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Abstract

Many modern smart devices are equipped with a microphone array and a loudspeaker (or are able to connect to one).
Acoustic echo cancellation algorithms, specifically their multi-microphone variants, are essential components in such
devices. On top of acoustic echos, other commonly encountered interference sources in telecommunication systems
are reverberation, which may deteriorate the desired speech quality in acoustic enclosures, specifically if the speaker
distance from the array is large, and noise. Although sub-optimal, the common practice in such scenarios is to treat
each problem separately. In the current contribution, we address a unified statistical model to simultaneously tackle
the three problems. Specifically, we propose a recursive EM (REM) algorithm for solving echo cancellation,
dereverberation and noise reduction. The proposed approach is derived in the short-time Fourier transform (STFT)
domain, with time-domain filtering approximated by the convolutive transfer function (CTF) model. In the E-step, a
Kalman filter is applied to estimate the near-end speaker, based on the noisy and reveberant microphone signals and
the echo reference signal. In the M-step, the model parameters, including the acoustic systems, are inferred.
Experiments with human speakers were carried out to examine the performance in dynamic scenarios, including a
walking speaker and a moving microphone array. The results demonstrate the efficiency of the echo canceller in
adverse conditions together with a significant reduction in reverberation and noise. Moreover, the tracking
capabilities of the proposed algorithm were shown to outperform baseline methods.

Keywords: Array processing, Acoustic echo cancellation, Dereverberation, Recursive expectation-maximization
algorithm, Convolutive transfer function approximation in the STFT domain

1 Introduction
1.1 The echo cancellation problem
Acoustic echo cancellation algorithms are an essential
component in many telecommunication systems such as
hands-free devices, conference room speakerphones and
hearing aids [1–3]. Moreover, in modern devices, such as
smart speakers that play loud music, it is mandatory to
integrate an acoustic echo cancellation (AEC) algorithm
to enable proper functionality of automatic speech recog-
nition (ASR) systems, especially in the task of recognizing
a hot-word. Echo control is also common in robot audition
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applications, to enable proper human-robot interaction.
This may impose further complexity to the problem, as
the robot may move while capturing the sound from the
speakers.
Generally, the role of AEC algorithms is to suppress

the interference related to a far-end speaker (a known
reference signal) and enhance the desired speech signal,
denoted near-end speaker. This task requires an esti-
mate of the acoustic path relating the loudspeaker and
the microphone, and is obtained by the application of
an adaptive filter [4–8]. Then, the far-end signal is con-
volved with the estimated echo path to obtain a replica of
the echo signal as received by the microphone. An esti-
mate of the desired near-end signal is finally obtained by
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subtracting the estimated echo signals from the micro-
phone signal. In [9], an acoustic echo control method is
derived, including an echo canceller and a postfilter. The
proposed algorithm is based on the Kalman Filter and
provides an optimal statistical adaptation framework for
the filter coefficients in time-varying and noisy acoustic
environments.

1.2 Literature review
Many modern devices are equipped with more than
one microphone. The common and most straightfor-
ward solution for cancelling the echo signal in the pres-
ence of noise is to first independently apply an AEC
between the loudspeaker and each of the microphones
and then to apply a beamformer. Cascade schemes, imple-
mented in the time-domain, for joint AEC and beamform-
ing are presented in [10, 11], with either AEC preced-
ing the beamformer or vice versa. A frequency-domain
implementation addressing the joint noise reduction and
multi-microphone echo cancellation is proposed in [12].
The beamformer involves a generalized side-lobe can-
celler (GSC) structure and the AEC is implemented by
applying the block least-mean-square (BLMS) procedure
[13]. Another approach, combining a minimum vari-
ance distortionless response (MVDR) beamformer and
a recursive least-squares (RLS)-based AEC is presented
in [14].
A multi-channel echo cancellation is presented in [15],

utilizing a low-complexity method. The method relies
on a relative transfer function (RTF) scheme for multi-
microphone AEC for reducing the overall computational
load. Furthermore, it incorporates residual echo reduction
into the beamformer design. This method is formulated in
the STFT domain using the CTF [16] approximation.
Most studies in the literature assume that the physical

distance between the far-end signals and the microphone
location is small. It is a reasonable assumption since in
many devices the microphones and the loudspeaker are
mounted into the same device. However, when the loud-
speaker is an external device connected by a cable or
wirelessly by Bluetooth, it can be located anywhere in the
room. As a result, the received echo signal may include a
significant amount of reflections. In such cases, the length
of the echo path should take into account the multiple
acoustic reflections, implying a long adaptive filter. When
the adaptive filter cannot entirely represent the echo path,
the AEC output may suffer from a significant residual
echo.
A single-microphone approach for jointly suppressing

reverberation of the near-end speaker, residual echo and
background noise is presented in [17]. A spectral postfil-
ter was developed to efficiently dereverberte the desired
speech signal, together with the suppression of the late
residual echo and the background noise.

In [18], a two-microphone approach was presented.
This algorithm comprises an adaptive filter to eliminate
non-coherent signal components such as ambient noise
and the reverberation of the near-end speech, in addition
to echo cancellation. Anothermultichannel algorithm that
jointly addresses the three problems is presented in [19].
An iterative expectation-maximization (EM technique is
used for speech dereverberation, acoustic echo reduction,
and noise reduction. The proposed method defines two
state-spacemodels, one for the acoustic echo-path and the
other for the reverberated near-end speaker. The rever-
berant speech source model is assumed to follow a noise-
less auto-regressive model. Two parameter optimization
stages based on the Kalman smoother were applied to
each state-space model in the E-step. The joint echo can-
cellation and dereverberation problem is also discussed in
[20] for robot audition. An independent component anal-
ysis (ICA) scheme is adopted in order to provide a natural
framework for these two problems using a microphone
array.
The statistics of acoustic impulse response (AIR) is

