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Abstract 

Multiple importance sampling combines the probability density functions of several 
sampling techniques into an importance function. The combination weights are the 
proportion of samples used for the particular techniques. This paper addresses the 
determination of the optimal combination weights from a few initial samples. Instead 
of the numerically unstable optimization of the variance, in our solution the quasi-
optimal weights are obtained by solving a linear equation, which leads to simpler 
computations and more robust estimations. The proposed method is validated with 1D 
numerical examples and with the direct lighting problem of computer graphics.
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1 � Introduction and previous work
Multiple Importance Sampling (MIS) [1, 2] combining several sampling techniques has 
been proven efficient in Monte Carlo integration. The weighting scheme of individual 
sampling techniques depends on the combined pdfs and also on the sample budgets, i.e., 
the number of samples generated with each of them.

This paper proposes a simple and efficient approach to automatically determine the 
sampling budgets of the combined methods based on the statistics of a few initial sam-
ples by solving a linear equation.

The organization of the paper is the following. In Sect. 2 the most relevant previous 
work is surveyed. Section 3 reviews the balance heuristic MIS. Section 4 presents the 
research problem of finding the optimum of weights and formulates it as the minimiza-
tion of the divergence of the integrand and the mixture density. Section 5 presents our 
new heuristics resulting in a linear equation and the results are shown in Sect. 6. The 
paper is closed with discussion and conclusions.

2 � Previous work
MIS has been originally proposed with allocating equal sample budgets for the combined 
techniques [1, 2]. In [3, 4] different equal sample number strategies were analysed. Adaptive 
budget allocation strategies have been examined in [5–10]. Sbert et al. [11] considered also 
the cost associated with the sampling strategies. Recently, a theoretical formula has been 
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elaborated for the weighting functions [12]. In [13] the balance heuristic estimator was gen-
eralized by decoupling the weights from the sampling rates, and implicit solutions for the 
optimal case were given.

These techniques offer lower variance and therefore theoretically outperform MIS with 
equal number of samples. However, equations determining the optimal weighting and the 
sample budget require the knowledge of the integrand. In computer graphics, for example, 
this integrand is not available in analytical form, so previous initial samples should be used 
for the approximation, which introduces errors in the computation.

It was pointed out in [14] that instead of the variance, the Kullback–Leibler divergence 
should be optimized since its estimator is more robust when just a few samples are avail-
able. Several authors have shown that the variance of an importance sampling estimator 
is equal to a Chi-square divergence [13, 15–17], which in turn can be approximated by the 
Kullback–Leibler divergence up to the second order  [18]. In [19] this approach has been 
generalized to arbitrary divergences and the relevance of Tsallis-divergence was empha-
sized. The optimal sample budget has also been obtained by neural networks [17, 20].

In all these methods, the optimality criterion is expressed by nonlinear equations. The 
solution of these equations prohibit the lumping of the samples into a few variables or alter-
natively, several iterations using different samples need to be executed. If the sample num-
ber is not too high, either the number of iterations is limited or a single iteration can utilize 
very few samples.

In this paper we focus on simple equations and robust estimations, and show that quasi-
optimal weights can be obtained directly from a linear equation where the few parameters 
to be stored are sums of integrand and pdf values.

3 � Balance heuristic MIS
Monte Carlo methods estimate integral µ =

∫

f (x)dx with random samples. Assume that 
we have m proposal pdfs pi(x) to generate the jth sample Xij of method i in the domain 
of the integral. With method i, Ni samples are drawn, so the total number of samples is 

m
i=1Ni = N .
The mixture density of all sampling techniques is

where weight αk = Nk/N  is the fraction of the sample budgets allocated to method k 
and α is the vector of the weights of the combined methods.

The balance heuristics estimator [1, 2] of the integral is based on this mixture density:

Its variance, normalized to N = 1 , is [13]

(1)p(α, x) =
m
∑

k=1

αkpk(x).

