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1  Introduction
With the development of wireless communication technologies [1–4], an increasing 
number of vehicles are connected to the Internet through access points, which promotes 
the emergence of the Internet of vehicle (IoV) and smart city [5–7]. In the IoV systems, 
mobile vehicles can collect data and exert some intensive calculating tasks to make intel-
ligent decisions [8–10]. However, due to the lack of calculating capability in mobile 
vehicles, local computing may cause a severe latency and even lead to some serious con-
sequences, e.g., traffic accidents [11, 12]. By utilizing the remote calculating resources 
at the cloud server, the calculating latency can be reduced effectively, at the cost of an 
increased communication latency [13, 14]. In particular, the communication latency may 
dominate the system performance when the wireless channels are vulnerable. Moreover, 
massive requests arising from the network edge impose a heavy burden on the cloud 
server, which further deteriorates the quality of experience (QoE) of users.
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To address the above issues of cloud computing, a novel communication and compu-
tation paradigm named mobile edge computing (MEC) was proposed. By deploying cal-
culating access points (CAPs) at the network edge, the calculating tasks can be unpacked 
to the neighboring CAPs through reasonable task partition and offloading in order to 
achieve a low latency and energy consumption [15, 16]. To achieve the same goal, the 
authors in [17] studied a multiuser MEC network, where a deep Q-network (DQN)-
based offloading strategy was proposed for the task offloading. With the same reinforce-
ment learning-based method, the authors in [18] focused on the study of channels to 
obtain better performances. Moreover, the system cost was studied in [19, 20] in terms 
of a combination of energy consumption and latency, where a joint optimization method 
of offloading decision and resource allocation was proposed to enhance the network 
performance. In further, a deep deterministic policy gradient (DDPG) was proposed to 
resolve the offloading strategy design in the MEC system [21], where a long-term opti-
mization was used. The authors in [22] considered parked vehicles as the computing 
service providers and proposed a dynamic pricing strategy in order to maximize the rev-
enue of the computing service providers and meanwhile minimize the energy consump-
tion of smart user equipment (UEs). It has been shown in [23–25] that the allocation of 
channel resources could be optimized to improve the performance of networks, and the 
authors in [26] enhanced the system performance through a dynamic game model.

The above literature review shows that most of the existing works attempted to opti-
mize the system performance of MEC networks through offloading strategy design and 
resource allocation. To the best of our knowledge, seldom works have considered the 
pricing from the server and taken into account the budget constraint from the users. 
In practice, the pricing from the server may affect the system performance of the MEC 
networks, as this can affect the calculating capability allocated to the users by the CAPs. 
In addition, the budget of the users may also affect the network performance, as some 
users may not have enough budget to buy the computing resources at the CAPs, and the 
intensive calculating tasks have to be computed locally. Due to these reasons, we will 
jointly incorporate the budget constraint into the system design of the MEC-based IoV 
networks in this paper.

In this paper, we investigate a multiuser MEC-aided smart IoV network, where one 
edge server can help accomplish the intensive calculating tasks from the vehicular users. 
For the MEC networks, most existing works mainly focus on minimizing the system 
latency to guarantee the user’s quality of service (QoS) through designing some offload-
ing strategies, which, however, fail to consider the pricing from the server and hence 
fail to take into account the budget constraint from the users. To address this issue, we 
jointly incorporate the budget constraint into the system design of the MEC-based IoV 
networks and then propose a joint deep reinforcement learning (DRL) approach com-
bined with the convex optimization algorithm. Specifically, a deep Q-network (DQN) is 
firstly used to make the offloading decision, and then, the Lagrange multiplier method 
is employed to allocate the calculating capability of the server to multiple users. Simula-
tions are finally presented to demonstrate that the proposed schemes outperform the 
conventional ones. In particular, the proposed scheme can effectively reduce the system 
latency up by to 56% compared to the conventional schemes. The main contributions of 
this paper are as follows:



Page 3 of 16Zhang et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:45 	

•	 We study a MEC network for IoV, where we not only consider the resources allocation 
but also combine the charging rules with the users’ budget constraints to optimize the 
performance of the MEC.

•	 We propose a DQN and convex optimization algorithm, which a convex optimiza-
tion method is integrated into the DQN framework. This algorithm not only has the 
advantages of reinforcement learning, but also uses the convex optimization method to 
reduce the complexity of algorithm and help convergence.

•	 Simulations show that the proposed DQN and convex optimization algorithm can out-
perform conventional methods and can effectively reduce the system latency by up to 
56%.

The rest of this paper is organized as follows. After Introduction, we discuss the system 
model of MEC-based IoV network and then present the optimization problem formulation 
in Sec. 2. After that, we give the DQN and convex optimization algorithm-based method to 
solve the optimization problem in Sec. 3. We further provide some simulations and discus-
sions in Sec. 4 and, finally, make some conclusions in Sec. 5.

