
Schwartz and Gannot EURASIP Journal on Audio, Speech, andMusic
Processing         (2021) 2021:43 
https://doi.org/10.1186/s13636-021-00228-1

RESEARCH Open Access

A recursive expectation-maximization
algorithm for speaker tracking and
separation
Ofer Schwartz1 and Sharon Gannot2*

Abstract

The problem of blind and online speaker localization and separation using multiple microphones is addressed based
on the recursive expectation-maximization (REM) procedure. A two-stage REM-based algorithm is proposed:
(1) multi-speaker direction of arrival (DOA) estimation and (2) multi-speaker relative transfer function (RTF) estimation.
The DOA estimation task uses only the time frequency (TF) bins dominated by a single speaker while the entire
frequency range is not required to accomplish this task. In contrast, the RTF estimation task requires the entire
frequency range in order to estimate the RTF for each frequency bin. Accordingly, a different statistical model is used
for the two tasks. The first REM model is applied under the assumption that the speech signal is sparse in the TF
domain, and utilizes a mixture of Gaussians (MoG) model to identify the TF bins associated with a single dominant
speaker. The corresponding DOAs are estimated using these bins. The second REM model is applied under the
assumption that the speakers are concurrently active in all TF bins and consequently applies a multichannel Wiener
filter (MCWF) to separate the speakers. As a result of the assumption of the concurrent speakers, a more precise TF map
of the speakers’ activity is obtained. The RTFs are estimated using the outputs of the MCWF-beamformer (BF), which
are constructed using the DOAs obtained in the previous stage. Next, using the linearly constrained minimum variance
(LCMV)-BF that utilizes the estimated RTFs, the speech signals are separated. The algorithm is evaluated using real-life
scenarios of two speakers. Evaluation of the mean absolute error (MAE) of the estimated DOAs and the separation
capabilities, demonstrates significant improvement w.r.t. a baseline DOA estimation and speaker separation algorithm.
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1 Introduction
Multi-speaker separation techniques, utilizing micro-
phone arrays, have attracted the attention of the research
community and the industry in the last three decades,
especially in the context of hands-free communication
systems. A comprehensive survey of state-of-the-art mul-
tichannel audio separationmethods can be found in [1–3].
A commonly used technique for source extraction is the

LCMV-BF [4, 5], which is a generalization of the min-
imum variance distortionless response (MVDR)-BF [6].
In [7], the LCMV-BF was reformulated by substituting
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the simple steering vectors based on the direct-path with
the RTFs encompassing the entire reflection pattern of
the acoustic propagation. The authors also presented a
method to estimate the RTFs, based on the generalized
eigenvalue decomposition (GEVD) of the power spec-
tral density (PSD) matrices of the received signals and
the background noise. A multi-speaker LCMV-BF was
proposed in [8] to simultaneously extract all individual
speaker signals. Moreover, the estimation procedure of
the speakers’ PSDs was facilitated by the decomposi-
tion of the multi-speaker MCWF into two stages, namely
multi-speaker LCMV-BF and a subsequent multi-speaker
post-filter.

© The Author(s). 2021Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13636-021-00228-1&domain=pdf
http://orcid.org/0000-0002-2885-170X
mailto: sharon.gannot@biu.ac.il
http://creativecommons.org/licenses/by/4.0/


Schwartz and Gannot EURASIP Journal on Audio, Speech, andMusic Processing         (2021) 2021:43 Page 2 of 15

In [7, 8], the RTFs were estimated using time intervals
comprising each of the desired speakers separately assum-
ing a static scenario. Practically, these time intervals need
to be detected from data and cannot be assumed to be
known.
In [9], time-frames dominated by each of the speakers

were identified by estimating the DOA for each frame
using clustering of a time-series of steered response power
(SRP) estimates. In [10, 11], these frames were identi-
fied by exploiting convex geometry tools on the recovered
simplex of the speakers’ probabilities or the correlation
function between frames [12]. In [13, 14], a dynamic,
neural-network-based, concurrent speaker detector was
presented to detect single speaker frames. A library of
these RTFs was collected for constructing an LCMV-BF
and for further spatial identification of the speakers. In
[15], the speech sparsity in the short-time Fourier trans-
form (STFT) domain was utilized to track the DOAs
of multiple speakers using a convolutional neural net-
work (CNN) applied to the instantaneous RTF estimate.
Speaker separation was obtained, as a byproduct of the
tracking method, by the application of TF masking.
Unfortunately, the existence of single speaker dominant

frames is not always guaranteed for simultaneously active
speakers. Furthermore, for moving speakers the RTFs esti-
mated by these frames may be irrelevant for subsequent
processing. In [16], the sparsity of the speech signal in the
STFT domain was utilized to model the frequency bins
with complex-Gaussian mixture p.d.f. and the RTFs were
offline estimated as part of an expectation-maximization
(EM)-MoG procedure. In [17], an offline blind estima-
tion of the acoustic transfer functions was presented using
the non-negative Matrix Factorization and the EM algo-
rithm. In [18, 19], an offline estimation of the acoustic
transfer functions was done by estimating a latent vari-
able representing the speaker activity pattern. In [20], an
online estimation of the blocking matrices (required for
the generalized sidelobe canceler implementation of the
MVDR-BF) associated with each of the speakers was car-
ried out by clustering the DOA estimates from all TF bins.
In [21, 22], an online time–frequency masking has been
proposed to estimate the RTFs using the EM algorithm
and without any prior information on the array geometry
or the plane wave assumption.
Common DOA estimators are based on the SRP-phase

