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Abstract

In this paper, a study addressing the task of tracking multiple concurrent speakers in reverberant conditions is
presented. Since both past and future observations can contribute to the current location estimate, we propose a
forward-backward approach, which improves tracking accuracy by introducing near-future data to the estimator, in
the cost of an additional short latency. Unlike classical target tracking, we apply a non-Bayesian approach, which does
not make assumptions with respect to the target trajectories, except for assuming a realistic change in the parameters
due to natural behaviour. The proposed method is based on the recursive expectation-maximization (REM) approach.
The new method is dubbed forward-backward recursive expectation-maximization (FB-REM). The performance is
demonstrated using an experimental study, where the tested scenarios involve both simulated and recorded signals,
with typical reverberation levels and multiple moving sources. It is shown that the proposed algorithm outperforms
the regular common causal (REM).

Keywords: Sound source tracking, Recursive expectation-maximization, Microphone arrays, Simultaneous speakers,
W-disjoint orthogonality, Forward-backward

1 Introduction
The task of multiple target tracking (or dynamic local-
ization) has significant importance in civil, military and
surveillance applications such as improving beamform-
ing accuracy in speech enhancement applications, e.g.
speech separation, indoor robotic assistance, and auto-
matic steering of cameras [1–4]. Although many state-of-
the-art approaches to speech separation are based on deep
learning, model-based methods are preferable in cases
where training data is not available. As for computer-
vision-based methods for speaker tracking, in several
cases, cameras are not allowed due to power consump-
tion or privacy constraints. In addition, these methods
are not suitable in cases where there is no direct line-of-
sight between the sensor and the speaker being tracked.
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Classical tracking addresses only a subset of possible tra-
jectories, since it usually makes assumptions, regarding
e.g. the target velocity, acceleration, and jerk. In case
of noncontinuous signals like speech, this might lead to
tracking loss.
There are scenarios where the sensor arrays are mov-

ing [5], but usually in a room environment, the arrays are
assumed to be static and only the sources are moving and
should be tracked. Some tracking algorithms are based on
direction of arrival (DOA) estimation. The multiple signal
classification (MUSIC) algorithm [6] applies a subspace
method that was later adapted to the challenges of speech
processing in [7]. The steered response power with phase
transform (SRP-PHAT) algorithm [8] uses generalizations
of cross-correlation methods for DOA estimation. This
algorithm can be applied to both 2D or 3D localization
and tracking problems. Although several features were
used in the literature for speaker localization and tracking,
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the most commonly used features are the sub-band time
difference of arrivals (TDOAs) [9] or DOAs [10].
Supervised learning methods can also be used for this

task. Deep learning methods can be trained to find
the DOA in different acoustic conditions. Deep learn-
ing methods have recently been proposed for sound
source localization. In [11, 12], simple feed-forward deep
neural networks (DNNs) were trained using generalized
cross-correlation (GCC)-based audio features, demon-
strating improved performance as compared with classical
approaches. Yet, this method is mainly designed to deal
with a single sound source at a time. In [13], the authors
trained a DNN for multi-speaker DOA estimation. In [14,
15], time-domain features were used, demonstrating per-
formance improvements in highly reverberant enclosures.
The main drawbacks of the DNN approaches for track-

ing applications are the need for large, usually labelled,
training sets and the high sensitivity to mismatch between
train and test conditions. When we are interested in ad
hoc distributed networks, training is not always possi-
ble and changes of array constellation between train and
test can often occur. Various tracking algorithms for dis-
tributed microphone arrays were proposed in [16–22].
In [23–26], the outdoor case is emphasized, where sen-
sor noise is usually dominant, unlike indoor environment
that is dominated by reverberation. Well-known Bayesian
approaches were also applied for tracking, such as prob-
ability hypothesis density (PHD) [27, 28], particle fil-
ters, and other statistical based methods [29–33]. Several
tracking and localization algorithms were tested as part
of the LOCalization And TrAcking (LOCATA) challenge
[34, 35].
The classical Bayesian approach is not optimal for

the task of tracking concurrent speakers within a room,
because subjects tend to naturally and arbitrarily move
without an organized route and with many pauses.
For this application, the non-Bayesian maximum likeli-
hood (ML) approach might be more suitable, since it
assumes that the speakers’ trajectories are determinis-
tic unknown parameters, bearing no statistical model. A
well-known procedure for inferring the ML estimate is
the expectation-maximization (EM) algorithm [36] that
iteratively increases the likelihood function.
For the task of online speaker tracking, a recursive ver-

