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Abstract

In many speech communication applications, robust localization and tracking of multiple speakers in noisy and
reverberant environments are of major importance. Several algorithms to tackle this problem have been proposed in
the last decades. In this paper, we propose several extensions to a recently presented joint direction of arrival (DOA)
and pitch estimation method, increasing its robustness in multi-speaker scenarios, noise, and reverberation. First, a
spectral comb filter is added to the original algorithm to better cope with concurrent speakers. Second, the
well-known generalized cross-correlation with phase transform (GCC-PHAT) is used as an additional weighting
function to improve the DOA estimation accuracy in terms of correct hits. Third, using multiple microphone pairs, the
multi-channel cross-correlation approach is incorporated to improve the robustness against noise and reverberation.
In order to improve tracking for moving and even intersecting speakers, a particle filter is used. Experiments with
real-world recordings in realistic acoustic conditions show that the proposed extensions increase the DOA hit rate by
about 33% compared to the original algorithm for two step-wise moving sources at a signal-to-noise ratio (SNR) of
15 dB and a reverberation time RT60 of 560 ms.
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1 Introduction
Automatic detection, localization, and tracking of speaker
are of high interest in several applications such as hands-
free speech communication and video conferencing, as
well as for computational auditory scene analysis and
human-machine interfaces. For example, in current high-
quality video-conferencing systems, the users are typically
not located close to the microphones, and furthermore,
several users may be talking simultaneously.
To distinguish between multiple concurrent speakers, it

is desirable to be able to differentiate between their direc-
tions of arrival (DOAs) and their voice characteristics.
This information can then be used to, e.g., enhance auto-
matic speech recognition, indicate active speakers, steer
the camera of a video-conferencing system, or to suppress
undesired acoustic disturbances.
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A common method for DOA estimation is to first esti-
mate the time difference of arrival (TDOA) between dif-
ferent microphone pairs. An overview of these methods,
as well as related references, can be found in [1,2]. A
well-known TDOA estimation method is the generalized
cross-correlation with phase transform (GCC-PHAT),
first introduced in [3] and intensively investigated for
speech signals in, e.g., [4-7]. The dual delay line algorithm
in [8] is anothermethod to estimate the azimuths of sound
sources by analyzing the coincidences along two-channel
delay-line pairs. Other methods for DOA estimation are
based on blind channel identification, such as the adap-
tive eigenvalue decomposition algorithm (AEDA) [9,10],
or subspace methods such as multiple signal classifica-
tion (MUSIC) [11]. Another category of DOA estimation
algorithms are energy-based methods which only use the
measured signal energy at each microphone [12], or com-
bined methods using both TDOA and energy information
[13,14].
The spectro-temporal characteristics of speech signals,

e.g., the fundamental frequency (pitch), can also be
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analyzed to distinguish between concurrent speakers [15].
Traditional pitch estimation methods are based on, e.g.,
zero crossing rate analysis, detection of harmonics in
the autocorrelation function, and cepstrum analysis [16].
Recently, a pitch estimation filter with amplitude com-
pression (PEFAC) in the spectral domain has been pro-
posed in [17], and methods for joint pitch and model
order estimation have been proposed in [18-20]. Multi-
pitch estimation has also become a topic of research, and
several approaches are summarized in [21].
DOA and pitch estimation are typically treated sepa-

rately, and only a couple of attempts have been made for
joint DOA and pitch estimation. A possible solution is
a two-step approach. In the first step, the position of a
source is estimated from (multiple) microphone pairs. In
the second step, the microphone signals are combined
using a beamformer to obtain a single-channel output
signal which is used to estimate the pitch using a single-
channel pitch estimation method. In [22], a joint position
and pitch (PoPi) estimation method has been proposed
which is based on either cross-correlations or cross-
power spectral densities (CPSDs). Several extensions have
been proposed using cepstral weighting [23], gammatone-
like weighting [24], time-domain GCC-PHAT replace-
ment [25], particle filtering [26], and speaker-dependent
subgrouping [27]. In [28], a different method based on
a recurrent timing neural network is used for joint
DOA and pitch estimation. Other methods make use
of the 2D-Capon method [29,30], a subspace approach
termed as multi-channel multi-pitch harmonic MUSIC
(MC-HMUSIC) [31], a minimum variance distortionless
response (MVDR) beamformer [32] which additionally
estimates the model order to determine the number of
harmonics of the source signal, and a non-linear least
squares (NLS)-based method [33], all using a harmonic
signal model to jointly estimate the DOA and pitch.When
jointly estimating DOA and pitch, the parameter estima-
tion typically mutually benefits from each other. Although
these joint estimation methods perform quite well for
clean speech signals (i.e., without noise and no reverber-
ation), their performance typically degrades considerably
in adverse acoustic environments.
The focus of this paper is to improve joint DOA and

pitch estimation for multiple speakers in terms of accu-
racy and robustness in realistic acoustic situations. We
have taken the CPSD-based method proposed in [22]
combined with cepstral weighting [23], gammatone-like
weighting [24], and a subsequent particle filtering [26] as
the core algorithm, and we propose several extensions to
improve both accuracy and robustness in this paper. As a
first extension, a frequency-domain comb filter is intro-
duced to improve the performance for simultaneously
active speakers. As a second extension, a GCC-PHAT
weighting function is introduced, resulting in an improved

DOA estimation accuracy. As a third extension, instead of
simply averaging themultiple microphone pair results, the
multi-channel cross-correlation (MCCC) method, pre-
sented in [34], is adapted to the joint DOA and pitch
estimator, leading to a robustness improvement especially
for noisy conditions.
This paper is structured as follows: In Section 2, we

introduce the core algorithm for joint DOA and pitch esti-
mation and describe each of the proposed extensions. In
Section 3, the core algorithm and its extensions are eval-
uated for different amounts of reverberation and signal-
to-noise ratios (SNRs). Finally, the paper concludes with
the most relevant findings from the proposed extensions
in Section 4.