commonly used in dereverberation algorithms. A single-
microphone method for the suppression of late room
reverberation based on spectral subtraction is presented
in [21]. This concept is extended to the multi-microphone
case in [22]. The problem is formulated in the STFT
domain while taking into account the contribution of the
direct-path in [23].
Yoshioka et al. [24] developed an EM algorithm

for derverberation and noise reduction, where the
room impulse response (RIR) is modelled as an auto-
regressive (AR) process in the STFT domain. An iterative
and sequential Kalman expectation-maximization (KEM)
scheme for single-microphone speech enhancement in
the time-domain was introduced in [25]. This method was
extended to a multi-microphone speech dereverberation
method in [26], applied in the STFT domain, where the
acoustic systems are approximated by the CTF model.
Many modern applications should address cases where

the desired speaker, the microphone array and even the
interference signal are moving, hence necessitating time-
varying online parameter estimate. Unfortunately, the
Wiener filter or the Kalman smoother cannot be straight-
forwardly applied in these cases, as they also utilize future
samples. The statistical model of these algorithms should
be adjusted to the dynamic scenario.
The REM, which is an efficient scheme for sequential

parameter estimation, is particularly suitable for estimat-
ing time-varying parameters typical to dynamic scenarios.
Titterington [27] formulated an online EM scheme using
a stochastic approximation version of the modified gradi-
ent recursion. A recursive algorithm is proposed in [28]
considering the convergence properties of Titterington’s
algorithm. The estimates generated by the recursive EM
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algorithm converged with probability one to a station-
ary point of the likelihood function. Recursive algorithms
based on KEM were presented in [25, 29] using gradi-
ent decent algorithm for solving the maximum likelihood
(ML) optimization. In [30], recursive EM methods for
time-varying parameters were introduced with applica-
tions to multiple target tracking. Cappé and Moulines in
[31] proposed another online version of the EM algo-
rithm applicable to latent variable models of independent
observations. A proof of convergence to a stationary point
under certain additional conditions was established in
this paper. For dependent observations, a recursive ML
method was presented in [32] and is supported by a con-
vergence proof. This method refers to state-space models
in which the state process and the observations depend on
a finite set of previous observations.
The acoustic path can be treated as stochastic processes

under the Bayesian framework. An online EM based
dereverberation algorithm is presented [33]. The acoustic
paths where represented as random variables with a first-
order Markov chain and estimated in the E-step by using
the Kalman filter. The speech components were modelled
as time-varying parameters and were estimated in the
M-step.
An online algorithm for derverberation based on a

Kalman expectation-maximization (RKEM) approach is
presented in [34], where the acoustic parameters and
the clean signal are jointly estimated. We refer to this
algorithms as Kalman expectation-maximization for dere-
verberation (RKEMD). This framework is extended in the
current contribution to jointly address echo cancellation,
dereverberation and noise reduction problems.

1.3 Main contributions and outline
While most of the studies treat the problems of echo can-
cellation, dereverberation, and noise reduction separately,
only a few propose a combined solution. In this paper,
we present an online algorithm for the three problems
addressing a unified statistical model using a microphone
array. The microphone signal is degraded by an echo
signal and an additive noise in highly reverberant envi-
ronments. The proposed method is applied in the STFT
domain using the RKEMD framework and simultaneously
addresses all interfering sources. The acoustic systems of
the near-end and far-end signals are approximated by the
CTF model and the statistical model is represented in
a state-space formulation. Using a a doubletalk detector
(DTD), our method suspends the adaptation of the acous-
tic systems coefficients when their relevant signals are
inactive, but still enables adaptation during double-talk. It
is also capable of tracking time-variations of the acoustic
systems. Hence, a feasible solution is provided in realis-
tic dynamic scenarios when the near-end signal is moving,
and even when the microphone array itself is moving.

The structure of the manuscript is as follows. In
Section 2, the statistical model of the problem is pre-
sented. The recursive EM scheme is derived in Section 3.
The desired near-end signal is estimated as a byproduct
of the E-step of this scheme. In the recursive version, the
E-step boils down to a Kalman filter that is applied to the
observed signal with the estimated echo signal subtracted.
In the M-step, the CTF coefficients and the noise parame-
ters are recursively estimated. It is further shown that the
instantaneous speech variance cannot be estimated using
the REM procedure and an external estimator is derived
instead. Section 4 describes the DTD that facilitates a
proper implementation of the echo cancellation stage. An
experimental study for different realistic scenario, includ-
ing the challenging scenario of moving microphone array,
was carried out at the Bar-Ilan acoustic lab and is detailed
in Section 5. Conclusions are drawn in Section 6.

2 Statistical Model
Let x[ n] be the clean near-end signal and y[ n] be the
far-end signal in the time-domain. The signals are propa-
gating in an acoustic enclosure before being picked up by a
J microphone array. The microphone signals are denoted
by

zj[ n]= x[ n] ∗hj[ n]+y[ n] ∗gj[ n]+vj[ n] , (1)

where ∗ denotes time-domain convolution and j ∈ SJ =
[ 1, . . . , J] is the microphone index. hj[ n] and gj[ n] are
the RIRs relating x[ n] and y[ n] signals and the jth micro-
phone, respectively. vj[ n] is an additive noise, as received
by jth microphone.
The signals x[ n] and y[ n] are represented in the STFT

domain by x(t, k) and y(t, k), respectively, where t ≥ 1 is
the time-frame index and k ∈ SK =[ 0, . . . ,K − 1] is the
frequency-bin index.We assume that the clean speech can
be modelled as a complex-Gaussian variable, independent
across STFT time-frames and frequencies (see [35]), with
zero-mean and variance φx(t, k)

x(t, k) ∼ NC {0,φx(t, k)} , (2)

where NC denotes a proper complex-Gaussian distribu-
tion.
In order to reduce the computational complexity and

to facilitate the model analysis, we consider the CTF
approximation [16] for the STFT representation of the
time-domain RIR. The time-domain model in (1) can be
approximated by

zj(t, k) ≈ h�
j (k) · xt(k) + g�

j (k) · yt(k) + vj(t, k), (3)

where the CTF systems are:

hj(k) = [
hj,L−1(k), . . . , hj,0(k)

]� ,

gj(k) = [
gj,L−1(k), . . . , gj,0(k)

]� (4)
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and the state-vectors of the desired speech signal and the
acoustic reference signal are, respectively

xt(k) = [x(t − L + 1, k), . . . , x(t, k)]� ,

yt(k) = [
y(t − L + 1, k), . . . , y(t, k)

]� .
(5)

L is the length of CTF systems that depends on the
reverberation time.
The noise signal vj(t, k) is assumed to be a stationary

complex-Gaussian spatially uncorrelated random process,

vj(t, k) ∼ NC
{
0,φvj(k)

}
(6)

and E
{
vj(t, k)v∗

i (t, k)
} = 0 for j �= i.

