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Abstract 

A single type of signal processing means that it is difficult to analyze vibration signals 
comprehensively and effectively. By comprehensively using wavelet analysis tech-
niques, a comprehensive and in-depth study of aero-engine vibration conditions 
is realized as a way to carry out health management. By introducing various types 
of wavelet analysis techniques and using Labview2022 programming, corresponding 
signal processing tools are developed for the analysis of the collected vibration signals. 
The comprehensive analysis of aero-engine vibration signals based on the wavelet 
transform method is realized, and the corresponding products are successfully applied 
in engineering practice.
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1 Introduction
Aero-engine is an extremely precise industrial product, which is difficult and costly to 
develop [1]. Aero-engine is the core component of the aircraft, whose good condition is 
related to the safety and reliability of the aircraft. Therefore, the maintenance require-
ments of the aircraft engine are high [2].

For industrial products, process-wise, frequent disassembly, and installation dur-
ing maintenance is detrimental to the reliability of the equipment and can even lead to 
fatigue of the mechanical components, thus endangering the safety of the equipment [3, 
4]. Therefore, nondestructive testing by radiation detection, electromagnetic testing, and 
vibration testing has received a great deal of attention in the field of engineering technol-
ogy. The study of aero-engine working conditions by vibration signal measurement is 
considered the most intuitive and effective inspection method in the industry [5, 6].

However, for signal analysis, it is often difficult to use a single analysis method 
to achieve the purpose of comprehensive investigation, and it will show its disad-
vantage when analyzing the signal of a specific condition. Therefore, here we intro-
duce a variety of analysis methods based on wavelet transform to achieve the goal of 
comprehensive analysis of the signal. In this study, LabVIEW2022 is used to develop 
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signal processing tools, and a certain type of aero-engine is used as an experimental 
measurement object for diagnostic analysis.

2  Design and implementation of system functions
2.1  Function designs

By applying the previously designed vibration signal wireless acquisition module 
based on 2.4G technology development (shown in Fig. 1), the aero-engine vibration 
signal is acquired and stored in the computer for analysis.

The wavelet transform window changes with the change of frequency and incorpo-
rates the idea of Fourier local transform, which can be used to analyze the signal by 
highlighting the features of the corresponding aspects flexibly through the transform 
[7, 8]. The specific analysis functions are developed based on wavelet transform, and 
there are three types: multi-resolution analysis based on discrete wavelet transform; 
multi-scale analysis based on wavelet transform; and two-dimensional wavelet trans-
form analysis. The functional design of the system is shown in Fig. 2.

Fig. 1 The physical picture of vibration signal wireless acquisition module

Fig. 2 The schematic of system functional design
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2.2  Principle of analysis tools

2.2.1  Principle of multi‑resolution analysis based on discrete‑time wavelet transform

Signal flow exists in a discrete signal pattern in a computer. The multi-resolution dis-
crete wavelet transform analysis can be represented in the following concrete form 
[9, 10]. Let 

{

Vj

}

 be a series of closed subspaces in L2(R) with j ∈ Z . To claim that 
{

Vj

}

 , j ∈ z is a multi-resolution analysis, the following six conditions must be satisfied 
simultaneously [11].

① There exists 
(

j, k
)

∈ Z2 with x(t) ∈ Vj , then x
(

t − 2jk
)

∈ Vj

② There exists j ∈ Z, vj ⊃ vj+1 , i.e. · · ·V0 ⊃ V1 ⊃ · · · vj ⊃ vj+1 · · ·
③ There exists j ∈ Z, if x(t) ∈ Vj , then x

(

t
2

)

∈ vj+1

④ 

⑤ 

⑥ There exists θ(t) , such that 
{

θ(t − k)
}

 the Riesz basis in V0 and k ∈ Z

Let V0 be a Hilbert space and { θk = θ(t − k)},k ∈ Z be a set of vectors in V0 whose 
number is the same as the dimension of V0. Any element x in V0 can be tabulated as a 
linear combination of θk [12].