sion of the EM is required, since it facilitates tracking
of time-varying parameters, and enables online estimates
with relatively low computational and memory loads. The
first recursive version of the EM algorithm was suggested
by Titterington [37], where a Newton-based method min-
imizes the Kullback-Leibler divergence (KLD) between
the actual and parametric likelihood function, assuming
that the observations are independent and identically dis-
tributed (i.i.d.). An almost surely convergence proof of
Titterington recursive expectation-maximization (TREM)

algorithm was given by Wang and Zhao in [38, 39], based
on the results of Delyon [40]. A stochastic approximation
version for the EM algorithm was proposed by Delyon
et al. in [41], and its convergence was proven therein. A
further study of the recursive expectation-maximization
(REM) approach appeared in [42] for the problem of
DOA estimation, using TREM and another recursive algo-
rithm suggested by the authors. They showed that both
algorithms converge with probability one (w.p.1.) to a
stationary point of the likelihood function.
A different approach of REM was proposed by Cappé

andMoulines [43], in which themodel parameters and the
hidden signal are estimated simultaneously. In the E-step,
the sufficient statistic for the parameters is recursively
updated using the latest observation. In the M-step, the
parameters are optimized using the latest statistic approx-
imation. It is shown in [43] that this series of parameters
estimates converges to local minima of the KLD in the
case of independent observations.
REM-based algorithms for speaker tracking in noisy and

reverberant environments were presented in [44], where
both Titterington’s REM [37] and Cappé-Moulines’ REM
[43] were applied to the problem. The W-disjoint orthog-
onality (WDO) property was assumed to hold, as com-
monly used by other algorithms, in order to improve the
robustness and to facilitate concurrent speaker tracking
[9, 45–48].
Spatially distributed microphone nodes were used in

[44], but computations were carried out in a central pro-
cessing unit. In many applications/scenarios, since the
communication bandwidth (BW) is limited, distributed
computation is beneficial, where each node executes
part of the computations and transmits its result rather
than the entire observed data [49]. The ring-based algo-
rithm and its modifications are based on the incremental
expectation-maximization (IEM) principle suggested in
[50]. The recursive distributed expectation-maximization
(RDEM) method was recently proposed for distributed
source localization [51], using Titterington’s REM [37]. In
this paper, we use the same topology from [51].
Since the methods in [44] and [51] apply only causal

recursion, the localization accuracy in silent or noisy time-
segments often deteriorates. Exploiting both past and
future observations may improve the estimation accuracy
of the current state, especially for non-stationary sig-
nals. The estimation pertaining to the past data is usually
referred to as forward filtering, while the state estimation
pertaining to the future data is referred to as backward fil-
tering, which runs backwards. In online applications, the
usage of future observations imposes latency to the overall
system and should therefore be restricted.
A bi-directional version of recursion estimation has

been presented in [52] for video signals, where the data
is processed off-line in order to use the future samples
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in addition to the past samples. Some of the Bayesian
approaches deal with specific speech processing applica-
tions with techniques developed originally for commu-
nication applications. A maximum a posteriori (MAP)
approach that exploits the Viterbi algorithm was pre-
sented in [53], where a forward-backward recursion has
been used to address pauses of the speech signal.
In this paper, we propose a new tracking mechanism

and use it to modify the recursive distributed expectation-
maximization (RDEM) [51], resulting in the tracking
forward-backward recursive expectation-maximization
(TFB-REM), which is a non-Bayesian algorithm. The new
algorithm allows to configure the latency according to
the real-time constraints of the system and obtains an
improved performance.
The rest of the paper is organized as follows. Formula-

tion of the tracking problem and its probabilistic model is
described in Section 2. Then, in Section 3, the forward-
backward recursive expectation-maximization (FB-REM)
is introduced and applied to the tracking problem of mul-
tiple speakers in Section 4. Experimental results are given
in Section 5, and conclusions are drawn in Section 6.

2 Speaker tracking problem formulation
One of the major applications of the recursive algorithms
is target tracking. In this work, focus is given to the track-
ing of concurrent speakers, a more challenging task due
to the non-stationary and intermittent nature of speech
signals. The problem is formulated in the time-frequency
domain and in the spatial domain. Let b = 1, . . . ,B denote
the frequency bin index, and S the number of acoustic
signals captured by M microphones (an even number),
organized inM/2 independent pairs.
The signal captured by the ith microphone, i = 1, 2 of

themth pair,m = 1, . . . ,M/2, is given by

zim(t, b) =
S∑

s=1
aism(t, b)vs(t, b) + nim(t, b), (1)

where s = 1, . . . , S is the source index, vs(t, b) denotes the
sth source signal, nim(t, b) denotes an additive noise, and
aism(t, b) denotes the time-variant room impulse response
(RIR).
For each time-frequency (T-F) bin, the pair-wise