transform (PHAT) [23], the multiple signal classification
(MUSIC) algorithm [24], or Model-based expectation-
maximization source separation and localization (MESSL)
[25]. In [26–28], the microphone observations were mod-
eled as a mixture of high-dimensional complex-Gaussian
with zero-mean, and a spatial covariance matrix that con-
sists of both the speech and the noise power spectral den-
sities (PSDs) was assumed. In [29], a DOA tracking proce-
dure was proposed by applying the Cappé and Moulines

recursive EM (CREM) algorithm. Recursive equations for
the DOA probabilities and the candidate speakers PSDs
were derived, which facilitated online DOA tracking of
multiple speakers.
In this paper, an online and blind speaker separation

procedure is presented. Multiple RTFs updating is per-
formed using REM model that assumes concurrent activ-
ity of speakers. New links are established between the
direct-path phase differences and the full RTF of each
speaker. The dominant DOAs in each frame are estimated
using a dedicated REM procedure. Then, in each frame,
the RTFs are initialized by the direct-path phase differ-
ence (using the corresponding DOA). Finally, the full RTFs
are re-estimated using the LCMV outputs. By examin-
ing the LCMV outputs, frames dominated by a single
speaker can be detected by comparing the energy of each
LCMV output. As a practical improvement, the RTF of
a speaker is updated only when the LCMV output corre-
sponding to the relevant speaker is relatively high. Finally,
the LCMV-BF is re-employed using the estimated RTFs.
The direct-path phase differences are set using the

speakers DOA estimated by an online preliminary stage
of multiple concurrent DOA estimation. In this stage,
assuming J speakers, J dominant DOAs are estimated in
each frame using a novel version of the MoG-REM. Only
for the DOA estimation, the sparse nature of the speech
is exploited (while it has been proven to be efficient with
DOA estimation). The output of many multiple-speaker
DOA estimators is actually a probability for an existence
of speaker in each DOA, while the final DOA of the speak-
ers is still not clear. In this paper, we design an REM-based
concurrent DOA estimation that consists only of J Gaus-
sians. Rather than estimating the probabilities, the DOAs
of the speakers are directly estimated using the REM
algorithm.
The remainder of this paper is organized as follows. In

Section 2, the speaker separation problem is formulated.
In Section 3, the proposed dual-stage algorithm is over-
viewed. In Section 4, the REM procedure for the speaker
separation is derived. In Section 5, the REM procedure
for the multiple-speaker DOA estimation is derived. In
Section 6, the performance of the proposed algorithm is
evaluated. Section 7 is dedicated to concluding remarks.

2 Problem formulation
The problem is formulated in the STFT domain, where
and k denote the time-frame index and the frequency-

bin index, respectively. The signal observed at the ith
microphone is modeled by:

Yi , k
J

j 1
Gi,j , k Sj , k Vi , k , i 1, ,N

(1)
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where Sj , k is the speech signal of the jth speaker, as
received by the reference microphone (chosen arbitrary as
microphone #1), Gi,j , k is the RTF from the jth speaker
to the ith microphone w.r.t. the reference microphone,
and Vi , k denotes ambient noise. The number of micro-
phones is N and the number of sources of interest is J.
By concatenating the signals and RTFs in vectors, (1) can

be recast as:

y , k G , k s , k v , k , (2)

where:

y , k Y1 , k Y2 , k YN , k (3a)

G , k g1 , k g2 , k gJ , k , (3b)

gj , k G1,j , k G2,j , k GN ,j , k (3c)

s , k S1 , k S2 , k SJ , k , (3d)

v , k V1 , k V2 , k VN , k . (3e)

The ambient noise is modeled as a zero-mean Gaussian
vector with a PSD matrix v k :

f v , k ; v , k C v , k ; 0, v , k . (4)

where:
C z; 0,

1
N exp Tr 1zzH , (5)

z denotes a Gaussian vector, is a PSD matrix, Tr []
denotes trace operation and denotes the matrix-
determinant operation. The individual speech signals
Sj , k are also modeled as independent and zero-mean
Gaussian processes with variance Sj , k ,

f Sj , k ; Sj , k C Sj , k ; 0, Sj , k .

In the following sections, the frequency index k and time
index are omitted for brevity, whenever no ambiguity
arises.

3 Algorithm overview
The proposed algorithm comprises two stages as detailed
below and summarized in Fig. 1.

3.1 Speaker extraction
The goal of this paper is to estimate the individual speech
signals Sj of the dominant J speakers (while the num-
ber of speakers J is assumed fixed and known) using
the multi-speaker MCWF or the multi-speaker LCMV
beamformer [8].

sLCMV G GH 1
v G 1GH 1

v y, (6)

sMCWF G, s GH
s GGH

s v
1 y (7)

where s Diag S1 , .., SJ is a diagonal matrix (namely,
the individual speech signals are assumed mutualy inde-
pendent). Even though the MCWF usually achieves better
noise reduction relative to the LCMV, in many cases the
LCMV is preferred due to its distortionless characteris-
tics (especially when a large number of microphones is
available). For the main task of this paper, namely speaker
separation, the LCMV-BF suffices.

