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Abstract 

Low-rank matrix completion is a hot topic in the field of machine learning. It is widely 
used in image processing, recommendation systems and subspace clustering. How-
ever, the traditional method uses the nuclear norm to approximate the rank function, 
which leads to only the suboptimal solution. Inspired by the closed-form formulation 
of L2/3 regularization, we propose a new truncated schatten 2/3-norm to approximate 
the rank function. Our proposed regularizer takes full account of the prior rank informa-
tion and achieves a more accurate approximation of the rank function. Based on this 
regularizer, we propose a new low-rank matrix completion model. Meanwhile, a fast 
and efficient algorithm are designed to solve the proposed model. In addition, a rigor-
ous mathematical analysis of the convergence of the proposed algorithm is provided. 
Finally, the superiority of our proposed model and method is investigated on synthetic 
data and recommender system datasets. All results show that our proposed algorithm 
is able to achieve comparable recovery performance while being faster and more 
efficient than state-of-the-art methods.

Keywords:  Matrix completion, L2/3 regularization, A new truncated schatten 2/3-
norm, Recommender system

1  Introduction
The problem of recovering an incomplete low rank or approximately low rank matrix 
with missing values, namely low rank matrix completion (LRMC), has attracted signifi-
cant attention in recent years. Such a problem is a central issue in the field of computer 
vision and machine learning, and can be found in various practical applications, such as 
recommender systems [1, 2], motion capture [3], video denoising [4], subspace cluster-
ing [5], and hyperspectral imaging [6]. Roughly, the methods for LRMC can be classified 
into two categories: the low rank matrix factorization methods and the rank minimiza-
tion methods. In this work, we only focus on the latter category. It is because the factori-
zation based algorithms are heavily rely on a prespecified rank [7], which is difficult to 
preestimated in some real applications.

It is well known that the rank function has nonconvex and discontinuous properties. 
Therefore, the rank minimization problem is NP-hard and is difficult to optimize. To 
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alleviate this problem, many researchers have suggested to relax the rank function and, 
instead, to consider the nuclear norm. Theoretical analysis illustrate that the nuclear 
norm, i.e., the sum of singular values of the matrix, is the tightest convex lower bound of 
the rank [8]. Candès and Recht have proven that [9], if the observed entries of the matrix 
are sampled uniformly at random and the matrix satisfies restricted isometry property 
condition, the target low rank matrix can be exactly recovered by nuclear norm mini-
mization. Because of this, the nuclear norm minimization gets its popularity and has 
been accepted as a very powerful method for the solution of low rank problems. During 
the past decades, a variety of algorithms have been proposed to solve the nuclear norm 
based model with strong theoretical guarantees, such as singular value thresholding 
(SVT) [10], accelerated proximal gradient with line search algorithm (APGL) [11], soft-
impute [12] and its accelerated version (AIS-Impute) [13]. Nevertheless, the relaxation 
of the nuclear norm is too loose to approximate the rank function. Thus, the algorithms 
mentioned above may only yield suboptimal performance in practice. One important 
reason is that the nuclear norm treats all singular values equally. Intuitively, large singu-
lar values should shrink less, and small singular values should shrink more. All in all, a 
further improvement is required.

A very natural idea is the suggestion of the use of nonconvex surrogate functions to 
approximate the rank function. The representative nonconvex surrogate functions 
include the schatten p-norm (0 < p < 1) [14], capped-l1 norm [15], log-sum penalty 
(LSP) [16], smmothly clipped absolute deviation (SCAD) [17], transformed l1 penalty 
[18, 19], and Laplace [20]. The empirical results demonstrate that these nonconvex sur-
rogate functions can achieve better performance than that of its convex counterpart. 
However, the resultant optimization problem is nonconvex, nonsmooth, and non-Lip-
schitz. It is a big challenge to solve these optimization problems efficiently. To this end, 
a number of algorithms, such as iteratively reweighted nuclear norm (IRNN) [21], fast 
nonconvex low rank learning (FaNCL) [22], matrix completion based on nonconvex 
relaxation (MC-NC) [23], double nonconvex nonsmooth rank (DNNR) relaxations func-
tion based method [24], and block-wise model dubbed differentiable low-rank learn-
ing (DLRL) [25], have been proposed to solve the nonconvex low rank approximation 
problems.