TDOAs, denoted by τm,b(t), are calculated from the cross-
correlation. Under the assumption of speech sparsity [54],
each time-frequency bin vector is dominated by a sin-
gle source, namely that the WDO assumption is satisfied.
This implies that for each T-F bin, the summation in (1) is
dominated by only a single source.
Let p =[ x, y, z] be the 3D Cartesian coordinates within

a given indoor space and further let P be the set of
all candidate speakers’ positions, without assuming any
prior knowledge about the number of the sources and

their dynamics. Multiple positions may receive high val-
ues according to the number of active speakers. The grid
of candidate positions is defined similarly to [51]. The
noiseless TDOAs associated with each grid point can be
calculated in advance from geometrical considerations:

τ̃m,b(p) � ||p − p1m|| − ||p − p2m||
c

; ∀p ∈ P , (2)

where p1m and p2m are the locations of the microphones
assumed to be perfectly known, ||·|| denotes the Euclidean
norm, and c is the sound velocity.
We then attribute a mixture of Gaussians (MoG) statis-

tical model to the TDOAs:

τm,b(t) ∼
∑

p
wp(t)N

(
τm,b(t); τ̃m,b(p), σ 2) , (3)

where σ 2 is the Gaussians’ variance, which is assumed to
be a known, constant, parameter.
The weights wp(t) are unknown parameters, designat-

ing the probability of a speaker to be located at position p
at time t that should satisfy the following constraints:

∑

p∈P
wp(t) = 1 ; 0 ≤ wp(t) ≤ 1. (4)

The set of unknown parameters to be found by the
EM algorithm consists of the Gaussian weights, w(t) =
vecp

(
wp(t)

)
, since the mean of each Gaussian is calcu-

lated in advance over the grid of positions and its variance
is assumed to be known. This set of unknown parame-
ters can be thought of as a set of hypotheses for potential
speakers’ positions. Each grid point with sufficiently high
weight will be marked as a potential speaker’s position.
The probability density function (p.d.f.) of all aug-

mented measurements at each node at time t is given
by

f (τm(t) ; w(t)) =
∏

b

∑

p∈P
wp(t) · N (

τm,b(t) ; τ̃m,b(p), σ 2) .

(5)

In the following sections, we propose a forward-
backward method for the estimation of this model’s
parameters, w(t). First, in Section 3, we derive the gen-
eral scheme of the forward-backward version of the REM.
Then, in Section 4, the general scheme is applied to the
above model for speaker tracking.

3 FB-REM—general derivation
We begin the derivation in defining the criterion for
online parameter estimation and present the general
algorithm proposed in this paper, namely the FB-REM
scheme. The FB-REM approach for parameter estimation
is, similarly to the more general REM approach, a non-
Bayesian method that does not rely on a statistical model
for the parameters. In this section, we use θ for the set of
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parameters. In Section 3.1, we discuss the classical REM,
and in Section 3.2 the FB-REM.

3.1 REM
The REM algorithm is first derived for i.i.d. observations,
denoted by τ (t). The true, unknown p.d.f. of the obser-
vations is denoted by h(τ ), and the parametric p.d.f. is
f (τ ; θ). A common criterion for online parameter estima-
tion is stated in terms of the KLD, defined as

k(θ) = E
{
log h(τ ) − log f (τ ; θ)

}
, (6)

where E{·} denotes the expectation taken with respect
to (w.r.t.) h(τ ), the time index t does not appear in τ (t)
since time dependency is cancelled out by the expectation
operation and due to the i.i.d. nature of the observa-
tions. In our case, we write the optimization criterion as a
minimization of the KLD:

θ∗ = argmin
θ

k(θ) = argmax
θ

{
E{log f (τ ; θ)}} . (7)

It is noteworthy that θ∗ and the ML (batch) estimation
of θ are asymptotically equivalent, i.e. they converge for
growing number of observations. The KLD criterion is
commonly used in online procedures [43], since it fits
dynamic cases, where the parameters are time-varying.
As discussed in Section 1, the EM is a common

approach for maximizing the likelihood in problems
involving hidden data. The hidden data at time t is defined
as y(t), and the respective complete data p.d.f. is assumed
to be i.i.d. and denoted by f (τ (t), y(t); θ).
The specific definition of y(t) for our tracking problem

is given in Section 4.1. The EM can also be applied recur-
sively, e.g. as presented by Titterington [37]. The TREM
maximizes the KLD using the recursion