3.2 Parameters estimation
For implementing the LCMV-BF (6), an estimate of the
RTF matrix G is required. The proposed algorithm for
blind and online estimation ofG is based on two separated
stages:

1 Estimating J dominant DOAs associated with the J
dominant active speakers. The DOA of each speaker
is chosen from a predefined set of candidate DOAs.

2 Estimating J RTFs gj associated with the J dominant
DOAs from the first stage. In each frame, the RTFs
are initialized by the direct-path TF (based on the
DOAs from the previous stage) and then the RTFs
are updated using the MCWF outputs.

To concurrently estimate themultiple DOAs and the RTFs
of the speakers, the EM [30] formulation is adopted (sepa-
rately for each task), as described in the following sections.
Moreover, to achieve online estimation of the RTFs and to
maintain smooth estimates over time, a recursive version
of the EM algorithm is adopted. A block diagram of the
proposed two-stage algorithm is depicted in Fig. 1.
In Section 4, an estimation procedure for the RTFs is

proposed while associating an RTF to each speaker using
its associated estimated DOA. In Section 5, an estimation
procedure of the J-dominant DOAs is proposed.

4 Speaker extraction given the DOAs
To implement the EM algorithm, three datasets should
be defined: the observed data, the hidden data, and the
parameter set. The observed data in our model is the
receivedmicrophone signals y. We are proposing to define
the individual signals s as the hidden data. The parameter
set is defined as the RTFs G, and the PSD matrix of the
speakers s such that G, s .

Fig. 1 Block diagram of the proposed two-stage algorithm for online speaker separation
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The E-step evaluates the auxiliary function, while the
maximization step maximizes the auxiliary function w.r.t.
the set of parameters. The batch EM procedure converges
to a local maximum of the likelihood function of the
observation [30]. To track time-varying RTFs and to sat-
isfy the online requirements, the CREM [31] algorithm is
adopted. CREM is based on smoothing of the auxiliary
function along the time axis and executing a single max-
imization per time instance. The smoothing operation is
given by [31, Eq. (10)]

QR ; 1 QR ; 2 1 Q ; 1 ,

(8)

where QR ; is the recursive auxiliary function,
is the estimate of at the th time instance and

0 1 is a smoothing factor.
The termQ ; 1 is the instantaneous auxiliary

function of the th observation, namely the expectation
of the log p.d.f. of the complete data (the observed and
hidden data) given the observed data and the previous
parameter set:

Q ; 1 E log f y , s ; y ; 1 , (9)

The th parameter set estimate is obtained by maxi-
mizing QR ; 1 w.r.t. .

4.1 Auxiliary function
By applying the Bayes rule, the p.d.f. of the complete
instantaneous data is given by:

f y, s; f y s; f s; , (10)

where the conditional p.d.f. in (10) is given by:

f y s; C y,Gs, v (11)

and the p.d.f. of s is given by f s C s, 0, s .
Finally, the auxiliary function is given by

Q ; 1 E N
v Tr 1

v y Gs y Gs H

J
s Tr 1

s ssH ; 1

(12)

The EM is notoriously known for converging to local
maxima and hence proper initialization is mandatory. In
the following section such initialization is discussed.

4.2 Initialization
4.2.1 Initialization of the individual speaker RTFs
Since the RTFs of the speakers in G are time-varying, we
propose to reinitialize them in each frame using the esti-
mated DOAs of the speakers. In each new frame, the pre-
vious RTFs are discarded and substituted by RTFs which
are based on DOA only (as initialization). In the M-step,

the RTFs are re-estimated using the smoothed latent-
variables. Using the DOAs, the RTFs are initialized by
the direct-path transfer function namely the relative phase
from the desired speaker to the ith microphone w.r.t. the
reference microphone. Accordingly, given the estimates of
each speaker DOA j, the RTFs can be initialized by:

Gi,j Di,j exp
2 k
K

i j

Ts
, (13)

where Ts denotes the sampling period and i j denotes
the time difference of arrival (TDOA) between micro-
phone i and the reference microphone given the jth
speaker DOA j. Note that the DOAs are blindly esti-
mated, as explained in Section 5.
Examining only the horizontal plane, and given the two-

dimensional positions of the microphones, the TDOA is
given by:

i j
1
c

cos j sin j xi x1 , (14)

where c is the sound velocity and xi is the horizontal
position of microphone i.

4.2.2 Initialization of the individual speakers PSD
Similarly to the RTFs initialization, we propose to reini-
tialize the PSDs in each frame using the estimated DOAs.
The PSDs of the speakers can be initialized by maximizing
the p.d.f. of the observations given the relative phase (13):

s argmax
s

log f y; s,D (15)

where

f y; s,D C y; 0,D sDH
v (16)

and D is anM J matrix with elements defined by Di,j
Di,j. Taking the derivative of the p.d.f. above w.r.t. s and
equating to zero attains the estimate of the speaker PSDs:

s sLCMV D sHLCMV D vres D , (17)

where sLCMV D is the multi-speaker LCMV output vec-
tor and vres is the residual noise PSDmatrix at the output
of the multi-speaker LCMV stage,

sLCMV D DH 1
v D

1
DH 1

v y, (18a)

vres D DH 1
v D

1
. (18b)

Since s is defined as diagonal matrix the off-diagonal
elements of the estimated matrix in (17) are zeroed-out.

