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Abstract 

We present a new dataset of 3000 artificial music tracks with rich annotations based on real instrument samples and 
generated by algorithmic composition with respect to music theory. Our collection provides ground truth onset 
information and has several advantages compared to many available datasets. It can be used to compare and opti-
mize algorithms for various music information retrieval tasks like music segmentation, instrument recognition, source 
separation, onset detection, key and chord recognition, or tempo estimation. As the audio is perfectly aligned to 
original MIDIs, all annotations (onsets, pitches, instruments, keys, tempos, chords, beats, and segment boundaries) are 
absolutely precise. Because of that, specific scenarios can be addressed, for instance, detection of segment bounda-
ries with instrument and key change only, or onset detection only in tracks with drums and slow tempo. This allows 
for the exhaustive evaluation and identification of individual weak points of algorithms. In contrast to datasets with 
commercial music, all audio tracks are freely available, allowing for extraction of own audio features. All music pieces 
are stored as single instrument audio tracks and a mix track, so that different augmentations and DSP effects can be 
applied to extend training sets and create individual mixes, e.g., for deep neural networks. In three case studies, we 
show how different algorithms and neural network models can be analyzed and compared for music segmentation, 
instrument recognition, and onset detection. In future, the dataset can be easily extended under consideration of 
specific demands to the composition process.

Keywords  Artificial music dataset, Multitrack audio mixes, Algorithmic composition, Music segmentation, Instrument 
recognition, Source separation, Onset detection, Tempo estimation, Chord detection

1  Introduction
Annotated datasets are required to evaluate, compare, 
and optimize algorithms for various supervised music 
classification, regression, and event detection tasks: rec-
ognition of instruments and vocals, music segmentation, 
onset and chord detection, tempo and key estimation, 
and many more. Lots of datasets with annotations were 
introduced in recent years and decades, however, often 
with limitations.

First of all, many annotations focus on only one or 
few aspects, because most datasets have been created 
for an individual music information retrieval (MIR) 
task like tempo estimation or music segmentation. For 
instance, it is not possible to evaluate instrument and 
harmony recognition methods, when only onsets and 
segment boundaries are annotated. Second, for many 
reasons the annotations are not always precise. Some-
times, they are created by non-experts, and even expert 
annotations may be ambiguous. Third, the annotations 
seldom contain detailed reasoning for provided labels. 
For example, annotated segment boundaries usually 
do not describe directly whether these boundaries are 
related to timbral, harmonic, temporal, or rhythmic 
properties, which makes it hard to exhaustively evalu-
ate the algorithms and to identify their individual weak 
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points; for such scenarios, “synthetic data generation 
allows you to address the problem in a more targeted 
way” [1]. Fourth, some datasets contain only lists of 
commercial music tracks which are not publicly avail-
able. Even if audio previews or previously extracted 
features are released with these datasets, it is not pos-
sible to extract further features for complete music 
pieces. Fifth, only seldom audio multitracks, which 
contain all single instrument tracks from the mix, are 
provided. In particular for deep neural networks, which 
benefit from large and augmented training sets, mul-
titracks make it possible to develop more robust algo-
rithms, because individual augmentation methods like 
loudness change or digital audio effect processing can 
be separately applied on different instrument tracks 
to create individual mixes with the same annotations. 
Finally, the acquiring and labeling of new data is typi-
cally a costly, exhausting, and error-prone procedure 
that may include the purchase of commercial music 
tracks and manual efforts on annotating ground truth 
events. In contrast, our dataset can easily be extended 
under consideration of specific music properties, 
e.g., increasing the number of simultaneously playing 
instruments, allowing non-harmonic tones, or intro-
ducing non-Western scales, in order to perfectly match 
desired use cases.

Our new dataset AAM1 (Artificial Audio Multitracks) 
addresses all aforementioned issues and is designed for 
the evaluation of various MIR tasks: music segmenta-
tion and structure analysis, instrument recognition and 
source separation, onset detection, key and chord recog-
nition, or tempo estimation. AAM contains both audio 
and symbolic data, which are perfectly aligned.

However, it is important to note that some applica-
tions like genre recognition cannot be performed with 
AAM, because all music pieces were algorithmically 
generated and, therefore, do not represent “real-world” 
human compositions. The dataset is not fully competi-
tive to them and will probably not generalize well (at 
this first stage of development). Nevertheless, its great 
strength is that it allows for an exhaustive testing, indi-
vidual optimization, and profound interpretation of 
classification algorithm’s performance before or along-
side their successful application on real (commercial) 
music.

This paper is organized as follows: In Section  2, we 
provide an overview of currently available datasets for 
diverse MIR tasks. In Section  3, we present theoreti-
cal and technical backgrounds as well as insights to the 
implementation details of the algorithmic composition 

framework, that generated AAM. Section 4 describes the 
algorithmic composition process. Section 5 shows three 
example applications for algorithm comparison with our 
dataset. Ideas for future work are discussed in the con-
cluding Section 6.