Another parallel research is to consider the different contributions of different rank 
components, with the weighted nuclear norm minimization (WNNM) [26, 27] being 
the most representative one. Comparing with the traditional nuclear norm minimiza-
tion, the weighted nuclear norm minimization scheme assigns different weights to dif-
ferent singular values such that decrease the punishment on larger singular values. In 
order to achieve better recovery performance, the weighted schatten p-norm minimi-
zation (WSNM) [28] is proposed to solve LRMC problem. By setting appropriate val-
ues for the weights and p, the weighted nuclear norm minimization can be viewed as a 
special case of the weighted schatten p-norm minimization. The WNNM and WSNM 
models have been successfully applied to deal with typical low level vision tasks, such 
as image denoising and background subtraction [27, 28]. However, both WNNM 
and WSNM do not take into consideration a priori rank information. The variance 
of data distribution within the target rank does not need to minimize, which means 
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that we only need to minimize the singular values in residual ranks. Along this line 
of research, the truncated nuclear norm (TNN) [29] and partial sum of singular val-
ues (PSSV) [30] have been proposed for low rank matrix recovery problems. Indeed, 
the TNN and PSSV can be regared as one of the concrete examples of WNNM and 
WSNM. Although TNN can achieve a more accurate and robust approximation to the 
rank function, it still suffer from some drawbacks. More specifically, the algorithms 
for solving the traditional TNN-based models are time-consuming and a prespeci-
fied parameter is difficult to preestimated. Recent studies in [31–34], and [35] have 
addressed partially these issues.

In this work, we continue such a study. Our aim is to establish a novel continuous 
but nonconvex regularizer namely Modified Schatten 2/3-Norm Minimization with 
Reweighting strategy (TSNMR) for LRMC problem. Subsequently, a more accurate and 
flexible model with TSNMR is build. As can be seen latter, our proposed model is fully 
consider the priori rank information, and achieves robust approximation to the rank 
function. Furthermore, its solution can be analytically expressed in a thresholding form. 
Based on this finding, a computationally efficient optimization method is designed for 
solving matrix completion problems. The contributions of this work are highlighted as 
follows: 

1.	 By virtue of the idea of TNN and WSNM, a nonvel continuous but nonconvex reg-
ularizer namely TSNMR is proposed for LRMA problem. Armed with it, a more 
accurate and flexible model is obtained. Meanwhile, the property of TSNMR is also 
analysed, and its closed-form solutions can be derived from a thresholding opera-
tor. By involving this finding, the resultant optimization model becomes more trac-
table.

2.	 An efficient and fast optimization algorithm with inexact proximal steps and Nester-
ov’s acceleration rules is designed to optimize the proposed model. Rigorous mathe-
matical proof of the proposed algorithm demonstrating that any accumulation point 
of its generated sequence is a first-order stationary point.

3.	 We apply the proposed TSNMR model to solve some typical low rank matrix com-
pletion problems, e.g., image inpainting.

4.	 Experimental results on synthetic data and color images demonstrate that our pro-
posed model can achieve superior performance than the state-of-the-art models.

The rest of this paper is organized as follows. Section  2 briefly reviews some related 
works. Section  3 presents the proposed model and develops its optimization method 
with rigorous convergence guarantees. Section 4 introduces the applications of our pro-
posed model to low level tasks. Section 5 reports and analyzes the experimental results. 
Finally, several concluding remarks are provided in Sect. 6.

Notations: Some notations used in this paper are listed in Table 1.
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2 � Background
In this section, we briefly introduce the closed-form thresholding formula for L2/3 regu-
larization and some widely used nonconvex low rank regularizers.

2.1 � Thresholding formulas for L2/3 regularization

The L2/3 regularization model was recently proposed by Xu et  al. [37] for solving the 
image deconvolution problem. It is believe that the L2/3 regularization is more effective 
than L1/2 regularization [36] in many practical applications. Mathematically, the L2/3 
regularization model can be represented as

where a ≥ 0 is a constant in R . It follows from [37] that the solutions of (1) can be ana-
lytically expressed by

where

and γ = 2/3(3(2�)3)1/4.