θ̂
Ti
t+1 = θ̂

Ti
t + 1

t · I−1
C

(
θ̂
Ti
t

)
· s

(
τ (t); θ̂Tit

)
, (8)

where θ̂
Ti
t is the previous estimate of θ , s

(
τ (t); θ

)
denotes

the scoring function, and IC(θ) denotes the Fisher infor-
mation matrix (FIM) of the complete data,

s(τ ; θ) = EC
{∇θ log f (τ , y; θ) |τ ; θ}

, (9)
IC(θ) = −EC

{∇θ2 log f (τ , y; θ)
}
, (10)

where EC denotes the expectation taken w.r.t. the com-
plete data p.d.f f (τ , y; θ). The computation of Eqs. (9) and
(10) requires the estimation of the hidden data, which is
derived in Section 4.
It was shown in [38] that under certain regularity con-

ditions, the TREM converges w.p.1. to a stationary point
of the KLD. However, a w.p.1. convergence is impossi-
ble in cases of time-varying parameters, and we therefore
substitute t−1 in (8) by a constant smoothing coefficient
(1 − γF), facilitating tracking capabilities for dynamic

cases. Denote by θ̂
F
t the parameter estimation at time t,

obtained by the following forward recursion,

θ̂
F
t+1 = γF · θ̂

F
t + (1 − γF) · I−1

C

(
θ̂
F
t

)
· s

(
τ (t); θ̂Ft

)
,

0 < γF < 1 .
(11)

Note that unlike (8), we also normalized θ̂
F
t by γF , which

is equivalent to a constant attenuation and does not affect
the asymptotic behaviour of the algorithm. The proce-
dure (11) also converges to a stationary point of the KLD,
but in a weak sense.
Further note that when the parameters are time-

varying, the observations are no longer identically dis-
tributed, and asymptotic convergence is not relevant any-
more. For an extensive theoretical examination of this
recursive scheme for parameter estimation, please refer
to [55] and Chapter 8 in [56]. However, an intuitive yet
accurate description of the convergence can be given as
follows. For higher values of γF , the update rate of the
algorithm is slower, meaning that the estimation is biased
by the past values of the parameter, but the estimation
variance is lower, due to the longer averaging window. For
lower γF values, the convergence speed is higher, which
means a lower bias, but this comes at the expense of higher
variance due to the shorter averaging window.
In the following section, we propose a method that

improves the performance of (11) at the expense of higher
latency. This is done by utilizing future observations in
the estimation procedure and may reduce both the bias
and the variance of the estimator. Reduction of the bias
induced by past information is very important in the
non-stationary case of moving speakers.

3.2 The proposed FB-REM approach
To use the near-future observations, we propose the FB-
REM algorithm, defined by

θ̂
FB
t+1 = αFB · θ̂

F
t+1 + (1 − αFB) · θ̂

B
t+1 , (12)

where θ̂
F
t was defined in (11), and 0 ≤ αFB ≤ 1 is a weight-

ing factor of the past and the future terms. The backward
estimator θ̂

B
t is calculated by the backward recursion

θ̂
B
k =γB · θ̂

B
k+1+(1−γB) · I−1

C

(
θ̂
B
k+1

)
· s

(
τ k ; θ̂

B
k+1

)
;

k= t + D, . . . , t + 1, 0 < γB < 1 ,
(13)

where D is the number of future samples used for the
current estimate.
In a Bayesian framework, there would have been an

optimal choice of the smoothing factors γF , γB, and αFB,
obtained by a Bayesian statistical model. The gain of the
Kalman smoother [57] and the coefficient used in Viterbi
algorithm [58] are determined this way. However, since
we intentionally adopted a non-Bayesian approach, the
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values of γF , γB, and αFB are determined according to
the required dynamics of the algorithm, and the nature
of the stochastic processes. We previously discussed how
γF trades-off the update speed versus the accuracy of the
algorithm. Similarly, high γB reduces the variance of the
algorithm in the expense of higher bias. Finally, αFB deter-
mines the weight of the past and the future observations
on the current estimate.
In practice, αFB is mainly determined by the number of

the future observations that are actually used to update
the estimation, which in turn is determined by the latency
constraints of the application. Rewriting (13) as

θ̂
B
t+1=(1 − γB) ·

t+D∑

k=t+1
γB

k−t · I−1
C

(
θ̂
B
k

)
· s

(
τ k ; θ̂

B
k

)
. (14)

It can be seen that for every value of γB and every com-
puting precision requirement, there exists an integerDmax
such that γ

Dmax
B ≈ 0. If D = Dmax is chosen, the backward

recursion is equivalent to an infinite backward recursion,
similarly to the forward recursion for large enough t val-
ues. However, in practical applications, using Dmax future
observations might introduce unacceptable latency, and a
lower value of D should be chosen instead. This choice
deteriorates the accuracy of the backward recursion (13),
which should be compensated by increasing the value of
αFB.
In the next section, the algorithm (12) will be applied to

the problem of multiple speaker tracking.