4.3 Instantaneous expectation andmaximization steps
Examining (12), the E-step in the th time instance
boils down to the calculation of s and ssH, where for
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any stochastic variable a, a E a y; . Using the
multi-speaker MCWF [8], the following expressions are
obtained:

s WH
MCWF D y (19a)

ssH ssH I WH
MCWF D D s (19b)

where

WMCWF D DDH
s v

1
D s (20)

is the multi-speaker MCWF. Using the expectations
above, the instantaneous auxiliary function Q ; is
given by:

Q ; log N
v

Tr yyH GsyH ysHGH GssHGH log J
s Tr 1

s ssH .

(21)

Substituting the auxiliary function (21) in the recursive
equation from (8) and following some algebraic simpli-
fications, the implementation of (8) can be summarized
according to the following recursive equations:

A aA 1 1 a ysH (22a)

B BB 1 1 B ssH. (22b)

Using A and B , the recursive auxiliary function
can be rewritten as

QR ; log N
v

Tr yyH GAH A GH GB GH log J
s Tr 1

s B

(23)

Similar to the batch EM procedure, theM-step is obtained
by maximizing QR ; w.r.t. the problem parame-
ters. The speaker PSDs and the RTFs estimates are then
given by:

s B (24a)

G A B 1 . (24b)

Since s is defined as diagonal matrix the off-diagonal
of its estimate should be zeroed-out. Note that the RTFs
are discarded in each new frame and reinitialized using
the DOA based steering vector (see (13)). Nevertheless,
the RTFs are re-estimated by the updated recursive-
variables A and B (see (24b)). These variables are only
slightly updated form frame to frame using the smoothing
factor . Therefore, the final estimate of the RTFs is only
slightly updated. The re-initialization of the RTFs in each
frame only influences the estimates of s and ssH as used
in (22).

4.4 Practical considerations
Due to the intermittent nature of the speech signal, a few
speakers may be non-active in several frames. This will
result a few elements on the main diagonal of s that are
close to zero. Note that as the number of speakers J is
set in advance, it might be larger than the instantaneous
number of active speakers in several frames.
As a matter of fact, bins where only a single speaker

is dominant should be the preferred for the task of esti-
mating the RTFs, since the other speakers do not bias
the estimate. To determine these TF bins, the power ratio
between the desired speech and other interfering speech
signals, denoted as desired speaker-to- interferes ratio
(DSIR), may be examined for each TF bin according to
DSIRj

Bj,j
J
i 1 Bi,i

. Using the PSD matrix initializa-
tion (17), the RTFs should be estimated only if the DSIRj
obtains a high value. In that case, the RTFs are estimated
by applying the following simplified formula:

gj
Aj
Bj,j

DSIRj

gj 1 otherwise
(25)

where is some predefined threshold.
To summarize this part of the proposed algorithm, the

REM procedure for estimating the individual speaker sig-
nals given the DOAs is given in Algorithm 1.

Algorithm 1:Online REM-based RTFs estimation.
Inputs: J dominant DOAs j , and microphone
signals y .
while new frame is obtained do

for each frequency k do
Initialize G using D (13) and S
using (17)
E-step:

Estimate s and ssH using (19)
Update A and B using (22)

M-step:
Estimate S using (24a)
Calculate DSIRj
Estimate gj using (25)

end
end
Output: J RTFs gj .

5 DOA estimation
For the estimation of the speakers’ DOA, we take a dif-
ferent statistical model, and assume hereinafter that the
W-disjoint orthogonality property of the speech [32, 33]
holds. This assumption was shown to be beneficial in
handling multi-speaker DOA estimation tasks [25–29].
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Fig. 2 Diagram of the online two stages REM-based multiple-speaker DOAs estimation and separation

Using this TF sparsity assumption, the signal observed
at the ith microphone can remodeled as described in [29]:

Yi , k
J

j 1
j , k Di j, k Sj , k Vi , k , (26)

where the variables j , k are indicators that the jth
speaker is active at the , k th TF bin. A disjoint activity of
the speakers can be imposed by allowing the J indicators
j , k to have only a single non-zero element per each TF
bin. The RTF Di j, k is solely defined by the direct-path,
as given in (13).
The indicators [ 1, , J ] will be used as the hid-

den data under this formulation. The parameter set is
accordingly defined as the DOAs j and the speakers PSD
Sj such that j, Sj

J
j 1.

Unlike [29], where the probabilities of each candidate
DOA are estimated, in this paper the J dominant DOAs
are determined from the DOA candidate set. In [29], a
subsequent pick peaking stage is therefore required. In the
proposed algorithm, the J DOAs are estimated during the
M-step.

5.1 Auxiliary function
Using Bayes rule, the p.d.f. of the complete data is given by:

f y, ; f y ; f , (27)

where the conditional p.d.f. in (27) is composed as a
weighted sum of J Gaussians:

f y ;
J

j 1
j

C y, 0,D j DH
j Sj v . (28)

The p.d.f. of the indicators is f J
j 1 pj j, with

pj the probabilities of activity for each speaker and
J
j 1 pj 1. These probabilities may be initialized as 1 J .