2.2 � Existing nonconvex low rank regularizers for LRMA

(1) Weighted nuclear norm With the aim of improving the flexibility of nuclear norm 
minimization, Gu et al. [27] proposed the weighted nuclear norm (WNN), which can be 
represented as
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Table 1  The summarization of notations

Notation Description

M ∈ R
m×n Matrix with size m× n

σi(M) = σi ith largest singular value of M

ui(M) = ui ith left singular vector of M

vi(M) = vi ith right singular vector of M

�M�∗ =
∑min{m,n}

i=1 σi(M) Nuclear norm of M

�M�F =
√

Tr(MTM) Frobenius norm of M

�M�p =
(

∑min{m,n}
i=1 σi(M)p

)1/p Schatten p-norm of M

�M1,M2� = Tr(MT
1M2) Standard inner product

∇f Gradient of a differentiable function f
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where X ∈ R
m×n , w = [w1,w2, · · · ,wn]T , and w1 ≥ w2 ≥ · · · ≥ wn ≥ 0 . Therefore, the 

WNNM model is obtained and it can be solved by weighted nuclear norm proximal 
(WNNP) operator

However, it is difficult to solve (5) due to the nonconvexity of WNNM. Fortunately, 
theoretical analysis of (5) reveals that it is actually a quadratic programming problem 
with linear constraints. Thus, the globally optimal solution of (5) can be achieved in 
closed-form.

Lemma 1  ([27]) Suppose that W ∈ R
m×n admits singular value decomposition (SVD) 

as U�VT , where � = Diag(σ ) , σ = [σ1, σ2, · · · , σr]T , and σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0 . The 
global solution to

is given by

where �′
ii = max(�ii − wi/2, 0).

(2) Weighted schatten p-norm Inspired by the Schatten p-norm and WNN, Xie et al. 
[28] proposed the weighted shatten p-norm (WSN), which can be represented as

WSN can be seen as a generalization of WNN, but it can approximate the rank func-
tion better than WNN. By this relaxation, the WSNM model could be obtained. To han-
dle such models efficiently, one need to consider the following nonconvex optimization 
problem.

Intuitively, solving (9) is nontrivial due to the noncovexity and nonsmoothness of the 
objective function. However, the following lemma shows that the optimal solution of (9) 
can be achieved by solving r independent subproblems, where r is the rank of W.

Lemma 2  ([28]) Suppose that W ∈ R
m×n admits SVD as U�VT , the optimal solution 

to

(4)�X�w,∗ =
∑

i

wiσi(X),

(5)X∗ = prox�X�w,∗(W) = arg min
X∈Rm×n

�W − X�2F + �X�w,∗.

(6)arg min
X∈Rm×n
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(7)X∗ = prox�X�w,∗(W) = U�′VT,
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(

∑
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wiσ
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i

)1/p

.

(9)X∗=prox�X�w,Sp (W)=arg min
X∈Rm×n

�W−X�2F + �X�w,Sp .
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is given by

where

It follows from [28] that (12) can be decoupled into r independent subproblems, and 
these subproblems can be effectively solved by generalized soft-thresholding (GST) 
algorithm (for more details about GST, please refer to [28]).

Comparing with the NNM models, the WNNM and WSNM models are fully consider 
the difference between different singular values, and achieve better approximation to the 
rank function. Nevertheless, these models do not take into consideration a priori rank 
information for the practical applications. Thus, they are still not accurate enough for 
solving real LRMC problems.

3 � The proposed model and its optimization method
In this section, we first introduce the definition of TSNMR and then establish the low 
rank matrix completion problem. By analysing the property of TSNMR, the optimiza-
tion method for the resultant model is proposed and its convergence property is ana-
lysed. Furthermore, we also discuss the adaptive regularization parameter.

3.1 � Problem formulation

In this work, we devise a novel continuous but nonconvex surrogate function, namely 
truncated schatten 2/3-norm minimization with reweighting strategy. More precisely, 
the TSNMR is defined as

where X ∈ R
m×n , r is the target rank, q = min{m, n} , ǫr+1 ≥ ǫr+2 ≥ · · · ≥ ǫq > 0 are set 

to sufficiently small positive numbers to avoid dividing by 0, and C > 0 is a constant. 
Our proposed TSNMR not only takes into consideration the importance of different 
rank components, but also fully considers the priori rank information.