2 � State‑of‑the‑art audio datasets
Table  1 provides a selection of datasets with ground 
truth event annotations (without datasets which have 
only high-level annotations like genres). Please note that 
we focus only on datasets which have been presented in 
peer-reviewed publications and contain at least 50 com-
plete music audio tracks.2

With regard to the richness of annotations, no indi-
vidual dataset provides all information available in AAM. 
Most annotations were created by human experts or 
mining from the Internet. Some annotations were gen-
erated automatically from aligned MIDIs or multitracks 
(DALI, MedleyDB, MusicNet), some are very precise 
because of audio generated from MIDIs (MAPS, MSMD, 
NES-MDB, Slakh). For many datasets, no audio tracks 
are available, sometimes on request, or as Youtube video 
clips. Only three datasets contain multitracks (Har-
greaves, MedleyDB, Slakh).

Further restrictions include a rather small number of 
tracks (only five datasets contain more than one thousand 
tracks), but also genre limitations: GiantSteps contains 
only electronic dance music, Harmonix only Western 
pop songs, Isophonics Beatles only Beatle songs, MAPS 
and MSMD piano pieces, NES-MDB game soundtracks. 
Even if it is hard to assign genres to artificially generated 
AAM tracks, the generation process was based on very 
different music properties (like instruments, tempo, and 
key, see Section 4). That is why AAM provides more vari-
ation than datasets with tracks of only a few genres or 
artists.

The only dataset which has most similar richness of 
annotations while also providing (synthesized) audio 
multitracks is Slakh. In contrast to our dataset, Slakh 
is built on existing MIDIs manually gathered from the 
Internet. AAM is based on automatic composition and, 
therefore, can be easily extended with further tracks 
adjusting desired properties for specific investigations 
about when and why algorithms fail. Actually, both data-
sets can be used in a complementary way, e.g., optimizing 
a neural network for instrument recognition using both 
AAM and Slakh tracks.

1  Find our dataset at: https://​doi.​org/​10.​5281/​zenodo.​57946​29
2  For a more exhaustive (and regularly updated) list, see https://​github.​com/​
ismir/​mir-​datas​ets (accessed: 02/02/2023).

https://doi.org/10.5281/zenodo.5794629
https://github.com/ismir/mir-datasets
https://github.com/ismir/mir-datasets
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3 � AAM dataset
3.1 � Motivation and musicological background
As stated in the introduction, artificial music pieces can 
assist testing and validating classification algorithms 
with respect to many musically meaningful aspects while 
easily allowing for automatic and precise annotations. 
However, such artificial data must stand comparison 
and compatibility with real (human-composed) music at 
least to some extent.

When computer supported music classification and 
analysis is intended to perform high-level tasks, it inher-
ently attempts to emulate human perception. Therefore, 
the natural human auditory ability of performing group-
ing mechanisms [26] is involved. For example, the high-
est notes of a song are usually perceived as one coherent 
melody line (simultaneous grouping), while a melody 
inherently consists of successive notes (successive group-
ing). Respectively, multiple notes played at the same time 

are peceived as one coherent chord and whole music 
pieces are typically segmented into individual parts that 
are perceived as entities. Listeners perceive well-founded 
Gestalts ([27], p. 256) which are entities (those very mel-
odies or chords) that become “more than the sum of its 
parts (notes)” ([28], p. 75). For example: once heard, the 
Gestalt of a melody will be easily recognized even if its 
original notes are transposed.

Playing around with these grouping sensations, 
that listeners do experience intuitively, is the task of a 
music composer. Therefore, our approach of algorith-
mic composition keeps in mind those elementary rules 
of auditory Gestalt-perception ([28], p. 76) by defining 
specially designed subtasks. We argue that if Gestalts 
are (easily) perceivable by humans in the resulting arti-
ficial music pieces, they should also be identified by 
pattern recognition algorithms which can be compared 
and further tuned using our dataset as a testbed.

Table 1  List with selected state-of-the-art music datasets with distinct annotations. The $ symbol marks proprietarily licensed music 
tracks which have to be purchased

Annotations Audio

Name No. Onsets Pitches Instruments Key Tempo Segments Melody Chords Beats Mix Tracks