5.2 Initial estimation of the speech PSDs
It was shown in [29] that for eachDOA j, the correspond-
ing speech PSDs are independent of the E-step and thus
can be estimated prior to the EM iterations. For eachDOA
j, the corresponding PSD is estimated by maximizing the

relevant Gaussian:

Sj argmax
Sj

log C y,D j DH
j Sj v . (29)

Fig. 3 Recording room and CEVA-DSP platform (one of the microphones is marked by red circle)
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Table 1 Trajectories of the two speakers for all experiments

Speaker

Experiment Male Female

# 1 Standing at 90 Standing at 270

# 2 Standing at 90 Counterclockwise
Surrounding from 270

# 3 Standing at 90 Clockwise Surrounding
from 270

# 4 Counterclockwise
Surrounding from 90

Standing at 90

# 5 Counterclockwise
Surrounding from 90

Counterclockwise
Surrounding from 270

# 6 Counterclockwise
Surrounding from 90

Clockwise Surrounding
from 270

# 7 Clockwise Surrounding
from 90

Standing at 90

# 8 Clockwise Surrounding
from 90

Counterclockwise
Surrounding from 270

# 9 Clockwise Surrounding
from 90

Clockwise Surrounding
from 270

In [29], it was shown that using the Fisher-Neyman fac-
torization, the log-likelihood above can be expressed as

log C y, 0,D j DH
j Sj v

log SMVDR, 0, Sj v,res log v,res

v N 1 yH 1
v y

SMVDR
2

v,res
,

(30)

where SMVDR j
DH j 1

v y
DH j

1
v D j

is the output of
the MVDR BF steered towards the j-th speaker, and

v,res j DH j 1
v D j

1
is the residual noise

power at the output of the corresponding MVDR BF. Tak-
ing the derivative of the log-likelihood in (30) w.r.t. Sj and
equating to zero results in:

Sj SMVDR j
2

v,res j . (31)

Fig. 4 DOAs estimation for two speakers of the proposed and baseline algorithms for Experiments #1, #2, and #3
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Fig. 5 DOAs estimation for two speakers of the proposed and baseline algorithms for Experiments #4, #5, and #6

Substituting the estimate of the speech PSDs in the log
p.d.f. in (30), yields

log C y, 0,D j DH
j Sj v

C SNR j log SNR j ,

(32)

where SNR
SMVDR

2

v,res
is the posterior SNR of

each speaker, and C stands for equality up to a constant
independent of the relevant parameters.

5.3 The EM iterations
Using the log p.d.f. from (32) and the definitions (27)–(28),
the auxiliary function is given by:

Q j; j 1 C E log f y, ; y; j 1
J

j 1
j SNR j log SNR j ,

(33)

where j is the expected indicator j E j y; 1 .
According to [29], the expressions for the indicators can
be simplified to:

j
pjT j 1
J
j 1 pjT j 1

, (34)

where T j
1

SNR j
exp SNR j is the sufficient

statistics.
Using the expected indicators j and the auxiliary func-

tion in (32), the smoothing stage in (8) is summarized
according to the following recursive equation:

QR j; j 1 RQR j; j 2

1 R j SNR j log SNR j .
(35)

Note that the term log SNR j in (35) can be omitted
because it probably does not influence the maximization1.
The M-step is obtained by maximizing QR j; j 1
w.r.t. j and pj for j 1, , J :

1The function f x x log x is a monotonically increasing function when
x 1 and indeed we can usually assume that the a posteriori signal-to-noise
ratio (SNR) to be larger than 1.
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Fig. 6 DOAs estimation for two speakers of the proposed and baseline algorithms for Experiments #7, #8, and #9

j argmax
j k

QR j; j 1 , (36a)

pj
1
K

k
j k . (36b)

Note that the estimation of the DOA is obtained
using all frequency bins. Since there is no closed-
form expression for j , the term k QR j; j 1
should be calculated for each possible j. Practi-
cally, a set of DOA candidates can be predefined
(for example 0 , , 345 with a 1 resolution) and

k QR j; j 1 can be calculated only for these
candidates. Then, separately to each source j, the DOA
which maximizes k QR j; j 1 is selected as the
jth speaker DOA.
The estimated probability of each speaker pj (Eq. (36a))

may be utilized to discard the redundant speaker in the
beamforming stage (see the third block in Fig. 1). When pj
is lower than a predefined threshold, it implies that the jth
speaker is inactive and the final beamforming may include
only the other active speakers.

The REM algorithm for estimating the desired speaker
DOA is summarized in Algorithm 2 and depicted in the
block diagram in Fig. 2.

Algorithm 2: Online REM-based multiple DOA Esti-
mation.
Inputs: Microphone signals y .
while new frame is obtained do

E-step:
for each frequency k do

Calculate SNR j for each j candidate.
Calculate j using j 1 by (34).
Update QR j; j 1 for each j

candidate using (35)
end
M-step:

Find j using (36a) and pj using (36b)
end
Output: J DOAs j
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Table 2 MAE results in degrees

Experiment

Algorithm #1 #2 #3 #4 #5 #6 #7 #8 #9

Baseline 7.5 61.0 44.3 55.9 34.0 43.3 59.1 25.4 28.3

Proposed 0.3 10.8 10.2 32.5 18.1 9.7 21.8 11.7 6.6

6 Performance evaluation
The performance of the proposed algorithm is evaluated
using recorded signals of two concurrent speakers on the
two presented tasks: (1) online DOA estimation and (2)
time-varying source separation. Correspondingly, we used
two quality measures: (1) the mean absolute error (MAE)
between the estimated and oracle DOAs and (2) the power
level between the speakers at the output, as a measure of
the separation capabilities.