For conciseness, the frequency index k will be omitted
when no ambiguity arises.
The signal model can be represented in the following

state-space form:

xt = �xt−1 + wt ,
dt � zt − Gyt = Hxt + vt , (7)

where xt and yt were defined in (5) and dt is defined as
the observed signal after the subtraction of the echo signal
contribution. The state-transition matrix is given by

� ≡

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 · · · 0
...
. . . . . .

...
. . . . . .

...
. . . 1

0 · · · · · · · · · 0

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

,

the innovation process is given by

wt ≡ [0, . . . , x(t)]� ,

the measurement vector is given by

zt ≡ [
z1(t), . . . , zJ (t)

]� ,

the observation matrices are

H ≡ [
h1, . . . , hJ

]� , G ≡ [
g1, . . . , gJ

]� ,

with hj and gj the CTF systems, as defined in (4), and the
noise vector is given by

vt ≡ [
v1(t), . . . , vJ (t)

]� .

In the algorithm derivation, the following second-order
statistics matrices of the innovation and measurement
noise signals will also be used:

Ft ≡ E
{
wtwH

t
} =

⎡

⎢
⎣

0 · · · 0
...
. . .

...
0 · · · φx(t)

⎤

⎥
⎦

B ≡ E
{
vtvHt

} =

⎡

⎢
⎢
⎢⎢
⎣

φvj1 · · · · · · 0
0 φvj2

0
. . .

0 · · · · · · φvj J

⎤

⎥
⎥
⎥⎥
⎦
,

where we assumed that the noise is independent between
microphones.

3 Algorithm derivation
The EM algorithm [36] is an iterative-batch procedure
that processes the entire dataset in each iteration until
convergence to a local maximum of the ML criterion.
Hence, it cannot be applied as is to the task of AEC, specif-
ically in time-varying scenarios. We therefore resort to a
recursive version of the EM in our algorithm derivation.

3.1 The likelihood function
We start the algorithm derivation by defining the param-
eter sets and the relevant datasets. As we are interested
in causal estimators, the available time-frame indexes for
estimating the desired signal at frame t are confined to
St =[ 1, . . . , t], where t = 1 is arbitrarily chosen as the
first available time-frame. The EM algorithm is a method
for estimating a set of deterministic parameters that max-
imizes the likelihood criterion. Since the EM works with
the notation of complete-data it also provides an estimate
of the desired signal(s) as a by-product of the estimation
procedure.
LetZt be the set of measurements comprising all micro-

phones and all time-frequency (TF) bins:

Zt = {
zj(τ , k) : j ∈ SJ , τ ∈ St , k ∈ SK

}
, (8)

Yt the set of TF bins of the reference signal

Yt = {
y(τ , k) : τ ∈ St , k ∈ SK

}
, (9)

andXt the unavailable set of TF bins of the desired speech
signal

Xt = {x(τ , k) : τ ∈ St , k ∈ SK } . (10)

Both Zt and Yt are available, where the set Zt describes
the available information in microphone signals, and Yt
the information in far-end signal as transmitted by the
local loudspeaker.
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The parameter sets of the statistical model presented in
Section 2 comprises the following subsets:

� ≡ {�X ,�H ,�G,�V }
�X ≡ {φx(t, k)}t,k , �H ≡ {

hj(k)
}
j,k ,

�G ≡ {
gj(k)

}
j,k , �V ≡ {

φvj(k)
}
j,k (11)

for all j ∈ SJ ; t ≥ 1 and k ∈ SK .
A note on the time-dependency of the parameters is

in place. Two distinct time scales can be defined. While
the speech power spectral density (PSD) is rapidly chang-
ing from frame to frame, the RIRs relating the desired
speech and the echo signal to the microphones, as well
as the noise variances, are slowly time-varying. The dis-
tinct scales of the time variations imply different types of
estimation procedures. While estimating the speech PSD
necessitates an external smoothing procedure that main-
tains the rapid time-variations, estimating the RIRs and
the noise variances boils down to recursive aggregation
of past statistics. Consequently, slowly time-varying esti-
mated parameters are obtained. In the following sections,
estimators for the set of parameters � will be presented
in details together with an online estimate of the desired
speech signal.
The EM formulation requires the log-likelihood of the

complete-data. Under the assumed statistical model, it is
given by:

log f (Xt ,Zt|Yt ;�) =
log f (Xt|Yt ;�) + log f (Zt|Xt ,Yt ;�)

C=

− 1
2

t∑

τ=1

[

log(φx(τ )) + |x(τ )|2
φx(τ )

]

− 1
2

J∑

j=1

t∑

τ=1

[

logφvj +
1

φvj

∣
∣
∣zj(τ ) − q�

j μτ

∣
∣
∣
2
]

,

(12)
where

qj ≡
[
h∗
j

g∗
j

]

, μτ ≡
[
xτ

yτ

]
(13)

and C= stands for equal up to constants that are indepen-
dent of �. Note that the second and the third lines of
(12) are the log-likelihood of the clean speech signal and
the log-likelihood of the additive noise, respectively. Both
terms are expressed as a summation over the time-frame
index τ ∈ St , as a result of the independence between
time-frames of the desired source and the noise signals in
the STFT domain. The second term also decomposes to
a sum over the J microphones due to the assumed inde-
pendence of the noise signals across microphones. The
likelihood function in (12) is separately calculated for all
k ∈ SK due to the independence between frequency bins.