AAM 3000 � � � � � � � � � � �

ACPAS [2] 2189 � � - � - - - - - � -

ASAP [3] 520 � � - � � - - - � � -

CASD [4] 50 - - - - - - - � - - -

Chordify TapCorrect [5] 101 - - - - - - - - � � -

DALI [6] 5358 - - - - - - � - - � -

GiantSteps Key [7] 604 - - - � - - - - - � -

GiantSteps Tempo [7] 664 - - - � � - - - - � -

Hargreaves [8] 104 - - - - - � - - - � �

Harmonix [9] 912 - - - - � � - - � � -

INRIA RWC Pop [10] 100 - - - - - � - - - $ -

Isophonics Beatles [11] 180 - - - � � � - � � - -

JAAH [12] 113 - - - � - � - � � - -

Jamendo VAD [13] 93 - - - - - � - - - � -

MAPS [14] 238 � - - � � - - � - � -

McGill Billboard [15] 740 - - - - - - - � - - -

MedleyDB [16] 122 - - � - - - � - - � �

MSMD [17] 497 � - - - - - - � - - -

MUSDB18 [18] 150 - - � - - - - - - � �

MusicNet [19] 330 � � � - - - - - - � -

NES-MDB [20] 5000 � � � - - - - - - � -

Rock Corpus [21] 200 - - - - - - � � � - -

SALAMI [22] 1383 - - - - - � - - - - -

Seyerlehner Pop [23] 545 - - - - � - - - - � -

Slakh [24] 2100 � � � � � - - - - � �

SPAM [25] 50 - - - - - � - - - - -
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3.2 � Framework overview
Figure 1 sketches the framework3. Beside the final audio 
mixes and corresponding annotations of onsets, pitches, 
instruments, keys, tempos, and segments, single tracks of 
all individual instruments are also included in the data-
set in order to enable researchers to perform dataset aug-
mentation by remixing the tracks with different levels of 
loudness for each instrument and with effects like reverb, 
chorus, or distortion. Further, we provide all artificially 
composed MIDI files (e.g., for resynthesis of audio) and 
the configuration files that state compositional settings.

The Algorithmic Composer simulates the composi-
tion of one individual music piece. The algorithm con-
structs relations between musical elements in terms of 
repetition, variation, and contrast [29], in order to build 
a consistent piece of music, which fulfills the demands 
of producing well-founded Gestalts. The task of algo-
rithmic composition is not at all trivial and a topic of 
many research investigations [30]. Many of them try to 
compete with great human composers with growing suc-
cess. Since our main goal is to create data for algorithm 
evaluation and optimization, our composition approach 
does not satisfy an ambition to create high-quality music 
for listening. Nevertheless, the central demand is reduc-
ing the portion of unrealistic and poor composed pieces. 

Furthermore, our work provides a framework designed 
to grow over time and allowing for successive improve-
ments of the resulting music compositions with future 
releases.

Beside the Algorithmic Composer module, the system’s 
workflow includes the conversion of the music pieces 
from their symbolic MIDI form to an audio recording, 
which should be as realistic as possible. This is performed 
by the module named Recording Studio. Each run of the 
Algorithmic Composer composes one music piece. After-
wards, the created piece is converted to single instrument 
audio tracks using real instrument samples. This single 
track procedure is similar to music production in a pro-
fessional recording studio. Finally, all single instrument 
tracks are mixed down to form a full audio representa-
tion (the final mix) of each music piece.

3.3 � Technical backgrounds
The whole project is implemented in Java. The low-
level operations like onset annotation are implemented 
using Java Sound API [31]. To handle musical elements 
on a higher-level representation than MIDI, the pro-
gramming library JFugue [32], that itself builds on Java 
Sound, is utilized. It provides the MIDI abstraction lan-
guage Staccato4, in which all features of the MIDI stand-
ard [33] are represented by string tokens. Furthermore, 
JFugue allows for manipulation of parts of the music as 
a whole, like sequencing and layering, and therefore sim-
plifies the flexible arrangement of single elements within 
a full composition. The conversion from the Staccato for-
mat into MIDI files with JFugue proved to be reliable and 
straightforward.

The key aspect in the realistically recording of single 
instrument tracks is to avoid static sound samples and to 
use intelligent samplers, which aim to simulate human 
playing behavior instead. Most samplers used for AAM 
are part of the Native Instruments Komplete 11 Ultimate 
bundle [34]. Only the guitars were produced with Chris 
Hein Guitars samplers [35], and the non-Western instru-
ments come from the Ethno World 5 library [36].

For batch conversion (Recording Studio), we decided 
to use a digital audio workstation as used by profes-
sional music producers. We chose Harrison’s Mixbus v6 
[37], because it combines a high-quality analog mixing 
simulation with scripting features, which were inherited 
from its open-source ancestor Ardour [38]. With its inte-
grated console for running Lua scripts [39], we were able 
to batch convert our instrument tracks stored as MIDI 
files into audio files with a CD-standard sampling rate of 

Fig. 1  Modules of the fully automated generation process. The 
AAM dataset contains all configurations, symbolic MIDI files, single 
instrument audio tracks, mixed tracks and annotations

4  For easy-to-understand examples of Staccato visit: http://​www.​jfugue.​org/​
examp​les.​html (accessed: 02/02/2023).

3  The source-code of the composing framework is publicly available at: 
https://​doi.​org/​10.​5281/​zenodo.​75999​41

http://www.jfugue.org/examples.html
http://www.jfugue.org/examples.html
https://doi.org/10.5281/zenodo.7599941
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44.1 kHz. For compression we used the free lossless audio 
codec FLAC [40].

4 � Algorithmic Composer
4.1 � Overview
For practical reasons, constraints are defined in Algorith-
mic Composer to limit the space of possible music pieces 
and to preserve a manageable complexity. Currently, the 
Algorithmic Composer generates pieces based on rules 
typical for the composition of Western popular music. 
For this reason, the music contains only steady rhythms, 
time signature of 4/4, ordinary major-minor system 
chord progressions, easily singable melodies, and a mod-
erate number of different instruments per piece. On the 
other side, the variety of music pieces is extended with 
several non-Western instruments (cf. Table  2), adding a 
world music element to Western pop music style com-
positions. Please note that the limitations in the com-
position process will be reduced in future releases of the 
dataset.