2 Algorithm
Figure 1 gives an overview of the complete proposed
algorithm, depicting the different processing steps which
can be divided into three parts (pre-, main, and post-
processing). The proposed extensions are highlighted by
gray-shaded areas. Since we are interested in joint DOA
and pitch estimation, the main feature of the algorithm
is the computation of a two-dimensional (2D) pattern
for DOA and pitch. As core algorithm, the CPSD-based
method proposed in [22] combined with cepstral weight-
ing [23] and gammatone-like weighting [24] is used. To
enable speaker tracking, a subsequent particle filter [26]
is also part of the core algorithm. In Section 2.1, we
introduce the considered scenario and notation. The core
algorithm is described in detail in Section 2.2, while each
of our extensions is explained separately in Section 2.3.

2.1 Scenario and notation
We consider a acoustic scenario where Q speech sources
are recorded using M microphones in a noisy and rever-
berant environment. The ithmicrophone signal yi[k], with
k the discrete time index, is first transformed to the fre-
quency domain using the short-time Fourier transform
(STFT), i.e.,

yi[n, λ] = STFT
{
yi[k]

}
, i = 1 . . .M, (1)

with frequency index n = 1 . . .N and frame index λ. The
STFT spectra can be modeled as

yi[n, λ] = hTi [n, λ] s[n, λ]︸ ︷︷ ︸+vi[n, λ] (2)

xi[n, λ] , (3)

where hi[n, λ] = [
hi1[n, λ] , . . . ,hiQ[n, λ]

]T denotes the
acoustic transfer functions between the speech sources
s[n, λ] = [

s1[n, λ] , . . . , sQ[n, λ]
]T and the ith micro-

phone, and xi[n, λ] and vi[n, λ] represent the speech and
noise components in the ith microphone signal, respec-
tively. The superscript T denotes the transpose operation.
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Figure 1 Overview of the proposedmethod. Gray-shaded areas are the extensions proposed in this paper. The signal-flow path starts with the
microphone signals and continues through the pre-processing followed by the main processing and is completed with the calculation of a
two-dimensional pattern ρ(ϕ, f0) in the post-processing. A particle filter is used on this 2D pattern to determine the DOA and pitch estimate.

Each acoustic transfer function hiq[n, λ] can be expressed
as

hiq[n, λ] = Aiq[n, λ] e−jψiq[n,λ], q = 1 . . .Q, (4)

where Aiq[n, λ] and ψiq[n, λ] represent the amplitude and
the phase of the acoustic transfer function, respectively.
As proposed in [24], a subgrouping of the spectra yi[n, λ]

is applied, in order to improve multi-speaker detection,
i.e.,

y(g)
i [n, λ] = yi[n, λ] · g(g)[n] , g = 1 . . .G, (5)

where y(g)
i [n, λ] denotes the weighted spectrum, and the

superscript g indicates the frequency group number,
which results inG (partially overlapping) spectra.We used
a gammatone-like weighting function g(g)[n] as depicted
in Figure 2.
In addition, the CPSD

�
(g)
i� [n, λ] = E

{
y(g)
i [n, λ] y(g)∗

� [n, λ]
}

(6)

between the ith and the �th microphone is computed
for each subgroup g, where E {·} denotes the expecta-
tion operator, and complex conjugate terms are marked
by the operator (·)∗. In practice, the CPSD is estimated
using a recursive smoothing procedure corresponding to
a first-order low-pass filter [35], i.e.,

�̂
(g)
i� [n, λ] = α�̂

(g)
i� [n, λ − 1] + (1 − α)y(g)

i [n, λ] y(g)∗
� [n, λ] ,

(7)

where the symbol ˆ(·) indicates an estimated value, and
0 ≤ α < 1 is a smoothing factor. Please note that in our

case, the CPSD calculation in Equation 7 is performed in
G subspectra. Afterwards, the CPSDs are normalized by
the maximum of each subspectrum and recombined, i.e.,

�̂i�[n, λ] = 1
G

G∑
g=1

�̂
(g)
i� [n, λ]

maxn
{∣∣∣�̂(g)

i� [n, λ]
∣∣∣} , (8)

where maxn {·} denotes the maximum operator over
index n. The normalization of each subspectrum in
Equation 8 attempts to emphasize all speech source com-
ponents in the recombined representation, as described
in [24]. This is because in multi-speaker scenarios, har-
monic speech sources have a different influence on the
subspectra, and the narrowband CPSD �̂

(g)
i� [n, λ] may be

dominated by different signal components.
A CPSD-based voice activity detection (VAD) [36] is

used to determine speech segments. Only the time frames
in which voice activity has been detected are considered in
the following processing. Please note that in the remain-
der of this paper, we will omit the frame index λ for
simplification where it is not needed.

2.2 Joint DOA and pitch estimation
Assuming free field condition, plane waves, and a single
source signal s1[n] impinging with DOA ϕ on a uniform
linear array (ULA), as shown in Figure 3a,b, the relation-
ship between the ith and lth microphone signal is equal
to

xi[n] = x�[n] e−jψi�[n] (9)

ψi�[n] = 2π fn
di� · cos(ϕ)

c
, (10)
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Figure 2 Sixty-four gammatone-like weighting functions.

where ψi� describes the phase, depending on the cen-
ter frequency fn at frequency index n, the distance di�
between microphones i and �, and the speed of sound c.
Figure 3b depicts the definition of the DOA relative to the
microphone array used throughout this paper. Without
additional noise, the CPSD can then be understood as

�̂i�[n, λ] = α�̂i�[n, λ − 1] + (1 − α) |yi[n]|2 e jψi�[n].
(11)