3.2 Recursive EM algorithm
We adopt the online EM formulation presented in [31],
in which the auxiliary function is recursively calculated,
while the maximization step remains intact. This formu-
lation facilitates online and time-varying estimation of all
model parameters.
The auxiliary function at time-frame t is given by a

weighted sum of the auxiliary function at the previous
time-frames and the innovation of the current measure-
ment:

Q
(
�

∣∣
∣�̂(t)

)
= Q

(
�

∣∣
∣�̂(t − 1)

)
+

γt ·
{
E
{
log

[
f (xt , zt

∣
∣yt ;�)

]∣∣Zt ,Yt ; �̂(t)
}

− Q
(
�

∣
∣
∣�̂(t − 1)

)}
, (14)

where �̂(t) is the parameter set estimate after measur-
ing the observation zt and the far-end echo signal yt at
time-frame t, and γt ∈[ 0, 1) is a smoothing parameter, that
should decay in time for static scenarios. The maximiza-
tion is computed over the aggregated auxiliary function
(14)

̂�(t + 1) = argmax
�

{
Q
[
�

∣
∣
∣̂�(t)

]}
. (15)

Given the measurements and the echo signal, define the
expected value of the instantaneous complete-data log-
likelihood1:

ρ
(
�

∣
∣
∣�̂(t)

)
≡ E

{
log

[
f (xt , zt

∣∣yt ;�)
]∣∣Zt ,Yt ; �̂(t)

}
,

(16)
and substitute the time-varying smoothing parameter
with a constant factor β = 1 − γt , thus introducing
an exponential decay of the contribution of past samples
to the calculation, and consequently facilitating recur-
sive estimation of time-varying parameters. Using these
definitions, the recursive auxiliary function (14) can be
rewritten as

Q
(
�

∣
∣
∣�̂(t)

)
= (17)

β · Q
(
�

∣
∣
∣�̂(t − 1)

)
+ (1 − β)ρ

(
�

∣
∣
∣�̂(t)

)
=

(1 − β)

t∑

τ=1
βt−τ ρ

(
�

∣
∣
∣�̂(τ )

)
.

1In their original contribution, Cappé and Moulines [31] assume independent
and identically distributed measurements. This assumption does not hold in
our measurement model. We therefore propose to use a slightly different
model in which the expectation of the instantaneous complete data is also
conditioned on past measurements, namely on Zt ,Yt rather than only on
zt , yt . While a proof of such formulation is beyond the scope of this
contribution, we note that similar formulations were successfully used in the
context of speech processing [25, 34, 37]. To shed more light on underlying
mathematical foundations of stochastic approximation, the interested reader
is also referred to a comprehensive review on the topic [38].
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The complete-data likelihood is independent and iden-
tically distributed between time frames. Therefore, we can
explicitly write (16) as:

ρ
(
�

∣
∣
∣�̂(t)

)
= −1

2

⎡

⎣log(φx(t)) +
̂|x(t)|2
φx(t)

⎤

⎦

− 1
2

J∑

j=1

[

logφvj +
1

φvj

̂
∣
∣
∣zj(t) − q�

j μt

∣
∣
∣
2
]

. (18)

Finally, the explicit recursive auxiliary function can be
calculated by substituting (18) into (17):

Q
(
�

∣
∣
∣�̂(t)

)
= −1 − β

2

t∑

τ=1
βt−τ

[
logφx(τ ) +

̂|x(τ )|2
φx(τ )

]

− 1 − β

2

t∑

τ=1

J∑

j=1
βt−τ

[
logφvj +

1
φvj

{
|zj(τ )|2

− 2R
(
qj�μ̂τ z∗j (τ )

)
+ qj�̂μτμ

H
τ qj∗

}]
, (19)

where

μ̂τ ≡
[
x̂τ

yτ

]
, ̂μτμ

H
τ ≡

⎡

⎢
⎣

̂xτxτ
H x̂τyτ

H

yτ x̂Hτ yτyτ
H

⎤

⎥
⎦ . (20)

and the first- and second-order statistics of the near-end
speech signal given Zt and Yt are:

x̂t ≡ E
{
xt
∣
∣Zt ,Yt ; �̂(t)

} ≡ x̂t|t , (21a)
̂xtxtH ≡ E

{
xtxtH

∣
∣Zt ,Yt ; �̂(t)

} ≡ x̂t|t x̂Ht|t + Pt|t ,
(21b)

̂|x(t)|2 ≡ E
{|x(t)|2∣∣Zt ,Yt ; �̂(t)

}
. (21c)

3.2.1 E-Step: Kalman filter
The calculation of the recursive auxiliary function (19)
requires the first- and second-order statistics of the clean
speech signal (21). These are acquired in the E-step of
the recursive procedure by applying the Kalman filter. The
Kalman filter, summarized in Algorithm 1, is the optimal
causal estimator in minimummean square error (MMSE)
sense.