(2)µ ≈ F =
1

N

m
∑

i=1

Ni
∑

j=1

f (Xi,j)

p(α,Xi,j)
.

(3)V [F ] =
m
∑

i=1

αiσ
2
i ,
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where

and

4 � Optimization by minimizing the Kullback–Leibler divergence
The task is to find fractions αi that provide the minimal integration error with the 
constraint that the sum of sample numbers must be equal to the total sample budget, 
i.e. 

∑m
k=1 αk = 1.

As we are just estimating the integral, the integration error is not available. The 
variance of the estimator can be used instead, but it must be approximated from the 
available samples since neither can the variance be computed analytically. If the num-
ber of samples is small, then the variance estimator is numerically unstable and the 
variance estimates used in the optimization are unreliable. This uncertainty may sig-
nificantly affect the goodness of the final results.

Importance sampling looks for a probability density p(α, x) that mimics f(x) as much 
as possible. If we have non-negative integrand f(x) with integral µ , then the integrand 
scaled down by the integral g(x) = f (x)/µ is also a pdf. The importance sampling 
problem can be stated as finding the mixture pdf p(α, x) that minimizes its divergence 
from g(x) with the constraint that the sum of weights must be equal to 1.

Choosing the Kullback–Leibler divergence [18, 19]

and using Lagrange multipliers for the constraint, the following function must be 
minimized:

Taking the partial derivatives with respect to αi , we obtain that

are equal for each technique i when the solution is in the interior of the (m− 1)-simplex, 
i.e., for positive weights. As the Kullback-Leibler divergence is convex in α , Eq. 8 guaran-
tees a global minimum [19].

Forming the mixture of these equations, the value of Lagrange multiplier � can be 
determined:

(4)σ 2
i =

∫

f 2(x)

p2(α, x)
pi(x)dx − µ2

i ,

(5)µi =
∫

f (x)

p(α, x)
pi(x)dx.

(6)KL(g , p) =
∫

g(x) log

(

g(x)

p(x)

)

dx

(7)KL

(

f (x)

µ
, p(α, x)

)

+ �

(

∑

k

αk − 1

)

.

(8)
∫ (

f (x)

p(α, x)

)

pi(x)dx = �µ
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and thus � = 1.
While solving this equation, we only have n1 initial discrete samples {X1,1, . . . ,X1,n1} 

generated according to pdf p1(x) , n2 samples {X2,1, . . . ,X2,n2} generated with pdf p2(x) , 
etc. Integrand values f (Xi,j) and pdf values pk(Xi,j) are also evaluated for these discrete 
samples.

The integral of Eq. 8 can be given two different interpretations. On the one hand, it is 
the expected value of f (x)/p(α, x) when x takes random values distributed with pi(x):

On the other hand, the same integral expresses the expectation of f (x)pi(x)/p2(α, x) 
when x takes random values distributed with p(α, x):

where n =
∑m

k=1 nk is the total number of initial samples.
Both formulas are nonlinear functions of weights αk , thus the optimization requires 

the solution of nonlinear equations.
One possibility is the application of the Newton–Raphson method [19] since the 

derivatives of Eqs. 10 and 11 with respect to αk can be easily expressed. Such scheme 
decomposes the estimation of αk into Newton–Raphson iterations each using a disjoint 
set of samples.

5 � A linear heuristic
In order to find a simple solution for the quasi-optimal weights, we use an approxima-
tion in Eq. 10 to determine the optimum. As we already approximated the integral by 
a discrete sum, the additional simplification is acceptable. We also show that this addi-
tional simplification has small effect if the combined density is a relatively good impor-
tance sampling function.

(9)

�µ =
m
∑

i=1

αi�µ

=
m
∑

i=1

αi

∫ (

f (x)

p(α, x)

)

pi(x)dx

=
∫ (

f (x)

p(α, x)

) m
∑

i=1

αipi(x)dx

=
∫

f (x)

p(α, x)
p(α, x)dx = µ,

(10)

∫ (

f (x)

p(α, x)

)

pi(x)dx =Epi

[

f (x)

p(α, x)

]

≈
1

ni

ni
∑

j=1

f (Xi,j)

p(α,Xi,j)
.