For now, the composition process is mainly based on 
mathematical models relying on random decisions under 
consideration of knowledge-based rules. Since one music 
piece is expected to have different parts, which could, 
for instance, be identified by an automatic segmentation 
algorithm (cf.  Section  5.1), the Algorithmic Composer 
creates at minimum three and at maximum five such 
parts. The bottom limit of three follows the pop music 
“rule” that every “good song” is composed of at least cho-
rus, verse, and bridge [41]. This principle is based on the 
much older compositional concept of repetition, varia-
tion, and contrast [29] and can be perceived as Gestalts 
transforming over time (cf. Section 3.1).

The parameters that define the musical characteristics 
of the first part of a music piece are selected by chance 
from a uniform distribution and are bound to the main 
configuration as listed in Table  3. These parameters 
essentially determine the general appearance and the 
degree of variation within and between the resulting 
music pieces.

Key features of any part are its key, tempo, length (the 
number of bars), and instruments. They are chosen 

by chance already allowing for a large variety of com-
binations in the current setting. The probabilities are 
restricted by the configuration, so that in AAM a key is 
randomly selected from all twelve root notes in either 
major or minor tonality. The tempo is drawn as equally-
distributed random integer between 60 and 180  BPM. 
Predominantly, the bar count of parts in popular music 
is powers of 2. Therefore, we chose 4, 8, and 16. 6 and 12 
were added as commonly occurring variations. Other 
lengths, especially odd-numbered ones, were not allowed 
for the creation of AAM (cf. Table 3).

4.2 � Memoization of random decisions
Because we mainly rely on random decisions, we need 
a strategy to overcome pure arbitrariness. An example 
for the limited expression of mere random composi-
tion is Mozart’s Musical Dice Game [42]. The roll of a 
dice decides for each bar which one of the precomposed 
phrases is to add to the composition. But, the music 
shows an unrelated and incoherent organization which 
appears to be just haphazard especially to inexperienced 
listeners. This is because a decision to choose a musical 
phrase does not respect any of the previous decisions.

Table 2  List of samplers used to produce the dataset ordered by instrument categories and band functions

Category Melody Chords/arpeggio Bass

Bowed Erhu, Jinghu, Morin Khuur, Viola, Violin Cello Double Bass (pizz/arco)

Brass Flugelhorn, Trombone, Trumpet — —

Flute/Pipe Concert, Fujara, Pan, Shakuhachi — —

Guitars Electric Guitar (lead) Acoustic Guitar, Balalaika, Electric Guitar (clean/
crunch), Sitar, Ukulele

Electric Bass

Keys — Electric Piano, Piano (grand/bright) Organ

Sax Alto Sax, Tenor Sax, Clarinet — —

Table 3  Basic configuration parameters used to produce AAM

Parameter Values

Duration 120–180 s

Number of parts 3, 4, 5

Part lengths in bars 4, 6, 8, 12, 16

Key roots All 12

Key tonalities Major, minor

Tempo range 60–180 BPM

Instruments forget 0.33

Arpeggio probability 0.5

Bass probability 0.9

Chord pad probability 0.8

Drums probability 0.8

Melody probability 0.9
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Our approach to this problem is to embrace con-
cepts from the field of probabilistic programming [43]. 
Every random decision that is made, e.g., the choice of 
key or tempo, is memoized, which manifests different 
world states [44]. Memoization originally terms a com-
putational speed optimization technique in dynamic 
programming ([45],  p. 365) that relies on caching pre-
vious function call calculations for already used input 
parameters. In probabilistic programming, where func-
tion calls with the same parameters can lead to differ-
ent results, this concept sets probabilities to fixed values, 
that will from then on not change until the program ter-
minates (in our case: by termination we have generated 
one piece of music). This procedure is not describable by 
a Markov model or process, since it does not satisfy the 
Markov property, which demands that probability distri-
butions are independent from previous states. Instead, 
it follows a Bayesian approach of conditional probability 
chains, while preserving an adequate coding workflow 
[46]. Decision making (in the compositional process) 
has impact on later decisions, which can lead to (case 1) 
repeating previous decisions, (case 2) relating to them, or 
(case 3) deliberately ignoring them. This threesome again 
meets the former mentioned compositional demands for 
repetition, variation, and contrast.

One simple example of decision memoization is the 
generation and variation of the musical key. First, the key 
for the first part  A  is randomly drawn with equal prob-
ability from all roots and tonalities within the configura-
tion’s range, e.g., G minor. Then, the key of the following 
part  B  is drawn using adjusted (conditional) probabili-
ties for all possible root notes with relation to the former 
key from  A . These relations are mainly based on the 
natural harmonics series [47] with a subjectively added 
preference of using step-up modulation, which is a typi-
cal pop music climax technique.5 Hence, there will be a 
probability of 0.6 to remain within the key of G  minor 
as established in  A  (case  1) and different probabilities 
(case 2) for a modulation to the keys with root notes C 
(0.1, fourth up), D (0.05, fourth down), B (0.03, major 
third up), E ♭ (0.02, major third down), B ♭ (0.03, minor 
third up), E (0.02, minor third down), A (0.1, whole tone 
up), and G ♯ (0.05, half tone up).