3.2.2 M-Step: Parameter estimation
In the M-step, we update parameters by maximizing the
auxiliary function w.r.t. � yielding the subsequent esti-
mate �̂(t + 1),

�̂(t + 1) = argmax
�

{
Q
[
�
∣
∣�̂(t)

]}
, (22)

Algorithm 1: The Kalman Filter.
Kalman filter:
for t ≥ 1 do

Predict:
x̂t|t−1 = � · x̂t−1|t−1
Pt|t−1 = � · Pt−1|t−1 · �� + Ft
Update:
Kt = Pt|t−1HH [

HPt|t−1HH + B
]−1

et = dt − Hx̂t|t−1
x̂t|t = x̂t|t−1 + Kt · et
Pt|t = [I − KtH]Pt|t−1

end

resulting in the following update rules for the model
parameters at the (t + 1)-th time-frame:

q̂j(t + 1) =
[
ĥ∗
j (t + 1)

ĝ∗
j (t + 1)

]

=
[
R̂(t)

μμ

]−1
r̂(t)μzj , (23)

φ̂vj(t + 1) = 1
1 − βt+1

{
r(t)zjzj − 2R

[
q̂�
j (t)̂r(t)μzj

]
(24)

+ q̂�
j (t)R̂(t)

μμq̂∗
j (t)

}
,

where we define the following aggregated second-order
statistics

R̂(t)
μμ ≡

[
R̂(t)
xx R̂(t)

xy
R̂H
xy

(t) R(t)
yy

]

, r̂(t)μzj ≡
[
r̂(t)xzj
r(t)yzj

]

, (25)

with

R̂(t)
xx ≡ (1 − β)

t∑

τ=1
βt−τ ̂xτxτ

H (26)

= β · R̂(t−1)
xx + (1 − β) ̂xtxtH

and similarly

R(t)
yy ≡ β · R(t−1)

yy + (1 − β)ytytH (27)

R̂(t)
xy ≡ β · R̂(t−1)

xy + (1 − β)x̂tytH

r̂(t)xzj ≡ β · r̂(t−1)
xzj + (1 − β)x̂tz∗j (t)

r(t)yzj ≡ β · r(t−1)
yzj + (1 − β)ytz∗j (t)

r(t)zjzj ≡ β · r(t)zjzj + (1 − β)|zj(t)|2 .
Note that (23) is an RLS update rule for estimating both
filters and (24) is a recursive estimation of the residual
power.
Unlike the estimation procedure of the filters’ coeffi-

cients, maximizing (22) w.r.t. the speech PSD cannot be
applied. In 3.2.3, we explain the reasons for this phe-
nomenon and propose an alternative algorithm for the
recursive speech PSD estimation.
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3.2.3 Recursive estimation of the speech variance
The speech variance φx(t) is a time-varying parameter,
due to the non-stationarity of the speech signal, and hence
smoothness over time cannot be assumed, in contrast to
the CTF systems H and G and the noise variance φvj that
exhibit slower time-variations. In the proposed recursive
algorithm, the available observed data refers to the time
frames in the interval St , thus the derivative of (22) w.r.t.
φx(t + 1) is zero and does not impose any constraint.
Alternately, we propose to obtain a speech PSD esti-

mator of φ̂x(t), which still maintains some smoothness
of the PSD estimates. The spectral amplitude estimator
presented in [39] is adapted for this estimation with the
necessary changes to incorporate residual echo and rever-
beration. The optimal speech PSD estimator in theMMSE
sense at the jth microphone signal:

φ̂xj(t) =
∣
∣
∣ĥj,0(t)

∣
∣
∣
−2

A2
j (t)|zj(t) − g�

j yt|2 (28)

≈ E
{|xj(t)|2

∣
∣Zt ,Yt ; �̂(t)

}
, (29)

where Aj(t) is a gain function that attenuates the late
reverberant component and the noise component. Conse-
quently, A2

j (t)|zj(t) − g�
j yt|2 represents the variance esti-

mator of the early speech component, xej (t) = hj,0(t)x(t).
The gain function is defined as

A2
j (t) = max

[
ζprior,j(t)

ζprior,j(t) + 1

(1 + νj(t)
ζpost,j(t)

)
,A2

min

]
,

(30)

where

ζprior,j(t) ≡
φ̂xej (t)

φ̂rj(t) + φ̂vj(t)
, (31)

ζpost,j(t) ≡ |zj(t) − ĝ�
j (t)yt|2

φ̂rj(t) + φ̂vj(t)
, (32)

νj(t) = ζprior,j(t)
1 + ζprior,j(t)

.

and φrj is the late reverberant spectral variance. Note
that ζprior,j and ζpost,j are a priori and a posteriori signal
to interference ratio (SIR), respectively. The calculation
of (30) is executed for every channel j. The estimation
of φ̂xej (t) is unobserved and therefore the a priori SIR,
ζprior,j(t), is estimated by the decision-directed estimator
proposed by Ephraim and Malah in [40]:

ζ̄prior,j(t) =αsirA2
j (t − 1)ζpost,j(t − 1)+ (33)

[ 1 − αsir]max [ ζpost,j(t) − 1, ζmin],

where αsir is a smoothing factor and ζmin is the minimum
SIR that ensures the positiveness of ζpost,j(t) − 1. Note
that applying the gain function in (30) on ζpost,j(t−1) as in
(33) represents the a priori SIR resulting from the previous
frame process.

For the estimation of late reverberant spectral variance
φrj , the instantaneous power of the reverberation ψ̂rj(t) is
calculated as in the RKEMDmethod [34]:

ψ̂rj(t) = ĥ�
j (t)� ̂xt−1xHt−1�

�ĥ∗
j (t), (34)

By the definition of �, ĥj,0(t) is excluded from (34) and
hence only the variance of the late reverberation is taken
into account. Then, φ̂rj(t) is estimated by time smoothing
using a smoothing parameter αr ∈[ 0, 1):

φ̂rj = αrφ̂rj(t − 1) + (1 − αr)ψ̂rj(t). (35)

The speech PSD φ̂x(t) is finally determined by averaging
over all J channels:

φ̂x(t) = 1
J

J∑

j=1
φ̂xj(t) . (36)

It is clear that the presented model in (3) may suffer
from gain ambiguity in estimating both φ̂x(t) and ĥj(t),
attributed to the following equality:

h�
j (t, k)xt(k) =

[
ν(t, k)h�

j (t, k)
] [ 1

ν(k)
xt(k)

]
, (37)

where ν(t, k) is an arbitrary time- and frequency-
dependent gain. To circumvent this problem, we arbitrar-
ily set |ĥj,0(t, k)| = 1, ∀j in (28).