(11)

∫ (

f (x)

p(α, x)

)

pi(x)dx =Ep(α)

[

f (x)pi(x)

p2(α, x)

]

≈
1

n

m
∑

k=1

nk
∑

j=1

f (Xk ,j)pi(Xk ,j)

p2(α,Xk ,j)
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The simplification is based on the relation of arithmetic and geometric means. The 
weighted sum of Eq.  10 is the arithmetic mean of ratios f (Xi,j)/p(α,Xi,j) , which is 
approximated by the geometric mean:

The error of this approximation is small if the terms of the arithmetic mean are close 
to each other. In our case, the terms are the ratios of the integrand and the combined 
density, which must be close to the integral if the combined density is a good importance 
sampling function. In Fig.  1 we compare the arithmetic and geometric means for the 
three 1D examples of Sect. 6.

The product of ratios in the geometric mean is replaced by the ratios of the products, 
then for the numerator and the denominator, we separately apply the approximation of 
the geometric mean by the arithmetic one:

(12)µ ≈
1

ni

ni
�

j=1

f (Xi,j)

p(α,Xi,j)
≈





ni
�

j=1

f (Xi,j)

p(α,Xi,j)





1/ni

.

Fig. 1  Comparison of arithmetic (in blue) and geometric (in orange) means for Example1 (top), Example2 
(middle), and Example3 (bottom) for 100 independent executions with 100 samples of pdf1 (left) and pdf2 
(right). For Example2, pdf2 (not shown) is identical to pdf1
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We cannot claim that in this approximation the factors are similar. The replacements 
of the geometric mean by the arithmetic one introduce an error. However, if the com-
bined density is an already good importance sampling function, the terms in the 
numerator and denominator are similar with the exception of a constant scaling factor, 
i.e. f (x) ≈ µp(α, x) . Therefore, the errors of the numerator and the denominator are 
strongly correlated, thus the division makes the estimation more accurate.

Having applied this approximation, the optimality condition is the solution of the fol-
lowing equation:

Taking the reciprocals of both sides, we obtain a linear equation for the weights αk since 
combined density p(α, x) is a linear function:

For example, if we combine technique 1 and technique 2, then we have to solve the fol-
lowing equation

Let α1 = α and α2 = 1− α in order to satisfy the constraint. With this, the combined 
density is

The condition of optimality can be expressed as

where





ni
�

j=1

f (Xi,j)

p(α,Xi,j)





1/ni

=

�

�ni
j=1 f (Xi,j)

�1/ni

�

�ni
j=1 p(α,Xi,j)

�1/ni

≈
1
ni

�ni
j=1 f (Xi,j)

1
ni

�ni
j=1 p(α,Xi,j)

=
�ni

j=1 f (Xi,j)
�ni

j=1 p(α,Xi,j)
.

(13)

∑ni
j=1 f (Xi,j)

∑ni
j=1 p(α,Xi,j)

= µ.

(14)

∑ni
j=1 p(α,Xi,j)

∑ni
j=1 f (Xi,j)

=
1

µ
.

(15)

∑n1
j=1 p(α,X1,j)

∑n1
j=1 f (X1,j)

=
∑n2

j=1 p(α,X2,j)
∑n2

j=1 f (X2,j)
.

(16)p(α, x) = αp1(x)+ (1− α)p2(x).

(17)α =
P22F1 − P21F2

P11F2 − P21F2 − P12F1 + P22F1

(18)Pik =
nk
∑

j=1

pi(Xk ,j), Fk =
nk
∑

j=1

f (Xk ,j).
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The structure of the parameters in the equations for the linear heuristic shows another 
advantage. As new samples are arriving, the parameters can be easily updated by adding 
the pdf and integrand values to the respective variables. Thus, previous and new samples 
can be exploited simultaneously unlike in the Newton–Raphson method which either 
individually stores all acquired samples or uses only those samples which have been gen-
erated since the last update of the weights.