This procedure can be easily transferred to the varia-
tion of tempo: With a probability of 0.5, the established 
tempo is kept in the next part (case 1). With a probabil-
ity of 0.3, either double or half of the previous tempo is 
selected (case 2). That agrees with the typical concept of 
double-time and half-time, which is the major reason for 

failures of tempo estimators which often produce tempo 
octave errors (integer multiple or fraction of the correct 
tempo). With a lower probability of 0.1, the tempo is 
either multiplied by the triplet factor 2

3
 or 4

3
 , causing the 

new tempo to be based on the triplets of the previous 
beat (also case 2). With the remaining probability of 0.1, 
the tempo is randomly chosen regardless to the tempo in 
the previous part (case 3). Besides, a tempo change will 
never break the configured tempo range constraints.

These design decisions might seem a bit vague and 
unconfirmed regarding Western pop music, and yes they 
are. We have not performed formal analysis of real music 
(yet), so we are unable to concretely prove property dis-
tributions in AAM are similar to real music. For instance, 
the relatively high number of tempo changes in the data-
set can be identified as atypical. However, in this case we 
wanted to provide enough data for the tasks of tempo 
estimation and detection of boundaries with tempo 
changes. If one would aim to test a specific algorithm 
identifying segment boundaries without tempo changes, 
(s)he can easily identify and omit those specific parts or 
complete tracks based on the provided annotation. This 
way, AAM is applicable to many different tasks as we are 
to show exemplarily in Section 5.

4.3 � Element generators
Because the psychology of Gestalt claims that music is 
perceived by grouped events (cf. Section 3.1), the task of 
composition is split up in subtasks. We decided to qual-
ify four main roles in a music ensemble: melody, chords, 
bass, and drums. They are fulfilled by applying independ-
ent modules named element generators that implement 
different music composing algorithms. Because different 
elements are intended to sound together as a coherent 
part of a music piece, the generators must regard joint 
properties specified by the part they are currently com-
posing for. These properties are those of key, tempo, and 
length, which are global for each part. Additionally, an 
instrument is directly assigned to each element, because 
the generator must comply to the specific pitch range. 
Finally, all created elements for one part have to match 
the same shared chord progression, which is also gener-
ated as global part property beforehand.

In the current implementation, chord progressions 
are constructed as random sequences of chords built 
from the underlying key’s scale degrees of I–VI. The 
half-diminished chord (VII) is omitted, since it is rarely 
used in popular music. Furthermore, it would need 
more sophisticated treatment than the others, so omit-
ting reduces the complexity of the composition process. 
Each chord is given whole or half note values. The end-
ing chord always becomes the key’s tonic. Despite all 
the simplification, our approach produces solid chord 

5  Parallel upwards key shift is frequently used in pop music compositions, 
e.g  by Dexys Midnight Runners when reaching the chorus of “Come On 
Eileen” or as climax of Michael Jackson’s “Man in the Mirror”.
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movements, which are quite appealing when enriched 
with a matching melody later on.

The currently implemented element generators are able 
to produce two kind of chord accompaniment (chord 
pads, arpeggiations), simple bass lines, reasonable drum 
grooves, and matching melodies. The chord pad gen-
erator arranges the chords from the aforementioned 
chord progression as triads. It chooses different chord 
inversions to match a randomly determined range. The 
arpeggiation generator uses the same voicing method. 
Unlike with the chord pad generator, the resulting notes 
are not played simultaneously, but in succession with a 
repeating pattern. The bass generator provides the root 
notes from the chords of the underlying progression. The 
drum groove generator constructs various variations of 
backbeats. It consists of three instruments: bass drum, 
snare drum, and cymbal (hihat or ride). The snare and 
cymbal patterns are randomly selected from a list of pre-
composed patterns. The bass drum pattern is composed 
by randomly adding hits to the eighth note positions of 
a bar (1+2+3+4+) with different probabilities, e.g., 
pbd(1) = 1 , pbd(3+) = 0.3 . For a basic understanding 
of the functionality of those four generators, we suggest 
listening to some tracks of the AAM dataset. For details, 
have a look in the source code. The melody generator is 
the most complex one in the current implementation and 
will be explained in more detail in Section 4.4.

For the sake of higher variety, the parts of a music piece 
do not always contain all five elements. Each element gets 
added to a part with a certain probability (cf. Table 3), so 
that one part may, for instance, consist of only a melody 
accompanied by a bass line or just chord arpeggiations 
with drums. The instrument is, however, memoized to its 
role for all parts of one piece, which means: for all fol-
lowing parts the memoized instrument is likely to be 
used again, so that, for instance, the main melody instru-
ment probably remains the same for the complete music 
piece. Since compositional rules are never strict and may 
be occasionally broken, the memoization is “forgotten” 
with a probability of 0.33 (“Instruments forget”). Another 
instrument is then chosen to play the music of that cer-
tain element just for that part.

Once all parts for one music piece are produced, they 
are arranged to form the full structure of the piece. In the 
current implementation, a fully random sequence is pro-
cessed, which allows any combination of the parts. The 
only restriction is that the resulting track must have a 
playing time between 120 and 180 s. That way, parts are 
directly repeated multiple times or different parts get 
inserted in between. That creates repetition (AA) and 
contrast (AB). Variation (AA’) is implicitly performed 
by relying on the chain of memoized randomness when 
composing different parts and elements.