3.3 Alternative M-step 1
Estimating the CTF systems in theM-step (23) boils down
to RLS-type update rule. An alternative and commonly
used approach for adaptive filtering is the normalized
least-mean-square (NLMS) procedure, which is known
for its good tracking capabilities, simplicity, and low com-
putational complexity. Conversely, the RLS algorithm is
more stable and its convergence rate is faster, at the
expense of high computational complexity. The trade-
off between fast adaptation and computational complex-
ity should be considered when choosing the appropriate
adaptive filtering approach. We develop in the sequel an
alternative M-step based on the NLMS procedure.
First, we apply the NLMS procedure for estimating the

echo path for each microphone gj,∀ j ∈ SJ rather than
using the estimate resulting fromM-step stage in (23). The
NLMS update rule is given by:

ĝNLMS
j (t + 1) = ĝNLMS

j (t) + λ
ytej(t)

ytyHt + δNLMS
, (38)

where λ ∈ (0, 2) is the step-size, δNLMS > 0 is the regu-
larization factor and ej(t) is the instantaneous estimation
error w.r.t. the jth microphone given by:

ej(t) = z∗j (t) − yHt (̂gNLMS
j )∗(t) . (39)

The update of the other acoustic parameters remains
intact and is calculated as described in Section 3.2.2.
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Substituting the CTF estimate of the echo path ĝj (23)
by ĝNLMS

j leads to a combined structure of NLMS and
RKEMD, where the NLMS estimation error of each chan-
nel is the input for RKEMD. This new scheme is denoted
by NLMS-RKEMD-1.

3.4 Alternative M-step 2
Although the RLS approach in the proposed algorithm is
inefficient in means of computational complexity compar-
ing to NLMS, the EM has the advantage of considering
the near-end speaker in the echo cancellation model. We
therefore introduce another alternative M-step, in which
the echo path is estimated using NLMS while still utiliz-
ing the benefits offered by the EM formulation. Based on a
gradient-descent minimization of the likelihood function,
adopted from [41] and [25], we substitute the maximiza-
tion of ĝj in (23) with:

g̃NLMS
j (t + 1) = g̃j(t) + λ

∂

∂ g̃j(t)
Q
[
�
∣
∣�̂(t)

]
. (40)

Explicitly, carrying out the derivative in (40) (also imple-
menting the normalization operation) yields an adaption
rule similar to (38), but with a different error term:

ẽj(t) = z∗j (t) − xHt ĥ∗
j (t) − yHt

(
g̃NLMS
j

)∗
(t) . (41)

Now, the error signal (41) includes the subtraction of the
estimated reverberant near-end signal. We denote this
recursive EM variant as NLMS-RKEMD-2.

4 Double talk detector
The statistical model presented in Section 2 assumes
a constant activity of the near-end and far-end signals.
However, in real scenarios this is not always the case, ren-
dering the statistical modelling inaccurate. To circumvent
this intermittency problem, we propose to adopt a DTD
to detect the presence of the near-end signal, and to stop
the adaptation of the parameters of the CTFmodel during
inactive periods.
We propose to use the normalized cross-correlation

method presented in [42], based on the correlation level
between the far-end signal and the echo signal, that drops
when the near-end signal is active. After some derivation,
the decision variable is obtained by:

ξt+1 =
√
ĝH1 R

(t)
yy ĝ1

√
ĝH1 R

(t)
yy ĝ1 + φ̂x(t)

(42)

where ĝ1 is the CTF estimate at the first microphone. If
ξt < η, then a double-talk is detected. Note that ξt is cal-
culated using the parameter estimates in previous frame
in order to freeze the adaptation in the current frame.
As noted in [43], a fixed value of η is not capable

of addressing practical scenarios and that an adaptive

threshold should be used instead:

ηt =
⎧
⎨

⎩

ηt−1 + ψt , if ξ̃t > ηt−1
αdηt−1+

(1 − αd)(ξ̃t − √
�t−1) − ψt , otherwise,

(43)

and

�t =
{

�t−1, if ξ̃t > ηt−1

αd�t−1 + (1 − αd)(ξ̃t − ηt)
2, otherwise

(44)

where ξ̃t is minimum ξt across the frequency bins in frame
t and αd is a smoothing factor. ψt is a small value that was
set as 0.002

√
�t−1.

The proposed EM algorithm for echo cancellation,
dereverberation an noise reduction, is summarized in
Algorithm 2.

Algorithm 2:Kalman-EM algorithm for echo cancella-
tion, dereverberation and noise reduction (RLS version
for the M-step).
for t ≥ 1 do

1 DTD:

(a) Calculate ξ̃t (42), ηt (43) and �t (44).
(b) Apply the decision rule to detect double-talk.

2 Speech variance estimation:

(a) Calculate φ̂rj(t) (35) and |zj(t) − ĝ�
j (t)yt|2.

(b) Estimate φ̂x(t) (28).

3 E-step:

(a) Echo cancellation:
Calculate the residual dt = zt − Ĝ(t)yt .

(b) Dereverberation:
Apply one step of Kalman filtering to the
observation dt in order to obtain x̂t (21a)
and ̂xtxtH (21b).

4 M-step:

(a) Calculate R̂(t)
μμ and r̂(t)μzj (25)

(b) Update the acoustic parameters q̂j(t + 1) (23)
φ̂vj(t + 1) (24)

end
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5 Performance evaluation
5.1 Setup
The proposed method was evaluated in two dynamic
scenarios. The experiments were recorded at the Acous-
tic Signal Processing Lab, Bar-Ilan University. The room
dimensions are 6 × 6 × 2.4 m (length × width × height).
The reverberation time of the room was set to 650 ms, by
adjusting the rooms panels.
The sampling rate was set to 16 kHz, the STFT analy-

sis window is set to a 32 ms Hamming window, with 75%
overlap between adjacent time-frames. Avargel et al. [16]
define the CTF length L according to the time-domain
filter length, the STFT analysis window length and the
overlap. The length of the time-domain filter, the RIR in
our problem, is determined by the room reverberation
time. We set the RIR length to be 650 ms, similar to the
reverberation time. Consequently, L was set to 35 frames.
Note that setting L to an excessively high value may result
in estimation errors and as well as a high computational
complexity. Setting L to a lower value than implied by [16],
degrades the CTF approximation and can lead to partial
dereverberation.
The desired clean speech estimator, x̂(t), was further

enhanced by applying a high pass filter to remove frequen-
cies lower than 200 Hz. Finally, the parameters depicted in
Table 1 were fixed for all simulations and experiments.