6.1 Recording setup
Overall, nine experiments were conducted. In each exper-
iment, two 60-s long speech signals of male and female
speakers were separately recorded in the acoustic lab at
CEVA Inc. premises, as shown in Fig. 3a. CEVA Inc. DSP
platform was used as the acquisition device. The circular
array with 5 cm diameter comprises six microphones at
the perimeter. The device is depicted in Fig. 3b.
The two speakers were either standing or moving with

various trajectories around the array, approximately 1 m
from the array center. The speed of the moving speaker
was approximately 1 m/s. The various source trajectories
are described in Table 1.
The reverberation time was approximately adjusted to

T60 0.2 sec using the room panels and additional
furniture. The utterances were generated by adding the
two separately recorded speech signals together with both
spectrally and spatially white noise, with power of 40 dB
below the power of the overall speech signals.
The sampling frequency was 16 kHz, and the frame

length of the STFT was set to 128 ms with 32 ms overlap.
The resolution of the candidates DOA was set to 15 in
the range [ 0 : 345 ]. The frequency band 500 3500 Hz
was used for the DOA estimation.

6.2 Baseline method
The proposed algorithm was compared with a baseline
localization and separation algorithm conceptually based
on [20]. The steps of the baseline algorithm are:

Table 3 MAE results in degrees for various T60

T60 0.2 0.3 0.4 0.5 0.6

Baseline 64.38 70.40 75.30 77.70 80.04

Proposed 11.12 20.13 32.23 26.85 31.08

Table 4 MAE results in degrees for various SNRs

SNR 40 30 20 10 0

Baseline 64.32 67.81 70.99 73.22 77.34

Proposed 11.21 10.97 12.47 11.75 14.49

1 Calculate the SRP-PHAT [23] outputs for each TF
bin and DOA candidate in the range
[ 0 : 15 : 345 ], and then find the DOA with the
maximum SRP value for each TF bin.

2 Cluster the DOAs from all bins to two clusters
(assuming two speakers) using the REM-MoG
algorithm2 [31] and determining the two dominant
DOAs by taking the centroid of each cluster.

3 For each cluster, estimate the associated RTF using
the classical cross-spectral method [34, Eq. (9)] using
a recursive version as implemented in [20, Eq.(19)].

4 Implement the LCMV-BF using the two estimated
RTFs.

6.3 Tracking results
The tracking algorithms estimate the two dominant DOAs
for each frame. Let 1 and 2 be an estimate of
the DOAs of the two speakers at frame , as obtained by
either the proposed and baseline algorithms, and 1
and 2 , be the oracle DOAs, respectively. Define the
MAE as:

MAE
1
2L

min

1 1 2 2 , 1 2 2 1 ,

(37)

where L is the number of frames in the utterance. The ora-
cle DOAs were obtained by apply the proposed algorithm
to the separated inputs xM and xF while assumed a single
speaker.
The trajectories of the estimated DOAs for both pro-

posed and the baseline algorithms for all nine experiments
are depicted in Figs. 4, 5, and 6, together with the ora-
cle trajectories. The MAEs for all cases are presented in
Table 2.
Looking at the tracking curves and the MAEs, the pro-

posed algorithm clings well to the oracle speakers DOA
contours, and significantly outperforms the baseline
algorithm.
Note that when the speakers’ trajectories intersect,

the estimates may suffer from unavoidable permuta-
tion ambiguity. Consequently, while both trajectories are
accurately estimated, the association between them and
the speakers may switch after the intersection point (see
2Adopted from Section 2.4 in [31], where only the means of the Gaussians
were estimated, and the variances and probabilities were set as constants (the

probabilities are set to
1
2
and the variances to 2).
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Table 5 SIR results for all cases

Algorithm

Proposed Baseline

ExperimentÔ SIR Input SIR1 D SIR1 G SIR2 D SIR2 G SIR1 D SIR1 G SIR2 D SIR2 G

#1 2.85 7.83 11.58 3.22 7.69 7.83 11.51 3.13 7.84

#2 2.12 4.92 5.83 3.24 5.17 4.17 4.41 1.53 3.29

#3 2.29 4.16 5.75 4.16 6.68 5.14 5.82 2.88 5.04

#4 5.02 6.99 8.54 3.60 4.50 6.38 8.42 2.97 3.49

#5 3.54 2.36 5.99 9.37 12.32 2.75 4.31 7.19 8.54

#6 4.03 6.74 8.79 3.42 5.43 3.18 4.33 6.13 6.80

#7 3.70 3.47 5.27 5.57 7.03 4.66 6.92 2.62 3.74

#8 2.86 2.85 4.47 6.41 8.14 2.56 4.03 5.92 7.85

#9 2.66 7.69 11.36 3.53 7.83 3.26 6.04 5.92 7.74

Mean 2.66 7.69 11.36 3.53 7.83 3.26 6.04 5.92 7.74

Experiments #2, #3, #4, #6, #7, and #8). Note, that by
definition (37), theMAE is agnostic to such permutations.
The intersecting trajectories may also result in signif-