Obviously, the function ψǫ
2/3,α(|t|) = C|t|2/3/(|t| + ǫ)2/3−α is concave for any 

α ∈ (0, 2/3] and ǫ > 0 . With the change of parameters α and ǫ , it is easy to verify that
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1, otherwise.
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where C = 1 . Therefore, with the proper choices of α and ǫi , we have

In other words, if we set α → 0+ and ǫ → 0+ , then Pǫ
p,α(X) is degraded to TNN in [29] 

and [30].
Armed with TSNMR, in this paper, we mainly focus on the following low-rank mini-

mization problem, which can be formulated as the form

where � > 0 is given parameter, � denotes the set of the locations of the observed 
entries, and P� denotes the orthogonal projector onto the span of matrices vanishing 
outside of � , i.e.,

3.2 � Solving scheme

Directly solving the nonconvex and nonsmooth optimization problem (16) is difficult. 
To make this issue tractable, we first define the following quadratic function

where f (Y ) = (1/2)�P�(Y )− P�(M)�2F and X ,Y ∈ R
m×n . For any µ > 0 , it is easy to 

find that F(X) = F�,µ(X ,X) . In what follows, we will reveal that any global minimizer of 
F(X) is also a global minimizer of F�,µ(X ,Y ) . The following lemma addresses this issue.

Lemma 3  Assume that µ ≤ 1/Lf  and X∗ is the global minimizer of F(X), then we have

Proof  Considering the objective function F(X) at X = X∗ , we have
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∗), ∀X ∈ R
m×n.

(19)F�,µ(X
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Although f is possibly nonconvex, from the assumption that f is differentiable with Lf
-Lipschitz continuous gradient, we can obtain that [40, 41]

Substituting (20) into (19) and setting Y = X∗ , we have

We complete the proof. �

By Lemma 3, we can conclude that the global minimizer of optimization problem 
(16) can be obtained by computing the optimal solution of F�,µ(X ,Y ) in optimization 
problem (17). Using the basic algebra calculation, we obtain that

where Bµ(Y ) = Y − µ∇f (Y ) . Ignoring constant terms of (22), the global minimizer of 
F�,µ(X ,Y ) can be obtained by solving the following optimization problem

Now the crucial thing we need to deal with is how to obtain the global minimizer of 
optimization problem (23). Thus, we extend the aforementioned well-known L2/3 regu-
larization to solve the resultant nonconvex optimization problem. Additionally, in the 
next section, we will show that its global optimal solution can be easily obtained in 
closed-form.

3.3 � Optimization

In this subsection, we will exploit an efficient and fast optimization method to optimize 
problem (16). The main obstacle in this method is how to solve the optimization prob-
lem (23). As mentioned above, owing to the nonconvexity of TSNMR, this problem is 
much more challenging. To this end, we first show that the global optimal solution of 
such problem can be efficiently achieved. In order to better address this issue, we intro-
duce the following lemma.

Lemma 4  (von Neumann [42, 43]) For any matrices A and B in Rm×n and assume that 
σ(A) and σ(B) are the singular value vector of A and B, respectively, then
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2
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,

(23)arg min
X∈Rm×n

1

2
�X − Bµ(Y )�2F + �µ
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(σi(Y )+ ǫi)2/3−α
.
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The case of equality occurs iff there exists a simultaneous SVD U and VT of A and B in the 
following form

By means of von Neummann’s lemma, we establish the following theorem, which 
reveals that the global minimizer of optimization problem (23) can be obtained in 
closed-form.

Theorem  3.1  Suppose that � > 0 , B = Y − µ∇f (Y ) admits SVD as UDiag(σ )VT . 
Let B = B̂+ B̃ = ÛDiag(σ̂ )V̂ T + ŨDiag(σ̃ )Ṽ T , where σ̂ = (σ1, · · · , σr , 0, · · · , 0) , 
σ̃ = (0, · · · , 0, σr+1, · · · , σq) , Û and V̂  are the singular vector matirces correspongding to 
the r largest singular values, Ũ and Ṽ  from the (r + 1) th to the last singular values. Then, 
the optimal solutions to

are given by

where �
′ = 2�µC/(σi(Y )+ ǫi)

2/3−α , and prox�,Pǫ
2/3,α(·)

(B) = B̂+ Ũ
(

Diag(H�(σ̃ ))
)

Ṽ
T 

with

Proof  Assume that τ = �µ and X admits SVD as U ′Diag(σ ′)V′T . Note that

where φi = (Cσ
′2/3
i )/((σi(Y )+ ǫi)

2/3−α).

By applying the von Neumann trace inequality in Lemma 4, we can obtain that 〈X ,B〉 
reaches its maximum value 

∑q
i σ

′
i σi if U = U ′ and V = V ′ . Therefore, we can get

Moreover, the Eq. (30) can be further rewritten as

(24)�A,B� ≤ �σ(A), σ(B)�.