If

is linearly independent and there exists a constant 0 < A ≤ B < ∞ such that

Then { θk = θ(t − k)},k ∈ Z is the Riesz basis in V0 [11].
Let 

{

Vj

}

, j ∈ Z be a multi-resolution analysis and φ(t) be a scale function. If its Fou-
rier transform can be given by the following equation

and make
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Then, φj,k(t) is an orthogonal normalized basis in Vj for all j ∈ Z.

2.2.2  Principles of wavelet transform multi‑scale analysis

The multi-scale analysis consists of a column of subspaces 
{

Vj

}

, j ∈ Z of L2(R), 
where L2(R) denotes the Hilbert space of all square productable functions, and R and 
Z denote the set of real numbers and the set of integers, respectively [13–15]. The 
multi-resolution analysis allows to establish the dual scale equation of the scale func-
tion φ(t), i.e., the scale function at one scale can be derived from its own linear combi-
nation at the next scale [16–18]. The scale function and the wavelet mother function 
are related to each other, and the wavelet mother function ψ(t) can be obtained from 
the scale function φ(t).

hn is the scale function

where 
√
2 is the normalization factor and gn is the coefficient derived from the scale fac-

tor hn.
Let ψj,k(t) be the expansion and translation of the wavelet mother function ψ(t) , and 

ψj,k(t) form the orthogonal basis of f  . φok(t) is a telescoping translation of the ruler 
function φ(t) , then at any f (t) ∈ L2(R) , it can be decomposed as:

Among them,

J controls the resolution of the wavelet analysis.

2.2.3  Principle of two‑dimensional wavelet transform analysis

Since image and computer vision signals are generally two- or multidimensional infor-
mation, it is important to extend the signal analysis to two or more dimensions [19–21].

① Definition

Let f
(

x, y
)

∈ L2
(

R2
)

 , then its two-dimensional wavelet transform is:

(8)ϕ(t) =
√
2
∑

n∈Z
hnϕ(2t − n)

(9)ψ(t) =
√
2
∑

n∈Z
gnϕ(2t − n)

(10)f (t) =
∑

k∈Z
ckφok(t)+

∑

j<J ,k∈Z
dj,kψJ ,k(t)

(11)ck = ∫
R
f (t)φok(t)dt

(12)dj,k = ∫
R
f (t)ψj,k(t)dt
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where b1, b2 are the translation values of the basic wavelet function in two dimensions, 
and the two-dimensional wavelet function ψ

(

x, y
)

 should satisfy the tolerance condition:

It can be shown that the corresponding reconfiguration equation is

Discrete wavelet transform is obtained by discretizing the parameters a, b in Eq. (15): 
a =  2j, b1 = al, b2 = am:

In practice, commonly used wavelet functions are binary functions with separable 
variables.

Two-dimensional multi-scale analysis is derived from one-dimensional multi-scale 
analysis, which in turn leads to two-dimensional wavelet space and wavelet function.

Let 
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 be two multi-scale analyses of L2
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 , 

and ψ1(t),ψ2(t) be the corresponding orthogonal wavelet functions. The tensor product 
space formed by V 1

j  and V 2
j  is defined as

Let W 1
j  be the orthogonal complementary space of V 1

j  in V 1
j−1 and W 2
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nal complementary space of V 2

j  in V 2
j−1 , then we have the following expressions [22].
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Thus, the sequence of subspaces 
{

Ṽj

}

j∈Z satisfies the definition of multi-scale analysis, 

and thus we obtain a multi-scale analysis of the two-dimensional space (
{

Ṽj

}

j∈Z,ϕ
(

x, y
)

).

of which

Therefore, for any f
(

x, y
)

∈ L2
(

R2
)

 there is a unique decomposition.

where gj
(
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)

∈ W̃j , so the following expressions are available.