To understand the conceptional construction of the 
actual music algorithms, the current melody generation 
procedure is briefly explained in the following section. 
Please note that other parameter settings are possible, 
and more generators for any of the four roles can eas-
ily be added and work alongside each other due to our 
framework’s design.

4.4 � The melody generator
Melodies are generated by random initialization of eighth 
notes, and then successively removing, editing, and copy-
ing sections until we arrive at a final melody.6 The classi-
cal composition concept of the period ([29], p. 55–64) is 
adopted to guarantee well-formed Gestalts. All decisions 
are driven by random choices with regard to preceding 
decisions. Some of the design probabilities are indepen-
dently drawn each time a construction process starts. 
These are the melody range and its relation to the last 
note, which is considered as the melody’s target note. The 
others are memoized until the Algorithmic Composer ter-
minates. This way, a coherence throughout all melodies 
of one music piece is established.

At first, the target note is chosen as the root ( p = 0.75 ) 
or the fifth ( p = 0.25 ) of the last chord (target chord) 
from the underlying progression. The melody is mainly 
constructed around that note within a randomly chosen 
range of a fourth, fifth, or sixth. All eight notes of all bars 
are filled with random notes from inside that range, that 
diatonically match the given key of the part. In the exam-
ple melody from Fig. 2:1a, the target note is chosen to be 
f ’ (the root of chord F). The melody range is chosen as a 
sixth ranging from c’ to a’ resulting here in a pool of notes 
that is {c’,d’,e’,f ’,g’,a’}. Afterwards, some of the notes are 
replaced by rests (Fig. 2:1b). The probability for a rest is 
a random value pR between 0.1–0.4 (we denote this here-
inafter with pR = rand(0.1, 0.4) ). This probability, in con-
trast to the target note and melody range, is memoized 
for all following melody generator runs within the com-
position of one music piece. The idea behind the random 
choice of probabilities with a range restriction is, that 
various music pieces can have distinct manifestations of 
characteristics, while one piece’s melodies remain similar 
to each other resulting in homogeneous appearance. This 
is an example for creating a specific world state (cf. Sec-
tion 4.2), in which melodies will (henceforth) always have 
specifically similar characteristics.

In the second step (Fig.  2:2), the melodic contour 
is smoothened by removing syncopated notes with a 
memoized probability ps = rand(0.1, 0.9) . Third (Fig. 2:3), 

6  The concrete implementation of the melody generator can be found in the 
source code: src/parts/MelodyBow.java
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the melody construction is divided into four equal-sized 
sections. The starting notes from the first section (yel-
low) are eventually copied over (green) to the second and/
or third section by chance. This is done without memoi-
zation. The length in eighths of the copy content is ran-
domly chosen for both sections and may become zero (no 
relation) or even exceed the parts boundary by two eights. 
This way, resulting forms like  ABAC,  AABC,  AA’A’B, 
and similar ones are possible. The melody in Fig. 2 could 
be described as  AA’AB.

Fourth (Fig. 2:4), the content of the final bar is replaced 
by the initially chosen target note. Finally (Fig.  2:5), the 
melody that up to here contains only eighth notes is altered 
to quarter and half notes with memoized probabilities of 
pq = rand(0.1, 0.8) and ph = pq + rand(−0.2, 0.2) , but 
only if an extension is possible without overwriting. This 
last step (eventually) alters the melody’s staccato character 
towards a more legato one.

5 � Example applications
In the following sections, we show three possible appli-
cations for our dataset. Please note that we do not aim to 
solve the selected MIR tasks in a perfect way and exhaus-
tively tune the parameters, but just provide examples how 
different algorithms can be compared. All of them are con-
ducted for audio signals; however, also the comparison of 
algorithms for symbolic representations is possible using 
provided MIDI files. For further examples how shallow 
and deep classifiers can be applied to solve diverse music 
classification tasks, we refer to [48–50]. Further studies 
that make use of AAM include segment detection [51], 
genre recognition [52], and neural architecture search for 
instrument recognition [53]. These three provide in-depth 
examples for possible applications.

5.1 � Music segmentation
The task of music segmentation is to identify bounda-
ries between parts of music pieces which are perceived 
as entities. Thus, it is a binary event detection task: each 
time frame of a piece can be either a boundary or not. 
Note that another related task, music structure analysis, 
additionally assigns segment labels and derives relations 
between musical segments. For further reading on both 
tasks, we recommend [54, 55].

Two methods have been applied for music segmen-
tation. The first one utilizes the self-similarity matrix 
(SSM) which compares all time frames of given length in 
a music track against each other based on a set of features 
which represent those frames. The alignment of SSM 
with the Gaussian checkerboard kernel yields a novelty 
function whose peaks are considered as segment bound-
aries. For more details, please see [56]. We have applied 
the implementation based on [57, 58] for the comparison 
of individual feature groups used to build the SSM, to 
show their impact on the performance. The feature sets 
include the Mel frequency cepstral coefficients (MFCCs) 
extracted from 512 samples using MIRtoolbox [59], the 
Mel spectrum (2048 samples / Librosa [60]), the semi-
tone spectrum (2048 samples/NNLS Chroma [61]), and 
the five peaks of fluctuation patterns (229,376 samples / 
MIRtoolbox). The second method is a convolutional neu-
ral network (CNN) after [62]. Table 4 describes the archi-
tecture of layers implemented in Keras.