icant errors when the DOAs of the speakers become
closer (see Experiments #2, #3, #4, #7, and #8). This
is also reflected in the relatively high MAE values (see
Experiments #4, #5, and #7). Higher MAE values are
also encountered at the initial convergence period (see
Experiments #4, #5, and #6).
The performance improvement of the proposed algo-

rithm may be attributed to the MVDR-BF front-end,
which is capable of suppressing the interference sources,
as opposed to the SRP-PHAT front-end, which is adopted
by the baseline method.
The proposed DOA estimator is also evaluated in com-

parison with the baseline algorithm in multiple reverber-
ation times (T60) and SNR values. Two moving speakers
were simulated by convolving randomly selected male
or female utterances with the room response, simulated
using an open source signal generator3. The microphone
signals are then contaminated by a directional, spectrally
pink, noise source in several SNR levels. The trajectories
of the two speakers were set as clockwise and counter-
clockwise.
TheMAEs for different values ofT60 and for SNR=40 dB

are presented in Table 3. The MAEs for different SNR
levels and for T60 0.2 are presented in Table 4.
The performance of both the baseline and the proposed

algorithms degrades as the reverberation level increases.
However, the accuracy of the proposed algorithm is
significantly higher and is limited by 30 . Similar trends
can be observed in Table 4, with a significant advantage of
the proposed algorithm, with errors kept in the range of
11 14.5 .

3https://www.audiolabs-erlangen.de/fau/professor/habets/software/signal-
generator

6.4 Separation results
The separation capabilities of the proposed and baseline
algorithms were assessed by evaluating the speaker-to-
interference ratio (SIR) improvement. For convenience, all
examined scenarios comprised one male and one female
speakers. The microphone signals are thus given by:

y xM xF v, (38)

where xM and xF denote the reverberant male and female
signals, respectively, as captured by the microphones, and
v denotes a spatially and spectrally white noise signal.
Both the DOAs D and the RTFs G matrices were esti-

mated from the mixed signals y and the correspond-
ing LCMV-BFs were constructed. The beamformers were
then independently applied to the male and female com-
ponents of the received microphone signals:

sMLCMV G GH 1
v G

1
GH 1

v xM, (39a)

sMLCMV D DH 1
v D

1
DH 1

v xM, (39b)

sFLCMV G GH 1
v G

1
GH 1

v xF (39c)

sFLCMV D DH 1
v D

1
DH 1

v xF. (39d)

Now, if the estimated RTFs are approximately equal to
the true ones, we expect the algorithm to produce the
following two-channel outputs:

sMLCMV G [SM, 0] or [0, SM] , (40a)

sFLCMV G [0, SF ] or [SF , 0] , (40b)

where SF and SM are the male and female speech sig-
nals as observed at the reference microphone. The two
alternative outputs result in from the permutation ambi-
guity problem that was discussed above. This problem
my be arbitrarily encountered for each time-frame. If

https://www.audiolabs-erlangen.de/fau/professor/habets/software/signal-generator
https://www.audiolabs-erlangen.de/fau/professor/habets/software/signal-generator
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Fig. 7 Example sonograms
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Table 6 SIR results along various T60

Algorithm

Proposed Baseline

T60 SIR Input SIR1 D SIR1 G SIR2 D SIR2 G SIR1 D SIR1 G SIR2 D SIR2 G

0.2 2.96 9.53 10.79 4.72 9.57 3.39 5.24 6.25 6.67

0.3 3.19 4.74 6.10 5.17 7.78 3.17 3.16 4.76 4.69

0.4 3.18 3.98 5.15 4.76 7.22 3.22 2.82 4.17 4.23

0.5 3.36 3.94 4.94 4.41 6.23 3.38 2.84 4.08 4.04

0.6 3.48 3.78 4.66 4.16 5.72 3.33 2.69 4.07 4.04

the full RTFs are substituted by the simpler DOAs, the
beamformer outputs can be defined with the necessary
modifications.
Define, sMLCMV,1 G and sFLCMV,1 G as the first output

of the beamformers and, correspondingly, sMLCMV,2 G

and sFLCMV,2 G , as the second output. Similar definition
apply for the beamformers using the DOAs matrix.
We can now define SIR measures:

SIRj G
1
L

10 log10
k sMLCMV,j G 2

k sFLCMV,j G 2
, (41)

for j 1, 2, and similarly

SIRj D
1
L

10 log10
k sMLCMV,j D 2

k sFLCMV,j D 2
. (42)

Since an absolute value of the ratio (in dB) is calculated
for each time-frame, these measures are indifferent to the
permutation problem.
To evaluate the SIR improvement of all algorithms, we

also calculate the input SIR:

SIR Input
1
L

10 log10
k xF 2

k xM 2 . (43)