For the joint DOA and pitch estimation, a 2D DOA/pitch
pattern will be computed using the CPSD [22]. Only
voiced signals will be considered as relevant sources,
where it is assumed that these speech signals consist
of a fundamental frequency f0 (pitch) and multiple har-
monics. We use a harmonic sieve in order to estimate
the pitch of the speech signal. This is shown in Figure 4,
where the underlying concept of a harmonic sieve is pre-
sented, assuming different pitch values up to the fourth

harmonic. The indices of the analyzed frequency bins of
the harmonic sieve are defined as

np =
⌊
p · f0

fs
· N + 0.5

⌋
︸ ︷︷ ︸

round

, p = 1 . . .P, (12)

where p denotes the harmonic, N is the frame size, and fs
is the sampling frequency. Only signal components corre-
sponding to the harmonic sieve will be considered for the
estimation. The harmonic sieve is computed for all values
in the considered pitch range. For the exemplary har-
monic sieve in Figure 4, the third example (f0 = 200 Hz)
would result in the best estimate, since the pitch of the
signal and the harmonic sieve match. In [22], two differ-
ent types of harmonic sieves are proposed, either based
on cross-correlation or based on the CPSD. In this paper,
we will only consider the CPSD-based version.

(b)(a)

Figure 3 Direction of arrival. (a) Geometrical interpretation of the relation between direction of arrival ϕ and distance di� between microphones i
and �, assuming a single speech source and a plane sound wave in free field condition. (b) Definition of the direction of arrival ϕ relative to the
microphone array.
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Figure 4 Harmonic sieve with four different pitch values f0 up to the fourth harmonic (P = 4; black lines). The exemplary harmonic signal
consists of equally spaced triangles. Best estimation results would be achieved with example 3 (f0 = 200 Hz) where the pitch of the signal and
harmonic sieve match.

In addition to pitch estimation, the DOA estimation is
performed by analyzing the phase ψi�[n] of the CPSD. To
this end, the harmonic sieve is applied to the recombined
CPSD in Equation 8, where the amplitude |�̂i�[n]| and
the phase ψi�[n] are treated differently to obtain the 2D
DOA/pitch pattern ρi�(ϕ, f0) as follows:

ρi�(ϕ, f0) =
P∑

p=1

∣∣∣�̂i�
[
np
]∣∣∣ · T {ψ̂i�

[
np
]− ψ0

i�
[
np
]}
(13)

ψ0
i�
[
np
] = p · 2π f0 di� · cos(ϕ)

c
(14)

ψ̂i�
[
np
] = arg

{
�̂i�
[
np
]}

, (15)

where ψ̂i�
[
np
]
denotes the phase of the CPSD, andψ0

i�
[
np
]

denotes the expected phase for a combination of pitch
f0 and DOA ϕ. The sum is taken over the P discrete
frequency bins np belonging to the harmonic sieve. The
amplitude |�̂i�

[
np
] | encodes pitch information due to the

harmonic multiples of f0, whereas DOA information is
encoded in the phase ψ̂i�

[
np
]
. The result for all consid-

ered combinations of pitch values f0 and DOA values ϕ

are stored in the 2D pattern ρi�(ϕ, f0). For computational
efficiency, the values np and ψ0

i�
[
np
]
can be calculated

beforehand and stored in look-up tables. Figure 5 shows
the magnitude and phase spectrum of the harmonic sieve

filter for a speech signal. The example depicts the case
in which the harmonic sieve fits to the pitch of the
speaker.
The operator T {·} in (13) can be considered as an addi-

tional phase transform. Different phase transforms T {·}
are possible in order to enhance the 2D pattern ρi�(ϕ, f0),
which are all real-valued, even, and 2π periodic functions
[22]. These transforms increase the impact of the phase
weighting on the harmonic sieve (cf. Equation 13). The
transform used in this contribution is the one proposed in
[22], i.e.,

T {χ} = 1
1 + β − cos(χ)

. (16)

For χ , we use the mismatch between ψ0
i�
[
np
]
and

ψ̂i�
[
np
]
as stated in Equation 13, where the parameter

0 < β ≤ 1 affects the width of the preferred direc-
tion. A small mismatch from 0 or a multiple of 2π
causes a large weighting factor. Accordingly, a large mis-
match in χ leads to a small weighting factor. Hence,
if the pair ϕ, f0 corresponds to a source, the ampli-
tude |�̂i�

[
np
] | is weighted more. Figure 6 depicts the

case in which ψ0
i�
[
np
]

corresponds to the measured
phase ψ̂i�

[
np
]
, and the transform T {·} is large for the

analyzed frequency bins (marked by vertical dashed
lines).
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(b)(a)

Figure 5 CPSD of a speech signal with a pitch of f0 = 164 Hz. (a) Amplitude. (b) Phase. The dotted lines represent a harmonic sieve filtering at
the discrete frequency positions np with p = 1 . . . P and P = 9. In this case, the pitch of the the signal and the harmonic sieve match.

A cepstral weighting (cf. Figure 1) of the 2D pattern
ρi�(ϕ, f0), based on the cepstrum of the cross-correlation,
was proposed in [23] to further increase the pitch esti-
mation for disturbed input signals. The cepstrum is
computed on the inverse STFT of the logarithm of the
amplitude of the spectrum yi[n]. This transform leads to
an additive representation of the signal components rather
than a multiplicative one in the superimposed spectrum
[33]. Thus, the so-called quefrency [35] for a dominant
peak can be interpreted as a pitch candidate and the pitch
relevant part of the cepstrum can be used as a weighting
function.
In the post-processing, a particle filter is applied to the

2D pattern ρ(ϕ, f0), combined of DOA and pitch esti-

mate. The particle filter tries to represent an unknown
probability function by using a sequential Monte Carlo
simulation with a set of particles and respective prob-
abilities. The particles νu[λ] for frame λ incorporate
the DOA ϕu[λ], angular velocity ωu[λ], and pitch f u0 [λ],
i.e.,