(25)A = UDiag(σ (A))VT, B = UDiag(σ (B))VT.
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)T

.
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φi =
1

2
(�B,B� − 2�X ,B� + �X ,X�)+ τ
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It is easy to observe that Eq. (31) consists of simple quadratic equations for each σ ′
i  

independently. Thus, by using the first-order optimality condition and the closed-form 
thresholding formula for L2/3 regularization, we can obtain

Hence, the global optimal solutions to (26) can be achieved as

where �′ = 2�µC/(σi(Y )+ ǫi)
2/3−α , and

which are the desired results. We complete the proof. �

As can be seen from Theorem 3.1, solving the optimization problem (23) involves a full 
SVD step. As we all know, for any matrix B ∈ R

m×n , computing its SVD takes O(mn2) 
time. Therefore, when the scale of matrix B is large, directly computing its SVD may be 
time-consuming. Fortunately, from (29) in Theorem 3.1, we only need to compute the 
singular values larger than γ , which can be made more efficient by using partial SVD. 
Specifically, we first employ the power method [44, 45] algorithm to achieve a orthogo-
nal matrix Q ∈ R

m×t , and then perform SVD on a much smaller matrix. Inspired by [22, 
44], and [46], we establish the following lemma to address this issue.

Lemma 5  Assume that B has r̂ ≤ t singular values that are larger than γ , and let 
Ur̂Diag(σOr)V

T
Or  be the rank-r̂ SVD of B, then there exists an orthonormal matrix Q ∈ R

m×t 
(t ≪ n) , such that 

(1)	 span(Ur̂) ⊆ span(Q) , and
(2)	 prox�,Pǫ

p,α(·)(B) = Qprox�,Pǫ
p,α(·)(Q

TB).

Proof  The proof follows the footsteps of Proposition 1 in [44], and we omit it here. �

Since the partial SVD strategy is employed to compute the proxima operator in (27), 
this can be made the results inexact, meaning that

(31)

1

2
�X − B�2F + τ

q
∑

i=r+1

φi ≥
1

2

q
∑

i

(σ ′
i − σi)

2 + τ

q
∑

i=r+1

φi

= 1

2

r
∑

i=1

(σ ′
i − σi)

2 + 1

2

q
∑

i=r+1

(

(σ ′
i − σi)

2 + 2τφi

)

(32)σ ′
i =

{

σi, if i ≤ r
h2τC/(σi(Y )+ǫi)

2/3−α ,2/3(σi), if i > r

(33)X
∗ = B̂+ Ũ

(

Diag(H�′(σ̃ ))
)

Ṽ
T ,

(34)H�(σ̃ ) =
(

h
�, 23

(σr+1), · · · , h�, 23 (σq)
)T

,
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where ξk denotes the error in the proximal operator at the kth iteration.

With the representation (27), the TSNMR-based algorithm for solving the problem 
(16) is naturally proposed in Algorithm 1.

In convex optimization, the Nesterov’s acceleration rules are commonly used to speed 
up the convergence of first-order methods. Recently, this acceleration strategy has been 
successfully extended to solve the nonconvex optimization problem [47–50]. In this 
work, we try to integrate Nesterov’s acceleration strategy with our proposed algorithm. 
As can be seen from Algorithm 1, the accelerated iterate is obtained in step 8. Since the 
TSNMR is absent convexity, a monitor is needed to ensure that the objective value F can 
achieve a sufficient decrease (step 9). Specifically, if Vk is a good extrapolation, this iter-
ate is accepted (step 12); otherwise, we discard it (step 10). In order to make the Nester-
ov’s acceleration strategy more efficient, an alternative choice of the momentum stepsize 
[51] is employed (step 10 and step 12). When F(Xk) is larger than F(Vk) , such a scheme 
provides the opportunity to further exploit acceleration by enlarging the momentum β . 
Due to the successful application of Nesterov’s acceleration technique, the number of 
iterations of Algorithm 1 is greatly reduced.

Now the last issue is how to choose the regularization parameter � , which plays an 
important role in a regularization problem. In general, it is hard to select an optimal � . 
By virtue of the idea in [36], in this paper, we tune the optimal regularization parameter 
at kth iteration as

where r0 is the rank of the optimal solution of problem (16). Accordingly, the regulariza-
tion parameter � can be selected more adaptive and intelligent. Thus, the Algorithm 1 is 
free from the choice of regularization parameter during iteration.