The output SIR results for all experiments are presented
in Table 5. It can be verified that SIRj D results are
generally higher for the proposed algorithm than for the

baseline algorithm, due to the better estimation accuracy
of DOAs.
The ratios SIRj G are generally better for the proposed

algorithm. The improvement is caused apparently by the
MCWF usage for the RTF estimation in (19) which sup-
plies better separation between the speakers within the
RTF estimation procedure.
Finally, the algorithms are evaluated by assessing the

sonograms of the various outputs for Experiment #9 as
depicted in Fig. 7.
Careful examination of the sonograms, demonstrates

the improved separation capabilities of the proposed
algorithm in comparison with the baseline algorithm.
For example, examining the signals in the time peri-
ods 2–3 Sec and 5–6 Sec, it can be verified that
the proposed algorithm, as compared with the baseline
method, better suppresses the female speech at Out-
put 1, while maintaining low distortion for the male
speaker.
The proposed speaker separation procedure is also eval-

uated versus the baseline algorithm for different reverber-
ation levels (T60) and SNR levels. The SIRs for different
T60 and for SNR=40 dB are presented in Table 6. The SIRs
for various SNR values and for T60 0.2 are presented in
Table 7.
It is evident from Table 6 that the performance of

both the baseline and proposed algorithms degrades
with increasing reverberation level and that the proposed
algorithm outperforms the baseline algorithm. Analyz-
ing the results in Table 4, it is clearly demonstrated

Table 7 SIR results along various SNRs

Algorithm

Proposed Baseline

SNR SIR Input SIR1 D SIR1 G SIR2 D SIR2 G SIR1 D SIR1 G SIR2 D SIR2 G

40 2.96 9.53 10.79 4.72 9.57 3.39 5.24 6.25 6.67

30 2.96 9.55 10.84 4.72 9.52 3.33 5.12 6.14 6.27

20 2.96 9.46 10.40 4.57 9.45 3.37 4.79 5.72 5.92

10 2.96 9.55 11.04 4.70 9.01 3.42 4.17 5.47 5.08

0 2.96 9.17 10.19 4.57 7.87 3.52 2.19 5.45 3.19
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Table 8 MAE results in degrees for various values

0.1 0.2 0.2 0.4 0.5 0.6 0.7 0.8 0.9

SIR1 G 6.00 7.80 9.08 10.39 10.79 11.25 11.08 10.29 8.81

SIR2 G 4.67 6.48 8.01 8.74 9.57 9.64 9.48 8.47 6.19

that the performance of the proposed algorithm does
not degrade with decreasing SNR in the range 0–40 dB.
Generally, for both the proposed and the baseline algo-
rithms, the utilization of the RTFs enhances the sep-
aration capabilities as compared with direct-path only
systems.
Finally, the proposed separation technique is evaluated

for different values of . Recall that is used in (25)
to limit the RTF estimation only to a single dominant
speaker TF bins. The SIRs for different values of and for
SNR 40 dB and T60 0.2 are presented in Table 8.
It can be verified that the choice of significantly influ-
ences performance and that setting 0.6 yields the best
results.

6.5 Comparison with open embedded audition system
(ODAS)

In this section, the proposed algorithm is further evalu-
ated versus a state-of-the-art algorithm, namely ODAS4.
ODAS is an open-source library dedicated to a combined
sound source localization, tracking and separation. Two
static speakers were simulated using open source signal
generator5. The DOAs of the speakers were set to 45
and 135 w.r.t. the array center, and their distance from
the array was set to 1 m. Clean speech utterances were
randomly drawn from a set of male and female speakers.
The reverberation time was set to T60 0.3. The perfor-
mance of the proposed algorithm and of ODAS algorithm
were evaluated as a function of the overlap percentage
between the speakers. Two widely used speech quality
and intelligibility measures, namely perceptual evaluation
of speech quality (PESQ) [35] and short-time objective
inteligibility measure (STOI) [36], were used to evalu-
ate the performance of the algorithms. The comparison
between the algorithms is reported in Table 9. It is clearly
demonstrated that the proposed algorithm outperforms
the ODAS algorithm in both measures.

7 Conclusions
We have presented an online algorithm for separating
moving sources. The proposed algorithm comprises two
stages: (1) online DOA tracking and (2) online RTF esti-
mation. The two stages employ different statistical mod-
els. The estimated RTFs are used as building blocks of a
continuously-adapted LCMV-BF. The proposed algorithm

4https://github.com/ehabets/Signal-Generator
5https://github.com/ehabets/RIR-Generator

Table 9 PESQ (off-brackets) and STOI (in-brackets) results along
various time-overlapping between the speakers

Overlapping Speaker Input Proposed ODAS

20% 1 3.44 (0.94) 3.90 (0.97) 3.45 (0.83)

20% 2 2.90 (0.94) 3.73 (0.98) 2.89 (0.83)

40% 1 2.77 (0.88) 3.63 (0.96) 2.70 (0.79)

40% 2 2.38 (0.89) 2.52 (0.83) 2.41 (0.80)

60% 1 2.33 (0.83) 3.37 (0.95) 2.42 (0.76)

60% 2 2.01 (0.84) 3.20 (0.95) 2.05 (0.75)

80% 1 1.87 (0.79) 3.10 (0.94) 1.97 (0.74)

80% 2 1.84 (0.79) 3.02 (0.94) 1.90 (0.73)

is compared with a baseline method using real recordings
in the challenging task of separating concurrently active
and moving sources.
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