4 Tracking forward-backward REM (TFB-REM) for
concurrent dynamic speakers

The concept developed above is applied to the multi-
ple speaker tracking problem. We first briefly mention
the tracking forward-recursive expectation-maximization
(TF-REM) for the forward direction, as developed in [51]
for localization using only past and present samples. Then,
the TF-REM algorithm is extended by adding the back-
ward recursion using the FB-REM that was developed
in the previous section. The combination of these two
directions is dubbed tracking forward-backward recursive
expectation-maximization (TFB-REM). The rest of this
section is organized as follows. In Section 4.1, we define
the hidden data model we use in the tracking problem,
and in Sections 4.2 and 4.3, the REM and the forward-
backward REM algorithms are applied to this model,
respectively.

4.1 Hidden data statistical model
The TF-REM was already presented in [51] and is briefly
repeated here, since it is the basis for developing the TFB-
REM in the next section.
First, we present the hidden data model that com-

plements the observation p.d.f. in (5). Following [51],

we let ym(t, b,p) be an indicator random variable that
equals to one if a speaker located at p is active in the
observed variable τm,b(t) and zero otherwise. In other
words, ym(t, b,p) = 1 means that a speaker in p is
present in the (t, b) bin of the mth node. Intuitively, the
tracking challenge becomes much simpler to solve given
this additional information. This formulation also allows
a distributed implementation of the algorithm, which is
useful in many cases of ad hoc networks. Each pair of
microphones may describe an electronic device with inde-
pendent processing unit and communication capability.
The conditional p.d.f. of the observations, assuming

independence between nodes is

f (τ (t)|y(t);w(t)) =
∏

m
f (τm(t)|ym(t);w(t))

=
∏

m,b

∑

p∈P
ym (t, b,p) · N (

τm,b(t); τ̃m,b(p), σ 2) ,

(15)

where y(t) = vecm,b,p (ym(t, b,p)) is the hidden data set.
Thus, the complete data p.d.f. is given by

f (τ (t), y(t);w(t)) =
∏

m,b

∑

p∈P
wp(t)ym(t, b,p)

· N (
τm,b(t); τ̃m,b(p), σ 2) . (16)

In Section 4.2, ym(t, b,p) is estimated by the forward
recursion, and in Section 4.3, its backward estimator is
given. These estimates are denoted by ŷ(F)

m (t, b,p) and
ŷ(B)
m (t, b,p), respectively. Correspondingly, the forward
and backward estimates ofwp(t)will be denoted by ŵF,p(t)
and ŵB,p(t), respectively.

4.2 RDEM applied in the forward direction
In [44] and [51], the TF-REM was derived for the general
algorithm in (11) in detail, and only the resulting formulae
are given in this section. In the E-Step, estimation of the
hidden data is given by

ŷ(F)
m (t, b,p) �

ŵF,p(t − 1) · N (
τm,b(t); τ̃m,b(p), σ 2)

∑
p̃∈P ŵF,p̃(t − 1) · N (

τm,b(t); τ̃m,b(p̃), σ 2)
) .

(17)

Now, define the aggregation of the hidden variables
along the frequency axis as:

ŷ(F)
m (t,p) � 1

B

B∑

b=1
ŷ(F)
m (t, b,p). (18)

The results of the E-step are utilized for weight estimation
per position:

ŵF,p(t) �
1

M/2

M/2∑

m=1
ŷ(F)
m (t,p). (19)
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Algorithm 1: Acoustic source TF-REM algorithm.
1) Initialize ŵF,R(0) = 1/|P|
2) For each time-instant, t run:
E-step
Calculate simultaneously and locally ȳ(F)

m (t,p)

∀m = 1, . . . ,M/2
M-step
Aggregate results and calculate ŵF,R(t) using (19)
3) Find sources location: Apply a threshold to ŵF,R(t)
4) Go back to 2) for next time point.

As was shown in [44] and [51], the M-Step reduces to a
compact recursive equation:

ŵF,R(t) = ŵF,R(t − 1) + γF
(
ŵF(t) − ŵF,R(t − 1)

)
,
(20)

where ŵF(t) is a vector consisting of the instantaneous
version of the parameters,

ŵF(t) = vecp
(
ŵF,p(t)

)
. (21)

The TF-REM procedure is summarized in Algorithm 1.
Note that the local hidden set facilitates a wide range of
network topology alternatives. These distributed compu-
tation aspects are left for future study, as the main contri-
bution of this manuscript is independent of the network
topology.