For m pdfs, we have to solve the linear system of Eq. 14 with m− 1 independent equa-
tions setting αm = 1−

∑m−1
k=1 αk.

5.1 � The case of weight equal to zero

Equation 14 will fail to deliver a convex solution for the case where the optimal weight 
corresponding to a given technique is equal to zero. This reflects the fact that Eq. 8 will 
fail for this case. To account for this, we propose two techniques.

First, by construction, either {αi}mi=1 is a convex solution (i.e. for all i, αi ≥ 0 and 
∑m

i=1 αi = 1 ) or there is at least one negative weight. In the latter case, we take the min-
imum of the negative weights and substitute it with zero in Eq.  14, where we are left 
with a system of m− 2 equations and m− 2 unknowns. We repeat the procedure till we 
either obtain a convex solution or reach m = 1 when the weight of the remaining tech-
nique is set to 1.

The second technique is not as straightforward as the first one but gives more accurate 
solutions (see Example 6 in Sect. 6.1). It consists in considering each αi equal to zero in 
turn and solving the remaining m− 2 linear system. From all the feasible solutions, we 
choose the one that has the smallest sample variance. Equation 3 is used as an estimator 
for the variance V[F]:

6 � Results
6.1 � Numerical 1D examples

In the first three examples two pdfs are combined. We obtain the optimal α with the 
Newton–Raphson minimization of the Kullback-Leibler divergence [19] and with our 
linear heuristic, respectively, and then compute the variance V[F] for the obtained α by 
numerical integration with Mathematica. In all cases we execute 100 independent runs.

Additional examples combine more than two pdfs, for which we only compute the 
optimal α with the linear heuristic and then the variance V[F].

1 � Example 1

Suppose we want to evaluate the integral (see Fig. 2)

(19)

V [F ] ≈

m
�

i=1

αi







1

ni

ni
�

j=1

f 2(Xi,j)

p2(α,Xi,j)
−





1

ni

ni
�

j=1

f (Xi,j)

p(α,Xi,j)





2





.
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by MIS using pdfs φ2,1(x) and φ8,2(x) , where φm,σ (x) stands for the pdf of Gaussian nor-
mal distribution of mean m and standard deviation σ.

For this example, equal sample budget MIS has variance V [F ] = 24.1152 . In Fig. 3 
we show the values of V[F] for the optimal α fractions minimizing the Kullback–Lei-
bler divergence with four Newton–Raphson iterations relying on 50 samples in each 
iteration. Thus, 200 samples are taken in total for each run. Figure 4 shows the result 
of our new heuristic assigning 100 samples for each of the two techniques. Thus, the 
total number of samples is the same as in the Newton-Raphson solution.

1 � Example 2

Let us consider integral (see Fig. 5)

(20)
3.5π
∫

0.01

(√
x + sin x

)

dx ≈ 25.3065

Fig. 2  Example 1: f (x)/µ (in blue) superimposed on the two pdfs used for MIS integration

Fig. 3  The variances V[F] of Example 1 computed for 100 independent executions with 4 Newton–Raphson 
iterations for the Kullback–Leibler divergence exploiting 50 samples in each iteration. The horizontal lines 
correspond to the optimal and the equal sampling budget variances, respectively
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by MIS using pdfs φ− 3
2 ,1

(x) and φ 3
2 ,

3
4
(x).

For this example, equal sample budget MIS has variance V [F ] = 0.1134 . Figure  6 
presents the values of V[F] for the optimal α fractions minimizing the Kullback–Lei-
bler divergence by four Newton–Raphson iterations with 50 samples in each iteration, 
thus with 200 samples in total in a single run. Figure 7 shows the result of the linear 
heuristic with 100 runs of 100 samples for each technique, thus 200 samples in total 
in a single run.