(35)
Xk = prox�,Pǫp,α(·)(B) = {U|�Pǫp,α(U)+ 1

2
�U − B�2F

≤ ξk + �Pǫ
p,α(V )+ 1

2
�V − B�2F , ∀V ∈ R

m×n},

(36)� =
3
√
108

(

σr0+1(B)
)4/3(

σr0+1(Xk)+ ǫr0+1

)2/3−α

8µ
,
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3.4 � Convergence analysis

In this subsection, we will discuss the convergence of our proposed algorithm. First, we 
introduce some definitions that will be useful in this paper.

Definition 3.2  ([52]) The Freché t subdifferential of H at x is

where H : Rd → (−∞,+∞] is an extended real-valued function that is proper. The limit-
ing subdifferential of H at x is ∂H(x) = {u : ∃xk → x,H(xk) → H(x), ∂̂H(xk) ∋ uk → u , 
as k → ∞}.

Definition 3.3  ([52]) x is a critical point of H iff 0 ∈ ∂H(x).

Inspired by the pioneering works in [41, 47, 49, 52], we present the following lemma, 
which shows that Xk satisfies a sufficient decrease condition similar to lemma 1 in [53]. 
Its proof is provided in the Supplementary Material.

Lemma 6  If {ξk} is a decreasing sequence and 
∑K

k=1 ξk < ∞ , we have

In what follows, we give the following theorem to show that the Algorithm 1 achieves 
a bounded sequence making the objective function monotonically decreasing. The proof 
can be found in the Supplementary Material.

Theorem 3.4  The sequence {Xk} is generated by Algorithm 1 with µ ≤ 1/Lf  . If for all 
k ∈ N , ξk ≤ δ�Xk − Yk�2F , where δ ≤ 1/2− µLf /2 . Then, we have 

(1)	 {Xk} is bounded, and has at least one limit point.
(2)	 The objective function F is monotonically decreasing.
(3)	

∑+∞
k=1 �Xk − Yk�2F ≤ +∞ , which implies that limk→+∞ �Xk − Yk�2F = 0.

4 � Experiments
To illustrate the effectiveness of our proposed algorithm, in this section, we conduct two 
types of experiments based on the synthetic data and recommendation datasets. Specifi-
cally, we compare the proposed method with the following state-of-the-art matrix com-
pletion methods. 

(1)	 APGL[11] A nuclear norm-based matrix completion method uses the accelerated 
proximal gradient algorithm to solve the matrix completion problem.

∂̂H(x) =
{

u : lim
y�=x

inf
y→x

H(y)−H(x)− uT (y− x)

�y− x�2
≥ 0

}

,

(37)F(Xk) ≤ F(Xk−1)−
(

1

2µ
−

Lf

2

)

�Xk − Yk�2F + ξk

µ
.
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(2)	 AIS-Impute [13] A nuclear norm-based matrix completion method uses the accel-
erated and inexact soft-impute to solve the large-scale matrix completion problem.

(3)	 ASD [54] A decomposition-based method uses alternating steepest descent algo-
rithm to solve matrix completion problem.

(4)	 IRNN-TNN [21] A nonconvex-based matrix completion method uses iteratively 
reweighted nuclear norm algorithm to solve matrix completion problem.

(5)	 FaNCL-LSP [22] A nonconvex-based matrix completion method uses some accel-
erated scheme to solve matrix completion problem.

(6)	 DNNR(p = 2/3 ) [24] A matrix completion method based on double nonconvex 
nonsmooth rank relaxations.

(7)	 DLRL [25] A nonconvex based back propagation method uses multi-schatten-p 
norm surrogate function to solve matrix completion problem.

In the following experiments, the parameters of these algorithms are set accord-
ing to the recommendations of the original paper. For our algorithm, we set µ = 1.95 , 
β = (k − 1)/(k + 2) . All the algorithms are implemented in MATLAB R2014a on a Win-
dows server 2008 system with Intel Xeon E5-2680-v4 CPU (3 cores, 2.4 GHz) and 256 
GB memory.

4.1 � Synthetic data

The synthetic matrices M ∈ R
m×n with rank r are generated as M = MLMR + N  , where 

the entries of random matrices ML ∈ R
m×r and MR ∈ R

r×n are sampled i.i.d. from the 
standard normal distribution N(0,  1), and entries of N sampled from N(0,  0.1). In the 
following test, we set m = n and r = 5 . The symbol � stands for the location of observa-
tions, which are sampled uniformly at random. We let sr = |�|/mn to denote the sample 
ratio.