From orthogonality it is known that

From the definition of two-dimensional wavelet transform, we know that ajk ,m , βjk ,m , 
γ
j
k ,m are two-dimensional discrete wavelet transforms of f

(
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)

 ; ψ1
(

x, y
)

 , ψ2
(
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)

 , 
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(
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)

 are three different wavelet functions, all of them are functions of variable 
separation type consisting of a one-dimensional wavelet function and a scale func-
tion [23–25].

is the scale function corresponding to the three different wavelet functions.

2.3  Programming design

The project team used LabVIEW2022 to develop and implement functions based 
on discrete wavelet transform multi-resolution analysis, wavelet transform-based 
multi-scale analysis, and two-dimensional wavelet transform analysis.
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The system enables a comprehensive study of the signals, allowing engineers to 
have a deeper grasp of the vibration of the aero-engine under test. In this way, it can 
determine the working status of the aero-engine, realize the fault diagnosis, and play 
the role of health management. The program panel is shown in Fig. 3.

3  Experiments and discussion
3.1  Experiment I

A model of a small aero-engine (teaching prototype) was used as the experiment 
object. By starting the engine on the ground bench, the project team collected its 
vibration signal in normal operation (economic cruise state) as the normal reference 
signal. By setting the engine stuck fault, its vibration signal in that operation state was 
collected and compared with the former for illustration.

As shown in Fig. 4, the upper panel is the result screen of running a normal refer-
ence signal; the lower panel is the result screen of running a stuck fault vibration sig-
nal. The system interface presents a combination of four display frames: the original 
waveform map of the signal, the discrete wavelet transform-based multi-resolution 
analysis map, the wavelet transform-based multi-scale analysis map, and the two-
dimensional wavelet transform analysis map. In general, each analysis method can 
effectively deduce the characteristics of the signal. When this type of aero-engine is in 
cruise, the signal shows smoothness, indicating that the unit is running steadily; when 
it is in a stuck state, the plot boxes of each method demonstrate the corresponding 
state characteristics.

Fig. 3 The program panel diagram of system
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As shown in Fig. 5, the upper figure is the original waveform of the normal reference 
signal, and the lower figure is the original waveform of the vibration signal when the 
engine is in a stuck fault condition. The two can be clearly distinguished from each other 
by the smoothness of the signal.

Fig. 4 The overall result interface of experiment I

Fig. 5 Experiment I: Comparison of the original waveform diagram of the signals
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As shown in Fig. 6, the left and right figures show the results based on the discrete 
wavelet transform multi-resolution analysis of the above signals: the left figure presents 
the results for the normal reference signal, and the right figure presents the results when 
it is in a stuck fault condition. There is a clear distinction between the two features.

As shown in Fig. 7, two signals are presented based on the multi-scale analysis of 
the wavelet transform: the upper panel shows the results of the analysis of the nor-
mal reference signal; the lower panel shows the results of the analysis of the signal 
when the engine is in a stuck fault condition. The interface has 3 display windows, 
and the differences between the two are very obvious when examined in terms of the 
periodicity and smoothness of the signals.

As shown in Fig.  8, what is presented is a plot of the signal after analysis by 2D 
wavelet transform: the upper plot is the result of analyzing the normal baseline sig-
nal; the lower plot is the result of analyzing the signal when the engine is in a stuck 

Fig. 6 Experiment I: Multi-resolution analysis of signals based on discrete wavelet transform

Fig. 7 Experiment I: Wavelet transform multi-scale analysis of signals
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fault condition. Two-dimensional mapping has the property of showing the energy 
condition of the signal, so it is practical to examine the signal condition from the 
smoothness of the signal and the regularity of the energy distribution. The normal 
reference signal has good smoothness, and the energy distribution shows obvi-
ous regularity; while in the stuck fault state, the signal smoothness is poor and the 
energy distribution varies widely. The differences between the above two signals are 
obvious.