νu[λ] = [ϕu[λ] ,ωu[λ] , f u0 [λ]
]
, u = 1 . . .U , (17)

where U denotes the total number of particles.
Each particle νu[λ] has a weight ξu representing

its probability. The evolution of the particles can be
described in two stages. First, the state of a particle is
predicted using the particle νu[λ − 1] from the previous

Figure 6 Phase transform T {χ}, in case whenmeasured (solid black) and expected (dashed black) phase are close. The gray dotted line is
the difference χ = ψ̂i�[n]−ψ0

i�[ n] between both phases. The transform T {χ} (solid gray) produces a high value at frequency bins relevant for the
harmonic sieve (assuming matching phases) and furthermore acts as an unwrapping function.
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frame, taking into account possible physical restrictions.
The pitch change is described using

f u0 [λ] = f u0 [λ − 1]+N
fs

· βf · r, (18)

where r is a Gaussian distributed random variable, and
βf is the pitch shift prediction value. In addition, it is
assumed that the pitch only changes within a certain
range. The DOA change is described using the so-called
Langevin Model [37], i.e.,

ωu[λ] = aϕωu[λ − 1]+bϕr (19)

ϕu[λ] = ϕu[λ − 1]+N
fs

ωu[λ] (20)

aϕ = e−βϕ
N
fs (21)

bϕ = ω̄

√
1 − a2ϕ · 180

◦

π
, (22)

where ω̄ is the steady-state angular velocity, and βϕ is the
DOA shift prediction value. In the second stage, we use
the 2D pattern ρ(ϕ, f0) as a pseudo-likelihood function to
determine the weights ξu, i.e.,

ξu = ρ
(
ϕu[λ] , f u0 [λ]

)
, (23)

where subsequently, the sum of all weights is normal-
ized to unity such that

∑U
u=1 ξu = 1. The final DOA and

pitch estimate for time frame λ is obtained by summing all
weighted particles, i.e.,

ϕ̃[λ] =
U∑

u=1
ξu · ϕu[λ] (24)

f̃0[λ] =
U∑

u=1
ξu · f u0 [λ] . (25)

To avoid the so-called degeneracy problem, we use the
systematic resampling approach, as proposed in [38], and
an additional module for removal and addition of parti-
cles, as proposed in [26]. The advantages of a particle filter
compared to a simple maximum search is based on its
inherent tracking capabilities and its robustness against
reverberation [37]. This is because in adverse conditions,
the 2D pattern ρ(ϕ, f0) does not exhibit a clear main
peak at the source positions, but instead a fuzzy some-
times biased area with multiple peaks is observable. The
particle filter can be considered as a self-adapting smooth-
ing function of the estimate due to the predicted source
behavior and the imposed physical restrictions of this
behavior.

2.3 Methods to increase the robustness
For a single speaker scenario and clean speech record-
ings, the basic DOA and pitch estimation algorithm
in [23] performs quite well. However, its performance
decreases in noisy and reverberant conditions as well as
inmulti-speaker scenarios. Different extensions have been
proposed in [23-27] to increase the robustness of the
algorithm in various aspects. The above stated subgroup-
ing of the spectra (cf. Equation 5) as well as the already
mentioned cepstral weighing [23], both part of the core
algorithm and discussed in Section 2.2, are two of these
extensions.
In the following sections, we will explain three novel

extensions, namely, a spectral comb filter to better
cope with concurrent speakers, a generalized cross-
correlation (GCC)-phase transform (PHAT) weighting
function to improve the DOA estimation accuracy, and
a multi-channel cross-correlation approach to improve
the robustness against noise and reverberation. The order
of the extensions corresponds to their occurrence in the
algorithm, cf. Figure 1.

2.3.1 Spectral comb filter
In [25], the authors observed that if more than one source
is active simultaneously, a dominant source masks other
concurrent sources in the CPSD �̂i�[n] and eventually in
the 2D pattern ρi�(ϕ, f0). Assuming the number of sources
Q is known, we propose to introduce a comb filter γ [n]
in order to suppress components of the CPSD �̂i�[n]
corresponding to already estimated sources, i.e.,

∣∣∣�̂′
i�[n]

∣∣∣ = ∣∣∣�̂i�[ n]
∣∣∣ · γ [n] (26)

γ [n] =
{
0 , if n ∈

[
n′
p − βc, n′

p + βc
]
, with p = 1 . . .P

1 , else.
(27)

The parameter βc indicates the width of one tooth of the
comb filter, and P denotes the number of teeth in the comb
filter, which is equal to the number of considered harmon-
ics in Equation 12. The comb filter γ [n] only depends on
already estimated pitch values f̂0, i.e.,

n′
p =

⌊
p · f̂0

fs
· N + 0.5

⌋
︸ ︷︷ ︸

round

, p = 1 . . .P. (28)

Using estimated pitch values f̂0, the spectral comb filter
is build to suppress the influence of the already estimated
speech sources in the CPSD; this leads to a more robust
estimation of the remaining speech sources. If the concur-
rent sources are not yet estimated in the current frame,
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the pitch estimate from the previous timeframe λ − 1 is
used. Accordingly, if there is no previous estimate avail-
able, the very first pitch estimate is determined using the
unmodified |�̂i�[n]| in Equation 13.
For each time frame, the filtering is applied repeatedly to

the original CPSD �̂i�[n] as often as sources are estimated.
All successive processing steps, including the harmonic
sieve, are repeated respectively. Figure 7 illustrates the
effect of the comb filter for two concurrent sources. It can
be seen that the secondary source is suppressed, whereas
the target source is highlighted.