The performance of all algorithms is evaluated as: (i) the normalized mean squared 
error NMSE = �P�⊥(X −MLMR)�F/�P�⊥(MLMR)�F , where X is the recovered matrix 
and �⊥ denotes the unobserved positions; (ii) rank of X; and (iii) running time. We vary 
m in the range {1000, 2000, 3000, 5000} . For each algorithm, we repeat 5 times and report 
its average NMSE, rank and running time.

We report the average NMSE, rank, and running time in Table 2. As can be seen from 
Table 2, although all algorithms can attain satisfactory results, our proposed algorithm 
achieves the lowest NMSE value among all problems, which indicates that our pro-
posed algorithm has excellent performance. In terms of accuracy, we can find that our 
proposed algorithm runs fastest among all algorithms. Specifically, it is 2 and 8 times 
faster than ASD and FaNCL-LSP, respectively. We also observe that as the matrix size 
increases, the advantages of our algorithm become more pronounced. In addition, for 
large-scale low-rank matrix completion problem, our proposed algorithm can still solve 
it efficiently. For example, the running time of the proposed algorithm for solving prob-
lem with m = 105 , sr = 0.12% is within 1163.7 s (NMSE is smaller than 0.0140), while 
other algorithms cannot solve it at all or cannot get satisfactory results within this time. 
Therefore, taking both accuracy and converge speed into consideration, our proposed 
algorithm has the best recovery performance among these algorithms.
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4.2 � Recommendation

In this section, the Jester and MovieLens datasets will be used in our experiments to 
further demonstrate the effectiveness of our proposed method. There are six datasets 
that will be considered, namely Jester1, Jester2, Jester3, Jester-all, MovieLens-100K, and 
MovieLens-1 M, whose characteristics are shown in Table 3. The Jester datasets are col-
lected from the joke recommendation system, all of which are stored in three Excel files 
with the following characteristics. 

(1)	 Jester-1: 24,983 users who have rated 36 or more jokes;
(2)	 Jester-2: 23,500 users who have rated 36 or more jokes;
(3)	 Jester-3: 24,938 users who have rated between 15 and 35 jokes.

The MovieLens datasets are collected from the MovieLens website, and these datasets 
are characterized as follows. 

(1)	 Movie-100K: 100,000 ratings for 1682 movies by 943 users;
(2)	 Movie-1 M: 1 million ratings for 3900 movies by 6040 users.

The Jester1, Jester2, and Jester3 datasets are combined to form the Jester-all data-
set. In the experiment, we follow the setup in [35], which is to randomly select 50% 
of the observations for training and use the remaining 50% for testing. We use the 
root mean squared error (RMSE) and running time to evaluate the recovery perfor-
mance of the algorithms. The RMSE is defned as RMSE =

√

�P�̄(X −M)�2F/|�̄|1  , 
where �̄ is the test set, X is the recovered matrix. The test of each algorithm is 
repeated 5 times.

The recovery results regarding RMSE and running time are shown in Table  4. 
From Table  4, we can see that our algorithm has the best performance, that is, it 
achieves the smallest RMSE value in all problems. In addition, we can also find that 
our proposed algorithm is the fastest among all algorithms. As the size of data-
sets increases, some algorithms cannot get the recovery results in a satisfactory 
time, while our algorithm can run on all six datasets. This proves once again that 
our proposed algorithm has excellent performance in the field of low-rank matrix 
completion.

Table 3  Characteristics of the recommendation datasets

Dataset Row Column Rating

Jester1 24983 100 106

Jester2 23500 100 106

Jester3 24983 100 6× 105

MovieLens100K 943 1682 105

MovieLens1M 6040 3706 106
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5 � Conclusions
In this paper, we proposed a new non-convex regularizer for low-rank minimization 
problems. This regularizer is better able to induce low ranks, and the resulting optimi-
zation problem has a closed-form solution. Based on the proposed regularizer, we pro-
posed a more reasonable matrix completion model. Meanwhile, we designed an efficient 
optimization algorithm based on the first-order gradient method to solve the proposed 
model. It is simple to use and more suitable for large-scale low-rank matrix completion 
problems. The rationality of our proposed model and the efficiency of the algorithm is 
verified on a series of synthetic data and recommender system datasets. All results show 
that our proposed algorithm is able to achieve comparable recovery performance while 
being faster and more efficient than state-of-the-art methods.
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