5.2 Experiments using real speakers
For demonstrating the capabilities of ourmethod in realis-
tic cases, we carried out two types of experiments involv-
ing human speakers that read out loud sentences and a
loudspeaker that plays music. We tested the performance
in two scenarios. In Scenario #1, the loudspeaker and the
microphone array are static and the subject is moving in
the room along a predefined path. In Scenario #2, the
loudspeaker and the subject are static and themicrophone
array is manually moving. Both scenarios are depicted in
Fig. 1.
The subjects in the experiments were native English

speakers. Two females and three males participated in
Scenario #1, and two females and two males in scenario
#2. Several recordings of modern music, consisting of
musical instruments and a singer, were played through-
out the recording session. The SIR in Scenario #1 is set to

Table 1 The algorithm parameters

Parameters Value Parameters Value

β 0.99 Amin 0.2

αsir 0.2 αd 0.99

αr 0.5 λ 1

ζmin 0.5

5 dB. The average of the measured SIR in Scenario #2 is
4.68 dB.
During the experiments, we tested 2 types of noise.

The first is an air-conditioner (AC) noise. The second
is a pseudo-diffused babble noise, played from 4 loud-
speakers, facing the room walls. In Scenario #1, the
reverberated-signal to noise ratio (RSNR) is set to 15 dB.
For Scenario #2 the RSNR is time-varying. The average
RSNR is 6.62 dB for the AC noise and 9.5 dB for the babble
noise.

5.3 Baseline methods
We propose to compare the proposed algorithm to a cas-
cade implementation of AEC and a dereverberation algo-
rithm. For the echo cancellation, we applied J instances of
a conventional NLMS algorithm to mitigate the echo path
relating the far-end signal and each of the microphones.
For each frame, the signals at the J outputs of the AECs
are further processed by multichannel spectral enhance-
ment (MCSE) algorithm [44]. We denote this approach
as NLMS-MCSE. In addition, we present the results of
the proposed algorithm considering the alternative M-
steps presented in Sections 3.3 and 3.4, NLMS-RKEMD-1
and NLMS-RKEMD-2, respectively. We also refer to the
performance of a simple NLMS, without considering any
dereverberation approach.
The DTD algorithm that was discussed in Section 4,

was also utilized in the implementation of NLMS-based
methods. During double talk, the NLMS adaptation is sus-
pended in NLMS-MCSE and NLMS-RKEMD-1. This is
in contrast to our method that enables the adaptation of
the CTF coefficients also during double talk. Adaptation
is only suspended if the relevant signals are inactive.
For the NLMS-MCSE method, φ̂x(t) was substituted

by |êj(t)|2 in the detection function (42). In Scenario #2,
the echo path is constantly changing during the double
talk. Hence, suspending the adaptation during double talk
degrades significantly the echo cancellation performance.
Ignoring the DTD and allowing adaptation, despite the
interfering effect of the near-end speaker to the NLMS
convergence, is preferred in this case.

5.4 Speech quality and intelligibility
Two objectivemeasures are used for evaluating the speech
quality and intelligibility, namely the log-spectral dis-
tortion (LSD) and the short-time objective intelligibility
(STOI) [45], respectively.
The LSD between x and z̃ ∈ {z1, x̂} is calculated for each

time frame as:

LSD(t) =
√√√
√ 1

K

K−1∑

k=0

[

10 log10

(
max {|x(t, k)|, ε(x)}
max

{|z̃(t, k)|, ε(z̃)}
)]2

(45)
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(a)

(c)

(b)

Fig. 1 Experimental setup

where the minimum value is calculated by ε(C) =
10−50/10 maxt,k |C(t, k)|, which limits the log-spectrum
dynamic range of C to about −50dB. The presented value
of the LSD is the median value of LSD(t) over all time-
frames.
In addition, the dereverberation capabilities of the

examined algorithms were evaluated using the SRMR
measure [46].
The LSD, SRMR and STOI results for Scenario #1 are

presented in Fig. 2. These plots describe the statistics of
the measures over 140 experiments, including 5 different
speakers, 2 sentences (20 − 25 s each), 2 types of noise
and 7 songs were played as far-end speaker. The speech
quality, intelligibility and dereverberation measures for
Scenario #2 are described in Table 2. The table reports the
median values of 16 experiments with 4 different speak-
ers, 2 sentences (20 − 25 s each), 2 types of noise and 1
song was played as the far-end speaker (different song for
every speaker). Whisker plots are not informative enough
for this amount of data.

It is evident that the proposed method outperforms the
competing algorithms in all measures for both scenarios.
The estimated speech of the NLMS-based algorithms in
Scenario #2 is severely distorted as compared with Sce-
nario #1. Indeed, the NLMS-MCSE algorithm exhibits
comparable performance to the proposed method in sce-
nario #1, but in the more challenging experiment, namely
scenario #2, the proposed method significantly outper-
forms all baseline methods as evident from Table 2. The
degradation in NLMS-RKEMD-1 and NLMS-MCSE can
be explained by the fact that in Scenario #2, the NLMS
keeps updating the echo path during double talk. In con-
trast, in Scenario #1, the adaptation is suspended. There-
fore, the performance gap between the proposed method
and its competitors is more pronounced in Scenario #2.
In addition, we observed that the other methods are

more sensitive than the proposed method to errors in the
DTD. The mis-detection and false-alarm of the DTD lead
to severe performance degradation in the NLMS-based
methods and consequently results in reduction in speech
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Fig. 2 Speech quality, intelligibility and dereverberation measures for Scenario #1. The microphone signal refers to Mic.1#. NLMS refers to applying
NLMS alone with any dereverberation algorithm
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Table 2 Results of speech quality, intelligibility and
dereverberation measures for Scenario #2. The input signal refers
to one of the microphones. NLMS refers to applying NLMS alone
with any dereverberation algorithm. The values of LSD, SRMR and
SER are in dB and the values of the STOI measure are the
percentage of correct words