2.3.2 GCC-PHATweighting
When using the core algorithm discussed in Section 2.2,
the 2D pattern ρi�(ϕ, f0) exhibits a wide spread of the
peaks with regard to the DOA ϕ. Similar to the cepstral
weighting, which aims to improve the pitch estimation, we
propose a second weighting function wi�(ϕ) which aims
to improve the DOA estimation accuracy. This extension
is derived from the GCC-PHAT algorithm [3], not used

as a DOA estimator itself, but only as a weighting function
of the 2D pattern ρi�(ϕ, f0), i.e.,

ρ
phat
i�
(
ϕ, f0

) = ρi�
(
ϕ, f0

) · wi�(ϕ) (29)

wi�(ϕ) = rphati�

[⌊
di� · cos(ϕ) · fs

c

⌋]
, (30)

where rphati� [k] denotes the resampled generalized cross-
correlation between the microphone signals i and � using
the phase transform PHAT weighting [3]. The weight-
ing function wi�(ϕ) can be interpreted as a warped
extract of the cross-correlation with respect to the DOA
ϕ and the microphone distance. In Figure 8, the upper
graph depicts an example of a complete GCC-PHAT,
whereas the lower graph only shows the relevant part
for the DOA estimation, which is used as a weighting
function.
Please note that in [25], a different GCC-PHAT exten-

sion was proposed, in which the central part of the

Figure 7 2D pattern ρ(ϕ, f0) of joint DOA and pitch estimation. (a) Resulting pattern for two concurrent sources with f0,1 = 132 and
f0,2 = 175 Hz and DOA ϕ1 = 63° and ϕ2 = 124° without spectral comb filtering. (b, c) The patterns after spectral comb filtering for each of the
sources. The suppressing influence of the comb filtering is clearly visible. Real recorded vowel utterances from two different speakers where used as
sources. The dotted crosses indicate the true source positions. (a) original pattern ρ(ϕ, f0). (b) ρ(ϕ, f0) after comb filter for source 1. (c) ρ(ϕ, f0) after
comb filter for source 2.
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Figure 8 GCC-PHAT weighting. The upper graph depicts a complete GCC-PHAT of two speech signals at different DOA, recorded with a single
microphone pair (di� = 22 cm). The lower graph depicts only the DOA relevant informations according to Equation 30, whereby the x-axis is
transformed to DOA values. The speech sources were located at 63° and 124° relative to the microphones.

unweighted cross-correlation is replaced with the GCC-
PHATweighted cross-correlation. Afterwards, in contrast
to the GCC-PHAT weighing proposed here, a time-
domain-based harmonic sieve is applied to the cross-
correlation to obtain the 2D pattern ρi�(ϕ, f0).

2.3.3 Multi-channel cross-correlation
Up to now, we have discussed methods and extensions to
compute the 2D pattern ρ

phat
i� (ϕ, f0) using onemicrophone

pair i and �. An intuitive approach to combine multiple
microphone pairs is the arithmetic mean of all 2D pattern,
as already performed in [22]. However, averaging is sensi-
tive to microphone malfunctions and mutual cancelation
of opposite erroneous estimates. Therefore, we introduce
a more sophisticated method based on the multi-channel
cross-correlation (MCCC) [34], which exploits the redun-
dancy among multiple microphones pairs and can be
understood as the generalized multi-channel extension of
the cross-correlation. We adapted the MCCC to the joint
DOA and pitch estimation problem, in order to generate
an overall 2D pattern using multiple microphone pairs.
First, a M × M matrix P(ϕ, f0) with the 2D pattern of all
microphone pairs is constructed, i.e.,

P
(
ϕ, f0

) =

⎛
⎜⎜⎜⎝

ρ11
(
ϕ, f0

)
ρ12
(
ϕ, f0

) · · · ρ1M
(
ϕ, f0

)
ρ21
(
ϕ, f0

)
ρ22
(
ϕ, f0

) · · · ρ2M
(
ϕ, f0

)
...

...
. . .

...
ρM1

(
ϕ, f0

)
ρM2

(
ϕ, f0

) · · · ρMM
(
ϕ, f0

)

⎞
⎟⎟⎟⎠ ,

(31)

which is a symmetry matrix, since ρil(ϕ, f0) = ρli(ϕ, f0).
Similarly to [34], the determinant det(P(ϕ, f0)) of this
matrix is subsequently used to define the overall 2D pat-
tern, i.e.,

ρ
(
ϕ, f0

) = 1 − det
(
P
(
ϕ, f0

))
. (32)

Although it has been shown in [34] that the MCCC
always lies between 0 and 1, this does not hold anymore
for ρ(ϕ, f0) defined in Equation 32.
The adaptation of the MCCC algorithm shows two

advantages compared to the arithmetic mean. Firstly, it
is robust against malfunctions of single microphones.
In case of defective microphones, only the remaining
microphones are taken into account for the estimation.
Secondly, if two microphone signals, highly or perfectly,
match (with regard to the considered pitch andDOA com-
bination), the overall result becomes 1, independent of the
remainingmicrophones and opposite erroneous estimates
no longer cancel themselves.

3 Evaluation
We have conducted experimental evaluations for different
acoustic conditions and scenarios. Three different sce-
narios with increasing complexity are evaluated. In Sce-
nario 1, two simultaneous speakers at fixed positions are
simulated. In Scenario 2, the two speakers move stepwise
while speaking. In the most difficult Scenario 3, the two
speakers move stepwise on intersecting pathways. Mea-
sured and simulated room impulse responses (RIRs) are
used to generate the microphone signals. Reverberation
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times RT60 ranging from 0 to 560ms, SNRs from 0 to
20 dB, and noise free simulations (SNR = ∞) are used.
A performance comparison between the core algorithm
discussed in Section 2.2 and the extensions proposed in
Section 2.3 will be presented in terms of DOA estima-
tion hit rate Aϕ and pitch estimation hit rate Af , as well as
root-mean-square error (RMSE) of the DOA estimates.
A comparison with other state-of-the art joint DOA and

pitch estimators (cf. Section 1) was not conducted since
those algorithms assume single-source scenarios and do
not support estimation of multiple sources without intro-
ducing further extensions which is beyond the scope of
this paper.