1 � Example 3

Consider the approximation of the following integral (see Fig. 8)

(21)
4

∫

−4

φ− 3
2 ,1

(x)+ 2φ 3
2 ,

3
4
(x)dx ≈ 2.9929

Fig. 4  The variances of Example 1 computed for 100 independent executions with the linear heuristic, 
taking 100 samples from each technique. The horizontal lines correspond to the optimal and equal sampling 
budget variances, respectively

Fig. 5  Example 2: f (x)/µ (in blue) superimposed on the two pdfs used for MIS integration
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Fig. 6  The variances V[F] of Example 2 computed for 100 independent executions with 4 Newton–Raphson 
iterations for the Kullback–Leibler divergence exploiting 50 samples in each iteration. The horizontal lines 
correspond to the optimal and the equal sampling budget variances, respectively

Fig. 7  The variances V[F] of Example 2 computed for 100 independent executions with the linear heuristic, 
using a total of 100 samples for each technique. The horizontal lines correspond to the optimal and equal 
sampling budget variances, respectively

Fig. 8  Example 3: f (x)/µ (in blue) superimposed on the two pdfs used for MIS integration
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by MIS using importance functions 2− x and sin2(x) . For this example, equal sample 
number MIS has variance V [F ] = 0.2772 . Figure  9 depicts the values of V[F] for the 
optimal α fractions minimizing the Kullback-Leibler divergence using 100 runs each 
consisting of 4 Newton-Raphson iterations with 50 samples in each iteration, thus 200 
samples in total for each run. Figure 10 shows the result of the linear heuristic with 100 
runs of 100 samples for each technique.

1 � Example 4

Consider the example with three pdfs, evaluating the following integral (see Fig. 11)

(22)

π/2
∫

0.01

(√
x + sin x

)

dx ≈ 2.3118

Fig. 9  The variances V[F] of Example 3 computed for 100 independent executions with 4 Newton–Raphson 
iterations for the Kullback–Leibler divergence exploiting 50 samples in each iteration. The horizontal lines 
correspond to the optimal and the equal sampling budget variances, respectively

Fig. 10  The variances V[F] of Example 3 computed for 100 independent executions with the linear heuristic, 
using a total of 100 samples for each technique. The horizontal lines correspond to the optimal and the equal 
sampling budget variances, respectively
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using pdfs φ− 3
2 ,1

(x) , φ 3
2 ,

3
4
(x) , and φ− 1

2 ,1
(x).

For this example, equal sample number MIS has variance V [F ] = 6.8063 while the 
minimum variance is V [F ] = 3.0454 . In Fig. 12 we show the result of our linear heuristic 
with 100 runs of 100 samples for each technique.

1 � Example 5

Example 5 solves the following integral (see Fig. 13)

(23)

3
∫

−3

φ−1.8,1(x)+ 2φ 3
2 ,

3
4
(x)+ 3φ− 1

2 ,
1
2
(x)dx ≈ 5.8394

(24)

3
∫

−3

φ−1.8,1(x)+ 6φ 3
2 ,

3
4
(x)+ 3φ− 1

2 ,
1
2
(x)+ 3φ 1

2 ,
1
2
(x)dx

≈ 12.7484

Fig. 11  Example 4: f (x)/µ (in blue) superimposed with the three pdfs used for MIS integration

Fig. 12  The variances V[F] of Example 4 computed for 100 independent executions with the linear heuristic, 
using 100 samples for each technique. The horizontal lines correspond to the optimal and the equal 
sampling budget variances, respectively
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using pdfs φ− 3
2 ,1

(x) , φ 3
2 ,

3
4
 , φ− 1

2 ,1
(x) , and φ 1

2 ,1
(x) . Equal sample number MIS has variance 

V [F ] = 14.4033 and the minimum variance is V [F ] = 1.7217 . In Fig.  14 we show the 
result of our linear heuristic with 100 runs of 100 samples for each technique.