Fig. 8 Experiment I: Analysis by two-dimensional wavelet transform for signals

Fig. 9 Overall results interface for Experiment II
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3.2  Experiment II

According to the same conditions as the previous experiment, a model of a small aero-
engine (teaching prototype) was used as the experimental object. Fixed on the ground 
bench to start, the project team collected its vibration signal in normal operation (eco-
nomic cruise state) as the normal reference signal. By setting up an engine sticky fault, 
the project team collected its vibration signal in that operating condition and compared 
it with the former for illustrative purposes.

As shown in Fig.  9, the upper panel is the result screen of running a normal refer-
ence signal; the lower panel is the result screen of running a sticky fault vibration sig-
nal. When this type of aero-engine is in a sticky state, the signal shows smoothness and 
a certain regularity in the energy distribution from the operation results of individual 
analysis methods. However, operation in a sticky state is also a fault.

As shown in Fig. 10, the upper figure is the original waveform of the normal reference 
signal, and the lower figure is the original waveform of the vibration signal when the 
engine is in sticking condition. From the characteristics of the waveform, the waveform 

Fig. 10 Experiment II: Comparison of the original waveform diagram of the signals

Fig. 11 Experiment II: Multi-resolution analysis of signals based on discrete wavelet transform
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graph of the vibration signal in the sticky state already has a certain smoothness. The 
differentiation of the signal characteristics is not as obvious as the previous stuck signal 
waveform. Therefore, it will affect the accuracy of fault determination using this tool.

As shown in Fig.  11, the left and right plots show the results based on the discrete 
wavelet transform multi-resolution analysis of the above signal. The left figure presents 
the results for the normal reference signal, while the right figure presents the results 
when it is in the sticky state. The features between the two are clearly distinguished.

As shown in Fig.  12, two signals are presented based on the multi-scale analysis of 
wavelet transform. The top panel is the result of analyzing the normal reference signal; 
the bottom panel is the result of analyzing the signal when the engine is in a sticky state. 
The interface has 3 display windows, and the differences between both are very obvi-
ous when examined in terms of the periodicity and smoothness of the signals, but the 
signal in the sticky state shows good periodicity and smoothness. The distinguishabil-
ity appears weaker than the previous card resistance signal. Therefore, it can affect the 
accuracy of the judgment using this tool.

Fig. 12 Experiment II: Wavelet transform multi-scale analysis of signals

Fig. 13 Experiment II: Analysis by two-dimensional wavelet transform for signals
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As shown in Fig. 13, the plot is presented after the signal is analyzed by two-dimen-
sional wavelet transform. The upper figure is the result of analyzing the normal reference 
signal; the lower figure is the result of analyzing the signal when the engine is in a sticky 
state. Although the plots of signals in the sticky state after processing by this method are 
somewhat distinguishable from those formed by the constant reference signal, they are 
more similar to the signals generated in the stuck state (as shown in Fig. 8) and are not 
very easy to distinguish. Therefore, it is not reliable to use this method as a single crite-
rion for fault type. By combining multiple analysis methods, we can analyze the signal 
comprehensively to achieve fault diagnosis and effective identification.

4  Conclusion
This study uses LabVIEW2022 to successfully implement a system for comprehensive 
analysis of aero-engine vibration signals based on the wavelet transform method, which 
can quickly carry out fault diagnosis based on aero-engine, and the design has achieved 
the expected goal.

The practical application proves that all sub-functions of the system can be operated 
effectively. For different processing requirements, the system can also flexibly set each 
parameter for detailed analysis. The tool has successfully served the front-line work and 
has been unanimously recognized and welcomed by engineers and technicians in related 
fields.

By using wireless communication technology and a wavelet analysis tool developed 
based on LABVIEW, the research team successfully realized wireless monitoring and 
troubleshooting of an aero-engine. In terms of design and application, the system, on the 
one hand, is able to monitor the operation of the aero-engine and, on the other hand, is 
able to carry out auxiliary diagnostics of the type of faults based on the visualization and 
analysis of the signals.
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