3.1 Setup and performance measures
The evaluation was carried out for a conference room
(cf. Figure 9) using a microphone line array with M = 6
microphones (inter-microphone distance 0.22m), result-
ing in 15 microphone pairs. A loudspeaker was used
as signal source at nine different positions with a dis-
tance of approximately 3.3m to the microphones at a
similar height of 1.21m to the microphones. The dis-
tance between the loudspeaker positions was 0.5m. The
real RIRs were measured at a sampling rate of 48 kHz
using the sine sweep method [39]. The reverberation time
of the conference room is approximately 560ms with a
direct-to-reverberant ratio (DRR) of 6.2 dB.
To investigate the performance for different reverber-

ation times, we used simulated RIRs that were gener-
ated with the image method [40,41]. The same relative
microphone and loudspeaker positions were used, but
inside a simulated rectangular room of size l = 4.6m ×
w = 5.1m × h = 2.5m. Reverberation times of RT60 =

{0, 100, 250, and 560ms} with direct-to-reverberant
ratios of DRR = {∞, 9.1, 2.5, and − 3.6 dB} were
simulated.
The clean microphone signals were generated by con-

volving the measured or simulated RIRs with clean speech
recordings which consisted of male and female speech in
German and English. Uncorrelated speech-shaped noise
was used as interference signal, played back from all
loudspeakers simultaneously. Speech and noise record-
ings were mixed at six different broadband SNR values
(measured at the first microphone) ranging from −5 to
20 dB.
Only the time frames labeled to contain active speech,

determined using a VAD [36], are considered for the joint
DOA and pitch estimation. These time frames are not fur-
ther distinguished in voiced or unvoiced speech, assuming
the most dominant part of speech is voiced speech.
For the STFT processing, the frame size was set to 85ms

(4,096 samples at 48 kHz sampling rate) using a von Hann
window with an overlap of 50%. The resulting spectrum
was subdivided inG = 64 partly overlapping gammatone-
like weighted subspectra. It should be noted that the
choice of the frame size is a trade-off between frequency
resolution of the harmonic sieve (cf. Equation 12) and
tracking capability of the particle filter (cf. Equations 18
and 20).
The smoothing parameter for the CPSD estimation in

Equation 7 was set to α = 0.1, which is chosen quite low to
better deal with simultaneous speech sources. The num-
ber of considered harmonics in Equation 12 was set to
P = 5. In practice, the number of harmonics P is unknown
or changes over time and has to be estimated [18-20,32].
The parameter β for the phase transform in Equation 16

Figure 9 Description of the usedmeasurement setup in the conference room. The conference room is of the Fraunhofer project group
HSA in Oldenburg. Room impulse responses were recorded using this setup and convolved with clean speech recordings used for the evaluation.
(a)Measurement setup. (b)Measuring circuit.
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was set to β = 0.2. The teeth width of the proposed
spectral comb filter extension in Equation 27 was set to
βc = 1.
In order to generate the 2D pattern ρ(ϕ, f0) in

Equation 13, the DOA values were analyzed from 0° to
180° with an interval of 1°, where 90° is perpendicular to
the microphone axis (cf. Figure 3) , and pitch frequencies
were analyzed from 70 to 280Hz with an interval of 1Hz.
Due to the test setup from Figure 9, only the estimates
in front of the array are considered to be valid source
positions.
For the particle filter, we used U = 50 particles per

source to simulate and track the source motion over time,
where the steady-state angular velocity was set to ω̄ =
1 rad/s; for the DOA shift prediction value, we used
βϕ = 10 s−1, and for the pitch shift prediction we used
βf = 5Hz/s.
The resulting performance was measured in terms

of hit rate Aϕ (DOA) and Af (pitch) for all processed
time frames with a fault tolerance of �ϕ = ±10° and
�f = ±10 Hz compared to the true source charac-
teristics. Results with a smaller tolerance interval, i.e.,
�ϕ = ±5° and �f = ±5 Hz, have also been calculated,
which lead to an overall reduced hit rate, but showing the
same performance comparison between the algorithms
under test. Although, it is known that beamformers can
be designed to have a more narrow beam width, a toler-
ance interval of �ϕ = ±10° and �f = ±10 Hz allows
for more robust beamformers in case of erroneous DOA
estimates.
Please note that the exact pitch of real speech signals,

required to calculate the hit rate Af , is unknown and can
only be estimated.We used the overall mean of the PEFAC
pitch estimate [17] of the clean speech signal as ground-
truth pitch.

3.1.1 Scenario 1: two speech sources at fixed positions
In Scenario 1, we investigated the influence of each pro-
posed extension on the hit rates Aϕ and Af separately. We
chose a scenario where two persons (male and female)
were simultaneously speaking at fixed positions. The sig-
nals were about 5 s long, wherein each speaker is pro-
nouncing one sentence. These signals were processed with
different extensions enabled, resulting in five different
setups shown in Table 1.
We performed simulations for an SNR of 15 dB and

noiseless and for reverberation times RT60 = 0 and
560ms. The results shown in Figure 10 are separated into
DOA and pitch results for every source separately.
As seen from Figure 10, the core algorithm in Setup I

performs moderately at SNR = ∞ and in an anechoic
environment, but deteriorates fast in adverse conditions
for both DOA and pitch estimation. Setup I seems to be
particularly susceptible to reverberation.