Fig. 13  Example 5, f (x)/µ (in blue) superimposed with the four pdfs used for MIS integration

Fig. 14  The variances V[F] of Example 5 computed for 100 independent executions with the linear heuristic, 
using a total of 100 samples for each technique. The horizontal lines correspond to the optimal and the equal 
sampling budget variances, respectively

Fig. 15  Example 6, f (x)/µ (in blue) superimposed with the three pdfs used for MIS integration
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1 � Example 6

This example with three pdfs shows what happens when one of the optimal weights is 0. 
Consider solving the following integral (see Fig. 15)

using importance functions x, x2 − x/π and sin(x) . Equal sample budget MIS has vari-
ance V [F ] = 4.9175 while the minimum variance is V [F ] = 4.1945 . The minimum V[F] 
value corresponds to α1 = 0 , α2 = 0.1986 , and α3 = 0.8014 . In Fig.  16 we set α1 = 0 
and apply the linear heuristic to a two-pdf problem of 100 samples for each technique. 
In Fig.  17 we apply the first technique of Sect.  5.1 to sort out negative solutions, and 
use 100 samples from each technique (same ones as in Fig. 16). In Fig. 18 we apply the 
second technique of Sect. 5.1 with the same samples to get rid of the negative solution. 
Observe the better results of this second technique.

(25)

π
∫

3/2π

(

x2 −
x

π

)

sin2(x)dx ≈ 3.5962

Fig. 16  The variances V[F] of Example 6 computed for 100 independent executions with the linear 
heuristic, where we set α1 = 0 , using 100 samples for each of the other two techniques. The horizontal lines 
correspond to the optimal and the equal sampling budget variances, respectively

Fig. 17  The variances V[F] of Example 6 computed for 100 independent executions with the linear heuristic 
and using the first technique of Sect. 5.1 to sort out negative solutions. We use the same 100 samples from 
each technique as in Fig. 16. The horizontal lines correspond to the optimal and the equal sampling budget 
variances, respectively. Compare it with Figs. 16 and 18
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6.2 � Combination of light source sampling and BRDF sampling in computer graphics

In order to demonstrate the efficiency of the proposed linear heuristic, we address the 
direct lighting problem and combine light source sampling and BRDF sampling. The 
reflected radiance Lr(p,ω) of a surface point p at direction ω is expressed as an integral 
in the hemispherical domain of incident directions �:

where L(p′,ω′) is the radiance of point p′ visible from point p in incident direction −ω′ , 
fr(ω

′,p,ω) is the BRDF expressing the portion of the light beam that is reflected from 
direction ω′ to ω at point p , and θ ′ is the angle between the surface normal at point p and 
incident direction −ω′ . We have two sampling methods p1(ω′) approximately mimicking 
the fr(ω,p,ω′) cos θ ′ factor and p2(ω′) mimicking the incident radiance L(p′,ω′).

MIS would use a combined pdf:

where we need to find optimal weight α.
We render the classic scene of Veach with combined light source and BRDF sampling. 

The illuminated rectangles have max-Phong BRDF [21] with shininess parameters 200, 
500, 2000, and 5000, respectively. The four spherical light sources emit the same power.

For each pixel, we use 100 samples in total organized in 10 iterations of 10 samples 
each. The process starts with 5 BRDF and 5 light source samples per pixel, and the per-
pixel α weights are updated at the end of each iteration. Figure 19 shows the rendered 
images together with the α maps, and we compare the original sampling techniques, 
equal count MIS, the optimization of the Kullback–Leibler divergence with the New-
ton–Raphson method, and the proposed linear heuristic.

Concerning the complexity and the overhead of the method, having identified vis-
ible point p , BRDF sampling finds a random direction ω′ , obtains the first intersection 

(26)Lr(p,ω) =
∫

�

L(p′,ω′)fr(ω
′,p,ω) cos θ ′dω′

(27)p(α,ω′) = αp1(ω
′)+ (1− α)p2(ω

′).