4.3 TFB-REM for multiple speakers
In order to develop the TFB-REM, we first derive the
backward recursion. Its derivation follows the steps of the
TF-REM replacing the notation F with B and the time
index (t − 1) with (t + 1) in Eqs. (17)–(21) above. In
the backward recursion, the time samples are processed
in the anti-causal direction, and the following formula is
obtained.

ŵB,R(t) = ŵB,R(t + 1) + γB
(
ŵB(t) − ŵB,R(t + 1)

)

t ∈ {t + D − 1, t + D − 2, . . . , t} (22)

Due to this anti-causal process, we have to choose a pro-
cessing delay, defined above asD. The algorithm tracks the
speakers along time using relevant past and future sam-
ples according to this processing delay and the speaker
dynamics.
Finally, the FB-REM approach in (12) for the problem of

speaker tracking can be written as,

ŵFB,R(t) = αFB · ŵF,R(t) + (1 − αFB) · ŵB,R(t). (23)

This is a weighted superposition of two separate local-
ization maps created independently by the two RDEM
processes that build jointly a single localization map for
each relevant time point. Note that when αFB = 1, there is

Algorithm 2: Acoustic source TFB-REM algorithm.
1) Initialize ŵF,R(0) = 1/|P|
2) For each time-instant, t run:
a) Forward estimation:
E-step
Calculate simultaneously and locally ȳ(F)

m (t,p)

∀m = 1, . . . ,M/2
M-step
Aggregate results and calculate ŵF,R(t) using (19)
b) Backward estimation:
Initialize ŵB,R(t + D) = 1/|P|
for t′ = t + D − 1 to t do

E-step
Calculate simultaneously and locally ȳ(B)

m
(
t′,p

)

∀m = 1, . . . ,M/2
M-step
Aggregate results and calculate ŵB,R

(
t′
)
using (22)

end
c) Calculate ŵFB,R(t) according to (23)
3) Find sources location: Apply a threshold to ŵFB,R(t)
4) Set ŵF,R(t) = ŵFB,R(t)
5) Go back to 2) for next time step.

no use of future data and we obtain the TF-REM derived
in the previous subsection.
As in many other EM-based algorithms, initialization is

an important and non-trivial task. The TF-REM proceed
from one time step to another according to the recur-
sion. The backward RDEM at time t is initialized with a
uniform position distribution at the future time t + D.
The localization map in (23) consists of soft values rep-

resenting the probability of an acoustic activity at each
specific position in the room. After estimating ŵFB,R(t) at
each time step, we apply a threshold for all values to deter-
mine the active positions, meaning the number of active
speakers and their current positions.
Before switching to the next time point estimation, we

set

ŵF,R(t) = ŵFB,R(t), (24)

which is assumed to be an improved estimate of the
current acoustic position map. We then start the entire
procedure for both RDEM and their weighted combina-
tion described above for the next time step. The entire
TFB-REM procedure is summarized in Algorithm 2.

5 Results and discussion
This section evaluates the performance of the TFB-REM
algorithm and compare it to TF-REM and to a general-
ization of the SRP-PHAT algorithm [8] for the 2D case
[59]. The study comprises four subsections. In Section 5.1,
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we discuss the parameters of the algorithms and the con-
siderations taken when tuning them. In Section 5.2, we
describe the room setup for simulation and recordings,
and Section 5.3 compares the various algorithms using
Monte Carlo simulations and then examines the sensi-
tivity to array perturbations. Finally, in Section 5.4, we
compare the performance of the algorithms for real-life
recordings of moving speakers acquired at the Bar-Ilan
acoustic lab.

5.1 Parameter choice
There are a few important parameters mentioned above
that should be chosen to improve the tracking algorithm
performance.
Two important parameters are the TREM smoothing

factors γF and γB. The parameter γF was already tuned
experimentally for the regular RDEM [44]. We tuned both
values empirically for our model. We tried values in the
range 0.01 − 0.9 and eventually chose γF = 0.015 and
γB = 0.04.
The next parameter to be discussed is the past-future

weighting coefficient, αFB. For off-line applications, we
might expect the past and the future samples to be
equally weighted, meaning αFB = 0.5, since the rel-
evance of past or future observations to the present
observation is similar. However, since we apply the
proposed algorithms in an online scenario, the overall
latency was restricted, thus rendering the backward recur-
sion less accurate than the forward recursion. In this

case, the forward recursion should be weighted more
than the backward recursion. The results show that the
best choice was 0.65 (we tried values in the range of
0.1 − 0.9).
An important parameter, which has close relations with

the smoothing factors, is the latency, D. Assuming slow
dynamics for indoor speaker tracking, it is reasonable to
set D to approximately 1 s. It is obvious that for online
applications, as addressed here, we might set D to a
smaller value.
The MoG variance, σ 2 was set to 2[Samples2]. The unit