2 � Methods/experimental
Figure 1 shows a vehicular MEC network with one CAP and M vehicular users denoted by 
{um|1 ≤ m ≤ M} . The users have some latency-sensitive calculating tasks. The CAP can 
help compute some parts of the tasks with its much more powerful capability, while the 
other can be computed locally. Moreover, when the tasks are offloaded to the CAP for com-
puting, the CAP will charge users according to the amount of offloading tasks and the cal-
culating capability. The following subsections will introduce the local computing model, the 
offloading model, and the purchase model, respectively. After that, we will give the system 
optimization problem.

2.1 � Local computing model

As mentioned before, some parts of the tasks can be computed locally, and the local calcu-
lating latency is written as

(1)T local
m = lm(1− αm)C

Fm
,

Fig. 1  System model of the considered vehicular MEC
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where αm ∈ [0, 1] is the offloading ratio denoting the ratio of task offloaded from user 
um to the CAP, lm is the task size of user um , C represents the number of required CPU 
cycles for processing one bit of task, and Fm represents the calculating capability of user 
um measured by its CPU cycle frequency.

2.2 � Offloading model

When the tasks are partially offloaded to the CAP for computing, the users should trans-
mit the offloaded tasks through wireless links, and the data transmission rate is [27–29]

where W is the bandwidth of the wireless link between user um and CAP, Pm represents 
um ’ transmit power, hm ∼ CN (0,β) represents the channel parameter of the wireless 
channel, and σ 2 represents the variance of additive white Gaussian noise (AWGN) at the 
CAP. And then, the communication latency can be written as

After receiving the tasks from user um , the CAP begins to compute the tasks, and the 
calculating latency at the CAP is

in which fm is the calculating capability that um buys from the CAP, and it should satisfy 
the constraint 

∑M
m=1

fm ≤ F  , in which F is the total calculating capability at the server.
Then, we can get the offloading latency, including the communication latency and the 

calculating latency at the CAP,

Since the local computation and the offloading are two operations that are executed con-
currently, the total calculating latency of um is

For the whole vehicular MEC network, users do the local computation and the offload-
ing in parallel. Therefore, the system latency can be defined as the finish time of the tasks 
from all users,

2.3 � Purchase model

Note that user um needs to pay the CAP when it offloads the tasks to the CAP for 
computation, and the charging rule of CAP is composed of basic service fees and cal-
culating fees. Specifically, the basic service fee is based on the size of offloading tasks, 

(2)Rm = W log2

(

1+ Pm|hm|2
σ 2

)

,

(3)T tran
m = lmαm

Rm
.

(4)TCAP
m = lmαmC

fm
.

(5)T offl
m = T tran

m + TCAP
m .

(6)T total
m = max{T local

m ,T offl
m }.

(7)T total = max{T total
1 ,T total

2 ,T total
3 , . . . ,T total

M }.
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and the calculating fee is based on the calculating capability that the CAP allocates to 
the users. Hence, the payment of user um for offloading is

where ηl is the price per bit of the task and ηf  is the price paid for the CAP capability. As 
the budget of each user is limited in practice, so we can get the budget constraint of user 
um as

where Umax
m  is the maximum budget of user um.

2.4 � Problem formulation

In practice, the vehicular MEC network involves latency-critical tasks for the dynamic 
changes in the vehicles [30], and the system needs to process the latency-sensitive 
tasks from the users as quickly as possible due to the movement of the vehicular 
users. Therefore, the optimization problem of the network is to minimize the system 
latency, which can be formulated as

where C1 is the constraint of the offloading ratio, which indicates how many parts the 
user um offloads to the CAP. Constraint C2 presents that the calculating capability at 
the server distributed to user um may not surpass the total calculating capability. Con-
straint C3 denotes that users’ payment of offloading should meet the budget constraint. 
From (10), the offloading ratio and calculating capability can be optimized to minimize 
the network latency while meeting the budget requirement. However, the optimiza-
tion problem is complicated and hard to be solved by conventional convex optimization 
methods. Therefore, we turn to propose a DQN and convex optimization algorithm to 
resolve the problem. All notations used in this section are summarized in Table 1.

3 � DQN and convex optimization algorithm
This section introduces a DQN and convex optimization algorithm for P1 in (10). The 
proposed algorithm overcomes the complicated action space caused by the full utili-
zation of DQN which leads to an extremely high cost to perform exploration and then 
affects the final training result. In the following subsections, we first describe how 
to obtain the offloading decision through the DQN and then give the process of the 
resource allocation through the convex optimization method.