Fig. 18  The variances V[F] of Example 6 computed for 100 independent executions with the linear heuristic 
and using the second technique of Sect. 5.1 to sort out negative solutions. We use the same 100 samples 
from each technique as in Fig. 16. The horizontal lines correspond to the optimal and the equal sampling 
budget variances, respectively. Compare it with Figs. 16 and 17
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p′ of the ray of start p and direction ω′ , evaluates the emitted radiance of the intersec-
tion point p′ , and finally divides the product of the fr(ω,p,ω′) cos θ ′ factor and the 
emitted radiance by the pdf of the random direction. For the scene of Fig.  19, the 
calculation of a light path sample took 1.786 µ s on average on an Intel Core 7 CPU. 
When BRDF sampling is a part of MIS, the algorithm should also find the pdf of the 
light source sampling if a light source is hit by the ray, which increases the computa-
tion time to 1.789 µ s. The proposed linear heuristic requires six additions to update 
the parameters in Eq.  18. After every 10 samples, weight α is updated according to 
Eq. 17. With these additional computations, a single sample needs 1.791 µs.

In case of light source sampling, first the emission point on the light source is sam-
pled, and it is checked whether the line segment between visible point p and the light 
source point p′ intersects any object. If there is no intersection, i.e., the light source 
is not occluded, then the emitted radiance is multiplied by the fr(ω,p,ω′) cos θ ′ fac-
tor and divided by the pdf of light source sampling. The calculation of a single pixel 
sample by light source sampling took 2.462 µ s on average, which is increased to 2.687 
µ s with the MIS overhead, and to 2.703 µ s with the overhead of the linear heuristic.

Enabling equal sample count MIS, half of the samples will be generated basically 
with BRDF sampling and half with light source sampling, which means that the aver-
age time needed by a light path sample becomes 2.246 µ s. Linear heuristic sets the 
combination weights independently in every pixel. Its average computation time is 
2.259 µ s, which is around a 0.5% larger than that of equal count MIS partly because 
of its added overhead, and partly because it prefers more expensive light source sam-
pling to BRDF sampling for this scene. This increase in computation cost is compen-
sated by the reduced error, resulting in a gain in efficiency (defined as inverse of cost 
times mean square error) of about a 15%.

Fig. 19  Comparison of MIS weighting schemes for the direct lighting problem of computer graphics. The 
left part is the image rendered with 100 rays per pixel, the right part is weight α of the light source sampling. 
The RMSE is computed as the average of 10 independent executions. The [0,1] interval of possible α values is 
visualized by the color bar
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7 � Discussion
The linear heuristic compares advantageously to the Newton–Raphson solution in the 
three 1D two-pdf examples shown. For the zero variance case of Example 2, the solution 
is exact. Observe also the higher robustness of our heuristic in the other three exam-
ples, especially in Example 3. For the direct lighting problem, where the function can-
not be integrated analytically, our heuristic is better than equal sampling but it does not 
improve on the Kullback–Leibler minimization. For the 1D examples shown with three 
and four pdfs, the heuristic also works well. Assigning zero value to the most negative 
solution is less accurate than the comparison of the sample variance for the different 
feasible solutions.

8 � Conclusions and future work
Inspired by the solution to the Kullback–Leibler representation of the MIS problem, 
we have presented a linear heuristic to obtain the optimal weights in MIS. Our linear 
heuristic compares advantageously to the Newton–Raphson solution in the shown 1D 
examples, both in accuracy ad robustness. It is better than equal sampling in the pre-
sented direct light source problem solution. It scales to any number of techniques used 
by solving a linear system of equations. Negative solutions appear when the optimal 
solution is on the border of the simplex domain, and are dealt with by assigning zero to 
the most negative weight and solving the linear system again without the correspond-
ing technique, or by comparing the sample variances of the different feasible solutions, 
which gives a more accurate result although at a higher cost. In the future, possible addi-
tional linear heuristics will be investigated, potentially based on other divergence repre-
sentation of MIS, and the cost of sampling will be taken into account.
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