[Samples] is a function of the sampling frequency, which
is set to 16 kHz. In this experimental study, the variance
is fixed over time and frequency bin, but we found that it
can significantly influence the performance. Therefore, an
adaptivemechanism for setting σ 2 is left for a future study.
The size of a single unit in the localization grid was

set to 0.10 × 0.10 m2, which was shown in [44] to be
sufficient for tracking real speakers that should not be
treated as point sources, due to their body volume. Prelim-
inary tests showed that the chosen resolution best fits the
trade-off between computational complexity and required
accuracy.
The number of frequency bins was also examined exper-

imentally within the range that is reported in other
narrow-band approaches [9], and was set to B = 16 bins.
The choice of the short-time Fourier transform (STFT)
frame length is 64 ms, similarly to previous localization
and tracking algorithms [44, 49, 51, 60–63].

Fig. 1Microphone pairs map for the simulated room. The ‘o’ stands for a microphone positions in the two-dimensional plane. The nodes are
numbered 1 : 12 containing two microphones each
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Fig. 2 Recording room setup with a single speaker and T60 = 250 ms

5.2 Room setup
To evaluate the tracking capabilities of the algorithms, we
tested them in both simulated data and recordings of real
human speaker setups, as described in the sequel.
The dimensions of the simulated room were 6 × 6 ×

2.4 m, with twelve pairs of microphones encompassing
the acoustic scene in the room. The number of micro-
phone pairs (or nodes) is very important in the presence
of high noise and high reverberation levels. A setup of
twelve microphones pairs was chosen following the exper-
imental study in [44]. A map of the simulated room and
microphones is given in Fig. 1, where the microphone
positions are marked by ‘o’-s, and every pair is num-
bered from 1 to 12. In the examined scenario, all speakers
and microphones are positioned at the same height, for
simplicity.
Simulation of moving sources was carried out by the

image method [64], with an efficient implementation of
the RIRs computation in [65]. In this experiment, one,
two, or three sources moved along randomly chosen tra-
jectories within the room. The RIRs along these trajecto-
ries were sampled every 0.04 s to generate moving sources
in reverberant environment.
Recording of real human speakers was carried out as

described in [44, 51]. The recordings were carried out in
the speech and acoustic lab of Bar-Ilan University. This is
a 6× 6× 2.4 m room with a reverberation time controlled
by 60 interchangeable panels covering the room facets.
The measurement equipment includes a RME Hammer-
fall DSP Digiface sound-card and a RME Octamic (for
Microphone Pre Amp and digitization (A/D)). AKG type
CK-32 omnidirectional microphones were used. All mea-
surements were carried out with a sampling frequency of
48 kHz and a resolution of 24 bits. The multi-microphone
signals were acquired using Matlab©. A snapshot of the
room tuned for low reverberation level (T60 = 250 ms) is
shown in Fig. 2.

In the real recordings, only seven pairs of microphones
were used. As in the simulated experiment, we focused on
a two-dimensional tracking, while the height estimation
can be derived as an extension of the algorithms.While we
assume a two-dimensional setup with all the microphones
positioned at height, 130 cm from the floor, we note that
real human speakers are recorded and their height vary a bit.
For controlling the recordings and determining an accu-

rate ground-truth for the tracking algorithms, we had a
video camera in the room as well as very precise paths
marked on the floor of the room. The speakers were
walking along the paths and were recorded with all micro-
phones and video in a synchronized way.

5.3 Performance in simulated recordings
Using simulated recordings enables a comprehensive sta-
tistical investigation and testing of a large variety of trajec-
tories in the room. Three different scenarios were exam-
ined. The first scenario consist of a single speaker and
reverberation timeT60 = 400ms. The two other scenarios
consist of either two or three speakers and reverberation
time T60 = 120 ms.
To compare the performance of the different algorithms,

we followed the procedure described in [49, 51], updated
for a dynamic speaker scenario. We executed 100 Monte
Carlo trials and calculated the root mean square error

Table 1 RMSE for tracking scenarios (100 Monte Carlo trials) for
one, two, or three speakers. The error is calculated in meters.
Reverberation time for the single-speaker case T60 = 400 ms and
for the two- and three-speaker case T60 = 120 ms

Algorithm 1 speaker [m] 2 speakers [m] 3 speakers [m]

SRP-PHAT 0.32 0.42 0.54

TF-REM 0.32 0.30 0.41

TFB-REM 0.30 0.23 0.36
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Fig. 3 Trajectories of two speakers: real and TF-REM

(RMSE), and the average results (using the entire ensem-
ble and along all possible trajectories) are presented in
Table 1. The performance of the SRP-PHAT, TF-REM,
and TFB-REM are compared for one-, two-, and three-
speaker scenarios.
As evident from the table, the reference algorithm SRP-

PHAT has the highest RMSE for more than one speaker.