Table 1 Setup specification of used extensions

Setup Specification

I Core algorithm

II Core algorithm and spectral comb filter

III Core algorithm and spectral comb filter and GCC-PHAT weighting

IV Core algorithm and spectral comb filter and MCCC

V Core algorithm and spectral comb filter and GCC-PHAT weighting

and MCCC

With the spectral comb filter activated in Setup II, the
two sources are estimated equally good for the scenarios
without reverberation (top panel in Figure 10). Unfortu-
nately, there is no improvement observable for the sce-
narios with RT60 = 560ms (bottom panel in Figure 10).
Nevertheless, if the spectral comb filter is missing, as in
Setup I, we can see that the algorithm preferably estimates
the dominant source. Hence, in our implementation, this
filter is beneficial for tracking of two sources simulta-
neously. Considering that we are exploring multi-source
localization, in all following scenarios, the spectral comb
filter will be a ctivated using Setups II to V.
Using Setup III, focusing on the GCC-PHAT weighting

as our second extension, we can observe that especially
the DOA estimate improves considerably in all four SNR
and RT60 combinations, compared to Setup I. In compari-
son to Setups I and II, no substantial difference in the pitch
estimation can be identified.
In case of low reverberation, the MCCC extension

(Setup IV) also improves the DOA estimation compared
to Setup I, but deteriorates strongly with larger reverber-
ation times. The simulation results of Setup V, in which
all proposed extensions are enabled, show a good overall
performance for all different acoustic conditions. It seems
that the GCC-PHAT weighting has the largest influence
in terms of DOA estimation, in that the DOA hit rates
Aϕ of Setup III are equal or better than those of Setup V.
However, especially for RT60 = 560ms and SNR = 15 dB,
Setup V shows the best hit rate compared to all other
setups.
Figure 11 shows the pitch estimates for all processed

time frames. It can be observed that the pitch estimates
are less scattered using Setup V in Figure 11b, compared
to Setup II used in Figure 11a. This leads to a more robust
DOA estimation even if the estimated pitch does not cor-
respond to the true value. Again, the pitch estimation is
not very accurate, but it is still beneficial in case of multi-
source scenarios to improve the source differentiation.
At an SNR of 15 dB and a reverberation time RT60 of

560ms, we obtained DOA hit rates of Aϕ = 72% with
Setup V, compared to DOA hit rates of 5% obtained with
Setup II.
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Figure 10 Hit rates in terms of pitch (Aϕ ) and DOA (Af ). The rates are for two simultaneous speakers at fixed positions. Left panels show the
results for SNR = 0 dB; right panels shows the results for SNR = 15 dB. The top panels show the results for anechoic environment (RT60 = 0ms); the
bottom panels show the results for reverberant environment (RT60 = 560ms). The scenarios were processed with the core algorithm only (Setup I),
with single extensions activated, and up to the proposed algorithm (Setup V) (cf. Table 1).

3.1.2 Scenario 2: two stepwisemoving speech sources
Since we aim at real-world scenarios, moving sources are
considered in the second scenario. Two concurrent speech
sources move towards one another in a stepwise manner,
heading to the middle of the monitored area (cf. Figure 9).
We simply switched between adjacent loudspeaker posi-
tions to simulate the movements of the sources. At every
new position, the speaker repeated the same sentence.
The results shown in Figure 12 are calculated with Setup V
(bottom panel of Figure 12) and with Setup II (top panel
of Figure 12).
Figure 12(a) shows the results for several SNR con-

ditions from 20 to −5 dB without reverberation. It is

apparent that the proposed algorithm (Setup V) outper-
forms Setup II for all conditions, resulting in mean hit
rates Āϕ = 87.1% for Setup V over all SNR (bottom panel
in column (a)) and 55.3% for Setup II (top panel in column
(a)). The proposed algorithm (Setup V) results in high hit
rates even at low SNR.
Figure 12(b) shows the result for the measured RIRs

with reverberation time RT60 = 560ms and varying
SNRs. For both setups, II and V, the hit rate decreases
compared to RT60 = 560ms. However, the proposed
algorithm (Setup V) still outperforms Setup II by 25.7%
on average for all conditions. Figure 12(c) shows the
results for different reverberation times without noise

Figure 11 Pitch estimates f̃0[λ] (cf. Equation 25) for two concurrent speakers. (a) Setup II. (b) Setup V. Results for RT60 = 560 ms and
SNR = 15 dB. The dashed lines indicate the tolerance interval around the true pitch values.
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Figure 12 Hit rates Aϕ for two concurrent speakers moving towards each other. The top panels show the results for the core algorithm
including spectral comb filter (Setup II); the bottom panels show the results for the proposed algorithm (Setup V). Columns (a) and (b) show the
results for RT60 = 0ms and RT60 = 560ms (measured RIR) and varying SNR values. Column (c) shows the results for SNR = ∞ and several
simulated RIRs. The very right bar in each panel shows the mean hit rate Āϕ for the respective condition.

(SNR = ∞). Comparing the mean hit rates Āϕ , the pro-
posed algorithm (Setup V) achieves a hit rate of 87.7% and
surpasses the core algorithm with the spectral comb fil-
ter (Setup II) by 37%. Additionally, Figure 13 shows the
RMSEs of the DOA estimates for the same setups (II and
V) and conditions as in Figure 12.
For RT60 = 0ms (Figure 13(a)), Setup II achieves a

mean RMSE of 15.7°, whereas the mean RMSE of Setup V
decreases to 8.5°. For RT60 = 560ms (Figure 13(b)), the
mean RMSE for both setups increases to 19.6° for Setup II
and to 15.9° for Setup V. For different reverberation times
(Figure 13(c)), Setup V achieves a mean RMSE of 7.9°),
which is 10° better than the mean RMSE of Setup II.
Figure 14 shows the DOA estimates for all processed

time frames for the condition SNR = 15 dB and RT60 =
560ms. It can be observed that the proposed algo-
rithm (Setup V) achieves less scattered estimates than
Setup II.
The hit rates Aϕ in Scenario 2 are considerably higher

than in Scenario 1, especially for the core algorithm with
the spectral comb filter (Setup II). This is because wrong
DOA estimates tend to be located in the frontal direc-
tion (around ϕ = 90°), as can be seen in Figure 14a.
Due to the scenario definition, in which the sources move

towards ϕ = 90°, it occurred that erroneous estimates
are actually counted as correct hits, e.g., for time frames
around λ = 400, which does not necessarily indicate a
more reliable estimation but still increases the Aϕ value.
At an SNR of 15 dB and a reverberation time RT60 of
560ms, we obtained DOA hit rates of Aϕ = 73% with
Setup V, compares to DOA hit rates ofAϕ = 40% obtained
with Setup II.

