10.5281/zenodo.1117372
https://docs.oracle.com/javase/8/docs/technotes/guides/sound/programmer_guide/
https://docs.oracle.com/javase/8/docs/technotes/guides/sound/programmer_guide/
http://www.jfugue.org
https://midi.org/specifications

Page 12 of 12Ostermann et al. EURASIP Journal on Audio, Speech, and Music Processing (2023) 2023:13

	34.	 Native Instruments, Komplete 11 Ultimate (Native Instruments North
America Inc, Los Angeles, 2016)

	35.	 C. Hein, Guitars (Wizardmedia GmbH, Cologne, 2006)
	36.	 M. Barsotti, Ethno World 5 - professional & VOICES (Best Service GmbH,

Munich, 2010)
	37.	 Harrison Consoles, Mixbus v6 (Harrison Audio Consoles, 2009–2023).

https://​harri​sonco​nsoles.​com/​produ​ct/​mixbus/. Accessed 02 Feb 2023
	38.	 P. Davis, Ardour – the digital audio workstation (2006–2023). https://​ardour.​

org/. Accessed 02 Feb 2023
	39.	 R. Ierusalimschy, W. Celes, L.H. de Figueiredo, Lua – the programming

language (Pontifical Catholic University, Rio de Janeiro, Brazil, 1993–2023).
https://​www.​lua.​org/. Accessed 02 Feb 2023

	40.	 J. Coalson, Free Lossless Audio Codec (FLAC) (Xiph.Org Foundation,
2000–2023). https://​xiph.​org/​flac/. Accessed 02 Feb 2023

	41.	 R. von Appen, M. Frei-Hauenschild, AABA, refrain, chorus, bridge, precho-
rus : song forms and their historical development. Samples (GfPM). 13(1),
1–83 (2015). http://​www.​gfpm-​sampl​es.​de/​Sampl​es13/​appen​frei.​pdf

	42.	 W.A. Mozart, Anleitung zum Componieren von Walzern vermittels
zweier Würfel, in Köchelverzeichnis, KV 294d/516f. (Breitkopf & Härtel,
Wiesbaden, 1862)

	43.	 A. Pfeffer, Practical Probabilistic Programming (Manning, New York, 2016)
	44.	 N.D. Goodman, J.B. Tenenbaum, T. Gerstenberg, in The Conceptual

Mind: New Directions in the Study of Concepts, ed. by E. Margolis, S. Lau-
rence. Concepts in a probabilistic language of thought (MIT Press,
Cambridge, 2014)

	45.	 T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, in Introduction to Algo-
rithms, Advanced design and analysis techniques: Dynamic program-
ming (MIT Press, Cambridge, 2009), chap. 15

	46.	 N. Goodman, V. Mansinghka, D. Roy, K. Bonawitz, J. Tenenbaum, in Pro-
ceedings of the 24th Conference on Uncertainty in Artificial Intelligence, vol.
2008. Church: A language for generative models (2008), pp. 220–229

	47.	 P. Hindemith, The Craft of Musical Composition: Book 1—Theoretical Part
(Schott & Co., London, 1937,1942)

	48.	 Z. Fu, G. Lu, K.M. Ting, D. Zhang, A survey of audio-based music classifica-
tion and annotation. IEEE Trans. Multimedia. 13(2), 303–319 (2011)

	49.	 S. Hershey, S. Chaudhuri, D.P.W. Ellis, J.F. Gemmeke, A. Jansen, R.C. Moore,
M. Plakal, D. Platt, R.A. Saurous, B. Seybold, M. Slaney, R.J. Weiss, K.W. Wil-
son, in Proceedings of the 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP, CNN architectures for large-scale
audio classification (New Orleans, 2017), pp. 131–135

	50.	 J. Pons, O. Nieto, M. Prockup, E.M. Schmidt, A.F. Ehmann, X. Serra, in
Proceedings of the 19th International Society for Music Information Retrieval
Conference, ISMIR, End-to-end learning for music audio tagging at scale
(2018), pp. 637–644

	51.	 I. Vatolkin, F. Ostermann, M. Müller, in Proceedings of the Genetic and Evolu-
tionary Computation Conference, An evolutionary multi-objective feature
selection approach for detecting music segment boundaries of specific
types (GECCO, 2021), pp. 1061–1069

	52.	 I. Vatolkin, M. Gotham, N.N. López, F. Ostermann, in International Confer-
ence on Artificial Intelligence in Music, Sound, Art and Design (EvoMUSART),
Musical genre recognition based on deep descriptors of harmony,
instrumentation, and segments (Springer International Publishing, 2023).
Accepted

	53.	 L. Fricke, I. Vatolkin, F. Ostermann, in International Conference on Artificial
Intelligence in Music, Sound, Art and Design (EvoMUSART), Application of
neural architecture search to instrument recognition in polyphonic audio
(Springer International Publishing, 2023). Accepted

	54.	 J. Paulus, M. Müller, A. Klapuri, in Proceedings of the 11th International Soci-
ety for Music Information Retrieval Conference, ISMIR, ed. by J.S. Downie, R.C.
Veltkamp. State of the art report: Audio-based music structure analysis
(2010), pp. 625–636