The TF-REM has higher RMSE than the TFB-REM, as
expected by the incorporation of future data.
The trajectories of one trial of the simulated scenario

with two speakers for the TF-REM algorithm is shown in
Fig. 3. The real locations are marked with black circles (‘o’)
and the estimates with blue dots (‘·’). The same scenario
with the TFB-REM algorithm is shown in Fig. 4. The real

Fig. 4 Trajectories of two speakers: real and TFB-REM
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Fig. 5 Tracking error for two speaker with inactive gaps

trajectories of the speakers are sampled in slightly differ-
ent time stamps, due to the latency that is introduced to
the TFB-REM algorithm.
It can be observed that for both algorithms the major-

ity of estimates are very close to the real locations. The
TF-REM produces three outliers, while the TFB-REM has
only a single outlier.
A profound advantage of integrating information from

various time slots is to bridge gaps of inactive time peri-
ods. We examined such a case and computed the tracking
error for both algorithms as shown in Fig. 5. It can be
observed that the TFB-REM outperforms the TF-REM
in this case for the relevant time slots (around 8 s) and
later around 14 (smaller differences). The estimation is
applied once every second, since dynamic is slow indoor
and the complexity of the tracking highly depends on the
resolution used.
We have also evaluated the effect of imperfect micro-

phone positions on the performance. The results for one
scenario with two speakers is presented in Table 2. The
performance of the SRP-PHAT, TF-REM, and proposed
TFB-REM are evaluated for a few random misplacement
of themicrophones. The proposed algorithm outperforms

the other two algorithms for standard deviation of up to
50 mm. The highest performance advantage is in the case
of perfect array calibration.

5.4 Performance for real human recordings
The real recordings include two experiments with human
speakers. The first recording was executed with reverber-
ation time T60 = 250 ms and a single speaker standing
for 9 s and then walking on a 2.10-m-long straight line for
33 s. From this point, we focus on the two recursive algo-
rithms in order to illustrate the influence of using future
samples. The tracking errors for the two algorithms are
shown in Fig. 6. It can be observed that the TFB-REM

Table 2 RMSE for tracking scenarios for various array position
shift (measured in mm). The error is calculated in meters

Array shift std [mm] xSRP-PHAT [m] TF-REM [m] TFB-REM [m]

0 0.561 0.181 0.099

1 0.761 0.185 0.146

10 0.576 0.186 0.131

50 0.701 0.187 0.152
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Fig. 6 Tracking error for a single speaker

slightly outperforms the TF-REM in this case. The RMSE
averaged over the trajectory for TFB-REM is 0.20 m and
for TF-REM 0.23 m.
The second recording involved two concurrent speak-

ers standing for 2 s and then walking on parallel straight
lines towards each other for 21 s. The averaged track-
ing errors for both algorithms are shown in Fig. 7. It
can be observed that the TFB-REM significantly out-
performs the TF-REM. The RMSE for the TFB-REM is
0.48 m, and for the TF-REM, it is 0.83 m. The additional
speaker naturally degrades the tracking results of both
algorithms.

6 Conclusions
We have developed an online, non-Bayesian, algorithm
for multiple concurrent speaker tracking in reverberant
environments.We have first introduced a backward recur-
sive version of the RDEM algorithm. Then, the TFB-REM,
a combined forward-backward RDEM algorithm, was
developed. The TF-REM and the TFB-REM algorithms
are evaluated using both simulated environment and real
recordings of walking humans and compared with a base-
line method, a variant of the SRP-PHAT method for the
2D case.
We demonstrated that the introduction of the short

latency in the TFB-REM indeed improves performance,
especially by facilitating the tracking of intermittent
sources by bridging over short silence periods. Specifi-
cally, we have compared the tracking capabilities of the
forward and the forward-backward schemes in single-,

two-, and three-speaker scenarios. While the TFB-REM
only slightly outperformed the TF-REM in the single-
speaker scenario, it was significantly better for two or
three concurrent speaker scenarios.
Unlike other approaches (mainly Bayesian approaches),

the recursive algorithms neither make assumptions
regarding the speakers’ dynamics nor require training
data, as most DNN-based approaches. They are also
shown to be rather robust to inaccuracy of array location,
which is a very common imperfection in ad hoc networks.

Fig. 7 Tracking error for two speakers
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