LSD SRMR STOI �SER

Microphone signal 5.52 3.35 82.15 0

Proposed 3.54 7.40 95.57 23.16

NLMS 4.89 3.38 83.64 1.84

NLMS-MCSE 3.74 6.32 90.07 6.03

NLMS-RKEMD-1 3.89 5.28 71.81 11.04

NLMS-RKEMD-2 3.79 5.44 74.49 10.96

quality and intelligibility. It also explains the degradation
in NLMS-RKEMD-2. However, our method converges
faster even in the presence of these estimation errors and
performs better.
We also note that, as expected, the NLMS-RKEMD-2

algorithm outperforms the NLMS-RKEMD-1 algorithm.
However, its performance is still inferior to that of
the NLMS-MCSE algorithm. In terms of intelligibility,
NLMS-RKEMD-1 and NLMS-RKEMD-2 even achieve
inferior STOImeasures than themicrophone signal. How-
ever, the speech quality in terms of dereverberation and
signal distortion still improved, as evident from a the
higher SRMR and lower LSD measures.

5.5 Echo cancellation performance
A common performance measure for evaluating echo
cancellation is the ERLE defined for each time-frame as

ERLE(t) =

10 log10

∑K−1
k=0

(
g�
1 (k)yt(k)

)2

∑K−1
k=0

((
g�
1 (k) − ĝ�

1 (k)
)
yt(k)

)2 . (46)

The ERLE results per frame for Scenario #1 are presented
in Fig. 3, depicting the advantage of the proposed method
over the competing methods for most frames. Further-
more, we can observe that the ERLE performance is rather
stable and insensitive to changes in the far-end signal and
to the DTD accuracy.
Note that g�

1 (k)yt(k) is only available in Scenario #1. In
Scenario #2, we cannot separately record the near-end sig-
nal and the echo signal and then mix them to generate a
test scenario, due to the manual movement of the micro-
phone array, which cannot be exactly repeated. Therefore,
for Scenario #2, we propose to use the ratio of the power
of the signal when the speech and reference signals are
present and the signal power when only the reference sig-

nal is active. We refer to this ratio as as signal to echo
ratio (SER) and we define it for the input and the output
signals:

SERinput = 10 log10

(∑
n∈Na

|z1[ n] |2
∑

n∈Nb
|z1[ n] |2

− 1
)

(47a)

SERoutput = 10 log10

(∑
n∈Na

∣
∣x̂[ n]

∣
∣2

∑
n∈Nb

∣
∣x̂[ n]

∣
∣2

− 1
)

. (47b)

where

Na ={n ∈ x[ n] is active & y[ n] is active} , (48a)
Nb ={n ∈ x[ n] is not active & y[ n] is active }. (48b)

The improvement between the SERinput and SERoutput
indicates the attenuation in the echo power and is denoted
by �SER. The length of bothNa andNa is approximately
6 seconds. The median of the measured �SER for Sce-
nario #2 is presented in Table 2, also depicting advantage
of the proposed method over the competing methods.
Recall that the echo path adaptation in NLMS-MCSE and
NLMS-RKEMD-1 continues in this scenario even during
double talk while the statistical model that is used in these
methods is not considering the near-end signal. NLMS-
RKEMD-2 echo cancellation performance is worse than
our method due to the constantly time-varying echo path
and the convergence of the reverberated speech compo-
nent. Hence, the level of the residual echo is significant
and it is reflected in the �SER.

5.6 Spectograms assessment
In addition to the quality measures presented in
Sections 5.4 and 5.5, we provide the spectograms of one
example for Scenario #1 in Fig. 4 and for Scenario #2
in Fig. 5. The spectograms of both scenarios demon-
strate the enhancement capabilities and the robustness
of the proposed method to double-talk scenarios. Sound
examples of both scenarios can be found in the lab
website2.

6 Conclusions
A recursive EM algorithm, based on Kalman filtering,
for AEC, dereverberation and noise reduction was pre-
sented. The proposed statistical model is addressing the
three problems simultaneously. The E-step and M-step
are implemented for each STFT time-frame. The E-step
is implemented as a Kalman filter. The model parame-
ters are estimated in the M-step. Given the estimate of the
acoustic path of the far-end signal, the echo signal at each

2www.eng.biu.ac.il/gannot/speech-enhancement/
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Fig. 3 ERLE per frame for Scenario #1

channel is evaluated. The estimated echo signal is sub-
tracted from the microphone signal and the outcome is
further processed by the Kalman filter. The desired speech
variance was estimated by adopting a spectral estimation
method. The estimated near-end signal is obtained as a
byproduct of the E-step. A DTD was utilized in order to
suspend the M-step adaptation when the near-end and
far-end signal are not active and, consequently, to prevent
adaptation errors.

The tracking ability of the algorithm was tested in an
experimental study carried out in our lab in very chal-
lenging scenarios, including moving speakers and moving
microphone array. The algorithm demonstrates conver-
gence capabilities even during double-talk scenarios in
time-varying scenarios. Our method is shown to outper-
form competing methods based on the NLMS algorithm,
in terms of intelligibility, speech quality, and echo cancel-
lation performance.
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Fig. 4 Spectogrames and waveforms of Scenario #1, T60 = 650 ms
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Fig. 5 Spectogrames and waveforms of scenario #2, T60 = 650 ms. The reverberant near-end signal cannot be extracted in Scenario #2
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