	55.	 O. Nieto, G.J. Mysore, C. Wang, J.B.L. Smith, J. Schlüter, T. Grill, B. McFee,
Audio-based music structure analysis: Current trends, open challenges,
and applications. Trans. Int. Soc. Music Inf. Retr. 3(1), 246–263 (2020)

	56.	 M. Müller, Fundamentals of music processing: Audio, analysis, algorithms,
applications (Springer, New York, 2015), pp.207–212

	57.	 M. Müller, F. Zalkow, in Proceedings of the 20th International Society for
Music Information Retrieval Conference, ISMIR, Delft, The Netherlands, ed. by
A. Flexer, G. Peeters, J. Urbano, A. Volk. FMP notebooks: Educational material
for teaching and learning fundamentals of music processing (2019)

	58.	 I. Vatolkin, M. Koch, M. Müller, in Proceedings of the 10th International
Conference on Artificial Intelligence, in Music, Sound, Art and Design
(EvoMUSART). ed. by J. Romero, T. Martins, N. Rodríguez-Fernández. A
multi-objective evolutionary approach to identify relevant audio features
for music segmentation (Springer International Publishing, Virtual Event,
2021), pp. 327–343

	59.	 O. Lartillot, P. Toiviainen, in Proceedings of the 8th International Confer-
ence on Music Information Retrieval, ISMIR, ed. by S. Dixon, D. Bainbridge,
R. Typke. MIR in Matlab (II): A toolbox for musical feature extraction from
audio (Austrian Computer Society, Vienna, Austria, 2007), pp. 127–130

	60.	 B. McFee, C. Raffel, D. Liang, D.P. Ellis, M. McVicar, E. Battenberg, O. Nieto,
in Proceedings the Python Science Conference (Audio and music signal
analysis in python, Librosa, 2015), pp. 18–25

	61.	 M. Mauch, S. Dixon, in Proceedings of the 11th International Society for
Music Information Retrieval Conference, ISMIR, ed. by J.S. Downie, R.C.
Veltkamp. Approximate note transcription for the improved identification
of difficult chords (Utrecht, Netherlands, 2010), pp. 135–140

	62.	 T. Grill, J. Schlüter, in Proceedings of the 16th International Society for Music
Information Retrieval Conference, ISMIR, Music boundary detection using
neural networks on combined features and two-level annotations (2015),
pp. 531–537

	63.	 A. Krizhevsky, I. Sutskever, G.E. Hinton, in Advances in Neural Informa-
tion Processing Systems 25: 26th Annual Conference on Neural Information
Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012,
Lake Tahoe, Nevada, United States, ed. by P.L. Bartlett, F.C.N. Pereira, C.J.C.
Burges, L. Bottou, K.Q. Weinberger. Imagenet classification with deep
convolutional neural networks (2012), pp. 1106–1114

	64.	 Y. Han, J. Kim, K. Lee, Deep convolutional neural networks for predomi-
nant instrument recognition in polyphonic music. IEEE ACM Trans. Audio
Speech Lang. Process. 25(1), 208–221 (2017)

	65.	 I. Vatolkin, B. Adrian, J. Kuzmic, in Proceedings of the 10th International
Conference on Artificial Intelligence, in Music, Sound, Art and Design. ed.
by J. Romero, T. Martins, N. Rodríguez-Fernández, A fusion of deep and
shallow learning to predict genres based on instrument and timbre
features, (Springer, Virtual Event, 2021), pp. 313–326

	66.	 K. Simonyan, A. Zisserman, in 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, ed. by Y. Bengio, Y. LeCun. Very deep convolutional networks
for large-scale image recognition (2015)

	67.	 I. Vatolkin, P. Ginsel, G. Rudolph, in Proc. 44th Int’l ACM Conf. on Research
and Development in Information Retrieval (SIGIR), Advancements in the
music information retrieval framework AMUSE over the last decade
(2021), pp. 2383–2389

	68.	 A.P. Klapuri, in Proceedings of the 1999 IEEE International Conference on
Acoustics, Speech, and Signal Processing, ICASSP, vol. 6. Sound onset detec-
tion by applying psychoacoustic knowledge (1999), pp. 3089–3092

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://harrisonconsoles.com/product/mixbus/
https://ardour.org/
https://ardour.org/
https://www.lua.org/
https://xiph.org/flac/
http://www.gfpm-samples.de/Samples13/appenfrei.pdf

	AAM: a dataset of Artificial Audio Multitracks for diverse music information retrieval tasks
	Abstract
	1 Introduction
	2 State-of-the-art audio datasets
	3 AAM dataset
	3.1 Motivation and musicological background
	3.2 Framework overview
	3.3 Technical backgrounds

	4 Algorithmic Composer
	4.1 Overview
	4.2 Memoization of random decisions
	4.3 Element generators
	4.4 The melody generator

	5 Example applications
	5.1 Music segmentation
	5.2 Instrument recognition
	5.3 Onset detection

	6 Concluding remarks and outlook
	Acknowledgements
	References