We used 6-fold cross validation in the experiments: 
The dataset was randomly split into non-overlapping 
partitions of 500 tracks. Each partition was used once as 
a test set to validate the performance of both methods. 
For the CNN, the remaining part of the dataset was used 
to train the network (with four partitions) and validate 
its parameters on one partition by early stopping after 

Fig. 2  Step-wise construction of a melody. Red areas mark note removals, yellow areas are notes to copy, and green areas mark replacements
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three epochs with no loss reduction. Table 5 lists evalu-
ation measures estimated with a 3 s tolerance boundary. 
FA , PA , RA report F-measure, precision, and recall for 
all boundaries. Indices I, K, T correspond to measures 
estimated only for boundaries with instrument, key, and 
tempo change, respectively.

The results show that the CNN performs at best with 
respect to F and P for all boundary types, but the R-val-
ues (i.e., the share of correctly predicted boundaries) 
were better for specific boundaries, when novelty-based 
segmentation with semitone spectrum was applied. How-
ever, this method has predicted far more false positives, 
so that the precision values were less than half of these 
values for CNN. When we compare different features for 
novelty-based segmentation, MFCCs seem to perform at 
best for F and P.

5.2 � Instrument recognition
Instrument recognition is applied here as a multi-label 
classification task which predicts occurrences of nine 

instrument groups in classification time frames of a 
polyphonic audio signal. Other application scenarios 
can be the prediction of predominant instruments or 
their relative contribution to the energy of the mixed 
signal.

We have applied several CNNs based on [64]. Beyond 
the adjusted implementation from [65], we have tested 
the slight changes of architecture inspired by AlexNet 
[63] (larger convolution filters) and VGG16 [66] (more 
convolution layers). Table  4 lists details of the layers 
implemented in Keras. The Mel spectrogram extracted 
with Librosa [60] was used as input. As a traditional 
method to compare with, we have applied also random 
forest with a set of timbre-related features available in 
AMUSE [67]: zero-crossing rate, spectral characteristics, 
MFCCs, delta MFCCs, etc., all together 157 dimensions, 
which were stored separately from two time frames, 
one with the onset event, and another one in the middle 
between the current and next onset event.

The six partitions of 500 tracks from the music segmen-
tation experiments are used again. For random forest, the 
trees were trained with all partitions except the former 
test partition. For CNNs, 4 of 6 partitions were used for 
training and one partition for validation; the training was 
continued until no progress of loss was measured during 
three epochs. Table 6 reports mean test cross-validation 
balanced classification errors at the individual prediction 
of eight instrument groups (the average errors for sam-
ples with at least one instrument in the group to predict 
and samples without such instruments).

Table 4  Architecture blocks for four networks inspired by previous 
work. Music segmentation: CNN-GrillSchlüter:  adaptation after 
[62]. Instrument recognition: CNN-AlexNet:  adaptation after [63]; 
CNN-Han:  adaptation after [64, 65]; CNN-VGG16:  adaptation after 
[66]. Keras layers: C(i,j):  Conv2D(i,j); P(m,n):  MaxPooling2D(m,n); 
d: Dropout(0.25); D: Dropout(0.5); F: Flatten; G: GlobalMaxPooling2D; 
Rr:  Dense(activation=‘relu’); Rs:  Dense(activation=‘sigmoid’). The 
numbers of output neurons are provided in square brackets

CNN-GrillSchlüter
C(8,6)[16] p(3,6)

C(6,3)[32]

F D Rs[128] D Rs[1]

CNN-AlexNet
C(11,11)[32] P(1,2) d

C(5,5)[64] P(1,2) d

C(3,3)[128] C(3,3)[128] C(3,3)[128] G d

Rr[1024] D Rs[9]

CNN-Han
C(3,3)[32] C(3,3)[32] P(1,2) d

C(3,3)[64] C(3,3)[64] P(1,2) d

C(3,3)[128] C(3,3)[128] P(2,2) d

C(3,3)[256] C(3,3)[256] G

Rr[1024] D Rs[9]

CNN-VGG16
C(3,3)[32] C(3,3)[32] P(1,2) d

C(3,3)[64] C(3,3)[64] P(1,2) d

C(3,3)[128] C(3,3)[128] C(3,3)[128] P(2,4) d

C(3,3)[256] C(3,3)[256] C(3,3)[256] G d

Rr[1024] D Rs[9]

Table 5  Evaluation measures for music segmentation with 
respect to different boundaries. F-measure (F), precision (P), and 
recall (R) are estimated for all boundaries (A) and boundaries 
coming with instrument (I), key (K), or tempo (T) change. 
Abbreviations for the feature groups: MelS: the Mel spectrum; 
SemS: the semitone spectrum; Fluct: fluctuation patterns. Best 
values are marked with bold font