3.1.3 Scenario 3: two intersecting speech sources
The proposed algorithm is intended to be capable of
tracking stepwise intersecting sources by using the parti-
cle filter. Therefore, in the third scenario, we considered
two speakers on crossing paths while speaking. The inter-
secting source movement can be considered as the most
ambitious, but also the most realistic scenario in this eval-
uation. The movement of the two concurrent speakers
was, again, simulated with a stepwise switching between
subsequent loudspeaker positions. Hence, at a certain
position, the two speech signals were emitted by a single
loudspeaker. Similar to Scenario 2, we performed three
experiments in which either the reverberation time RT60
or the SNR was kept constant and the other value varied
over the range of interest.
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Figure 13 RMSE (in degree) for two concurrent speakers moving towards each other. The top panel shows the results for the core algorithm
including spectral comb filter (Setup II); the bottom panel shows the results for the proposed algorithm (Setup V). Columns (a) and (b) show the
results for RT60 = 0ms and RT60 = 560ms (measured RIR) and varying SNR values. Column (c) shows the results for SNR = ∞ and several simulated
RIRs. The very right bar in each panel shows the mean RMSE for the respective condition.

The results for the third scenario are shown in Figure 15.
It can be observed that the mean hit rate decreases
slightly in all conditions, compared to the results in Sce-
nario 2. Again, the proposed algorithm (Setup V) out-
performs the core algorithm with the spectral comb filter
(Setup II) in all conditions, e.g., the mean hit rate Āϕ for
RT60 = 560ms (cf. Figure 15(b)) is 54.6% for Setup V and
only 34.5% for Setup II.

The corresponding RMSE is shown in Figure 16. It can
be observed that for all conditions, the proposed Setup V
achieves a better mean RMSE, i.e., Setup II achieves mean
RMSEs of 13.6° (RT60 = 0ms), 17° (RT60 = 560ms),
and 17.2° (SNR = ∞), but Setup V achieves better mean
RMSE of 11.3°, 15.6°, and 10.4°, respectively.
Figure 17 shows the DOA estimates for all processed

time frames λ for an SNR of 15–dB and a reverbera-

(a) (b)

Figure 14 DOA estimation ϕ̃[λ] with two speech sources moving towards each other. (a) Setup II. (b) Setup V. Results for SNR = 15 dB and
RT60 = 560ms (measured RIR). Setup V shows a significantly better performance than Setup II. The dashed lines indicate the tolerance interval
around the true DOA value.



Gerlach et al. EURASIP Journal on Audio, Speech, andMusic Processing 2014, 2014:31 Page 15 of 17
http://asmp.eurasipjournals.com/content/2014/1/31

Figure 15 Hit rates Aϕ for two concurrent speakers on crossing paths. The top panels show the results for the core algorithm including spectral
comb filter (Setup II); the bottom panels show the results for the proposed algorithm (Setup V). Columns (a) and (b) show the results for
RT60 = 0ms and RT60 = 560ms (measured RIR) and varying SNR values. Column (c) shows the results for SNR = ∞ and several simulated RIRs. The
very right bar in each panel shows the mean hit rate Āϕ for the respective condition.

Figure 16 RMSE (in degree) for two concurrent speakers on crossing paths. The top panels show the results for the core algorithm including
spectral comb filter (Setup II); the bottom panels show the results for the proposed algorithm (Setup V). Columns (a) and (b) show the results for
RT60 = 0ms and RT60 = 560ms (measured RIR) and varying SNR values. Column (c) shows the results for SNR = ∞ and several simulated RIRs. The
very right bar in each panel shows the mean RMSE for the respective condition.
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(a) (b)

Figure 17 DOA estimate ϕ̃[λ] for two concurrent speakers on crossing paths. (a) Setup II. (b) Setup V. Results for SNR = 15 dB and
RT60 = 560ms (measured RIR). Cross-over takes place at time frames 400 < λ < 550. The proposed algorithm (Setup V) is able to properly track the
movement.

tion time of 560ms. The corresponding DOA hit rates
are Aϕ = 63.2% for Setup V and Aϕ = 36.6% for
Setup II.
Due to the spectral comb filter, it is impossible for the

proposed algorithm to exactly estimate two sources com-
ing from a single direction. Nevertheless, Figure 17 shows
that the proposed algorithm is still capable to estimate the
movement of intersecting speakers. In particular, when
the speakers are crossing (at frames 400 < λ < 550), it can
be seen that the proposed algorithm estimates the sources
to be in close proximity to each other; however, they never
overlap.

4 Conclusion
In this paper, several extensions to the core joint DOA
and pitch estimation algorithm were proposed, which
were shown to increase the robustness and hit rate even
for difficult acoustic situations. In particular, the gener-
alized cross-correlation GCC-PHAT weighting achieves a
considerable improvement of the DOA estimation accu-
racy. To cope with multi-speaker situations, the spectral
comb filter was proposed, which achieves that the pro-
posed method is less unaffected by dominant sources and
more or less estimates the DOA and pitch of all sources
to the same extent. Furthermore, the MCCC extension
improves the robustness and accuracy and, in addition,
makes the algorithm less sensitive to microphone mal-
functions. Even intersecting sources can be tracked by
usage of a particle filter.
At an SNR of 15 dB and a reverberation time RT60

of 560ms, the proposed algorithm (Setup V) achieved
DOA hit rates of Aϕ = 72%, 73%, and 63.2% for two
fixed, moving, and intersecting speech sources, respec-
tively, compared to Aϕ = 5%, 40%, and 36.6% achieved
with the core algorithm including the spectral comb filter
(Setup II).
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