Meas. MFCCs MelS SemS Fluct CNN

FA 0.646 0.577 0.615 0.470 0.914
PA 0.568 0.473 0.506 0.397 0.950
RA 0.810 0.803 0.850 0.615 0.899
FI 0.600 0.531 0.571 0.418 0.925
PI 0.484 0.401 0.432 0.322 0.947
RI 0.871 0.870 0.926 0.644 0.921

FK 0.520 0.469 0.510 0.374 0.822
PK 0.399 0.338 0.370 0.274 0.798
RK 0.863 0.887 0.951 0.666 0.901

FT 0.387 0.357 0.377 0.299 0.846
PT 0.272 0.237 0.251 0.201 0.895
RT 0.840 0.912 0.947 0.718 0.857
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We can observe that random forest performs worst. 
The architecture inspired by VGG16 is the best candi-
date, followed by Han; however, the differences in abso-
lute error values are small. The architecture inspired by 
AlexNet performs worse than both other CNN architec-
tures except for drums.

5.3 � Onset detection
Onset detection is a binary event recognition task which 
identifies time frames with new beginning notes. To illus-
trate the progress of classification performance of algo-
rithms developed over recent decades, we compare more 
recent approaches from Librosa [60] and MIRtoolbox 
[59] (mironsets method) with their default parameters 
to the former setup by [68] in Table 7. Since we annotate 
MIDI note-on events, all methods were applied in attack 
detection mode. The tolerance boundary is set to 50 ms.

Beyond the best overall performance of the Librosa 
method, it performs better for slower songs, while MIR-
toolbox and Klapuri tend to work better for faster tem-
pos. The Librosa method benefits from the presence of 
drums. The outdated method from [68] generally per-
forms worst as expected, which by considering its age 
reveals the quality leap in research.

6 � Concluding remarks and outlook
In this paper, we have presented a large dataset of 
3000  artificially generated sample-based audio tracks 
together with original MIDIs, which were created using 
an algorithmic composition strategy.

Our generation procedure is intended to produce 
a large number of audio tracks in a short time. Thus, 
some “blind spots” of the current state of the dataset, 

such as constant rhythms, the limited number of instru-
ment bodies, or the bias of melody lines towards West-
ern popular music can be addressed in future work. We 
might closely analyze or even learn real music’s property 
distributions. The proposed framework is designed to be 
easily extendable with further music composing mod-
ules (element generators) and the source code is publicly 
available. This offers a great potential for advancements 
in quality and realism of the generated music. New 
modules may therefore implement concepts of (knowl-
edge-based) grammars, (bio-inspired) transformation of 
existing music, (evolutionary) optimization approaches, 
(deep) machine learning or any imaginable hybridiza-
tion. Another significant step towards realism would be 
achieved by adding singing voices, e.g., by automatic gen-
eration of accompaniment to pre-recorded human vocals 
or even the artificial creation of realistic voices. Further 
experiments may also include data augmentation and 
combination of AAM with data from other datasets to 
create more robust classification models.

Abbreviations
AAM	� Artificial Audio Multitracks
CNN	� Convolutional neural network
MFCC	� Mel frequency cepstral coefficient
MIDI	� Musical Instrument Digital Interface

Table 6  Balanced classification errors for recognition of 
instrument groups. CNN-AlexNet: adaptation after [63]; CNN-Han: 
adaptation after [64, 65]; CNN-VGG16: adaptation after [66]. Best 
values are marked with bold fonta

aCNN-Han is better than CNN-VGG16 for pipe at the 6th position after the fix 
point

Instr. Random CNN- CNN- CNN-
Group Forest Han AlexNet VGG16

Bass 0.192 0.017 0.021 0.016
Brass 0.270 0.043 0.094 0.035
Drums 0.159 0.036 0.028 0.035

Guitar 0.346 0.106 0.169 0.095
Organ 0.101 0.002 0.004 0.001
Piano 0.388 0.099 0.162 0.094
Pipe 0.418 0.087 0.145 0.087

Reed 0.389 0.106 0.172 0.117

Strings 0.168 0.030 0.051 0.029

Table 7  Evaluation measures for onset detection on subsets of 
the AAM dataset. F-measure (F), precision (P), and recall (R) are 
provided for all three methods on all available dataset tracks (A), 
as well as on subsets of specific tempo segments (S: slow, M: 
medium, F: fast) and segments with and without drums ( D , D ). 
Best values are marked with bold font

Measure Kla99 Librosa MIRtoolbox

FA 0.224 0.787 0.515

PA 0.228 0.834 0.473

RA 0.226 0.752 0.582

FS 0.105 0.821 0.424

PS 0.095 0.861 0.355

RS 0.122 0.796 0.552

FM 0.196 0.793 0.506

PM 0.192 0.841 0.459

RM 0.205 0.762 0.577

FF 0.333 0.742 0.599

PF 0.369 0.806 0.596

RF 0.311 0.702 0.611

FD 0.222 0.804 0.517

PD 0.223 0.830 0.480

RD 0.225 0.782 0.575

F
D

0.228 0.673 0.522

P
D

0.258 0.851 0.473

R
D

0.218 0.603 0.625
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MIR	� Music information retrieval
SSM	� Self-similarity matrix
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