(8)Um = ηl lmαm + ηf fm,

(9)Um ≤ Umax
m ,

(10)

P1 : min
{αm,fm}

T total

s.t. C1 : αm ∈ [0, 1], ∀m ∈ [1,M],

C2 :
M∑

m=1

fm ≤ F ,

C3 : Um ≤ Umax
m , ∀m ∈ [1,M],
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3.1 � DQN‑based offloading decision

To solve the problem P1 , we propose the DQN and convex optimization algorithm 
to obtain the offloading decision and calculating capability allocation. As shown in 
Fig.  2, the proposed algorithm is composed of a DQN-based method and a convex 
optimization method. Specifically, we first employ the DQN-based method to obtain 
the offloading decision. After the offloading decision is obtained, the convex optimi-
zation method is used to obtain the allocation decision of calculating capability.

We can model the problem of offloading decisions as Markov decision process 
(MDP). In MDP, the agent firstly gets the state st ∈ S from the environment at time 
slot t and then makes an action at according to policy π . After that, the agent acts 
on at in environment, causing the state of environment transits from st to st+1 , and 
the agent gets rt as a reward. Specifically, we define state space as S = {α} , where 
α = {α1(t),α2(t),α3(t), . . . ,αM(t)} is the offloading ratio of users at the time slot t, 
and the action space is A = {ρ1, ρ2, ρ3, ...., ρm, . . . , ρM , ρ∗

1 , ρ
∗
2 , ρ

∗
3 , ...., ρ

∗
m, . . . , ρ

∗
M} , where 

ρm = −δ and ρ∗
m = +δ are actions to adjust the offloading ratio under the constraint 

C1 . Moreover, the reward of the offloading decision problem is related to the system 
latency [31, 32]

Table 1  Symbol notations

Notation Definition

um The mth user

T localm
Local latency of the mth user

lm Task size of the mth user

αm Offloading ratio of the mth user

C CPU cycle of processing one bit data

Fm calculating capability of the mth user

Rm Data transmission rate from um to the CAP

W Wireless bandwidth

Pm Transmit power of the mth user

hm Channel parameter from um to the CAP

σ 2 Variance of additive white Gaussian noise 
(AWGN) at the CAP

T tranm
Transmission latency of the mth user

TCAPm
calculating latency at CAP of the mth user

fm calculating capability at CAP of the mth user

F Total calculating capability at the server

T offlm
Offloading latency of the mth user

T totalm
Total latency of the mth user

T total Total latency of the vehicular MEC system

Fig. 2  DQN and convex optimization algorithm
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where τ1 and τ2 are two positive values with τ1 > τ2 . In further, we evaluate the policy π 
through Q function Qπ (s, a) , which represents the accumulative rewards from an action 
a acting on state s. According to Q function, the best policy is

and the agent gets the environment state s which helps in choosing an action through 
the best policy π∗,

Based on the above processing, we adopt deep Q-network (DQN), and it uses deep neu-
ral networks to approximate the optimal Q function. There are two neural networks in 
DQN, including the actor-network and the target-network. The role of actor-network 
is to predict the action at ∈ A by inputting the state st ∈ S . Generally, Q(s, a) is used to 
denote Qπ∗(s, a) . To avoid the offloading optimization problem falling into a local opti-
mal value, we can obtain the action by the ǫ-greedy policy,

where θ is the weights of the actor-network. In order to better approximate the Q func-
tion, we adopt the temporal difference (TD) approach in DQN,

To obtain the TD target of DQN, we add a target-network as a copy of target-network, 
which is reset as the actor-network every Tu time slots. And the loss function is [33–35]

where θ̂ is the weights of the target-network. And we use a back-propagation (BP) algo-
rithm to update the actor-network every Tl time slots. To break the relationship between 
data created at every time slot, we adopt an experience replay (ER) and a mini-batch 
sampling. A transition (st , at , rt , st+1) is stored into ER at each time slot, and a mini-batch 
size of transitions are randomly sampled from ER to update the actor-network with BP 
algorithm every Tl time slots.

3.2 � Convex optimization‑based resource allocation

After obtaining the offloading decision αm by the DQN-network, the problem P1 can 
be transformed into

(11)rt =






τ1 If T total(t) < T total(t − 1),

−τ2 If T total(t) = T total(t − 1),

−τ1 If T total(t) > T total(t − 1),

(12)π∗ = arg max
π

Qπ (s, a),

(13)a = arg max
a∈A

Qπ∗(s, a).

(14)at =
{

arg max
a∈A

Q(st , a; θ), with probability ǫ,

Randomly choose from A, otherwise,

(15)Q(st , at; θ) = rt + γ max
a∈A

(Q(st+1, a; θ)).

(16)Lt = ((rt + γ max
a∈A

(Q(st+1, a; θ̂)))− Q(st , at; θ))2,
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From P2 , we can observe that the minimization problem is affected by the total calculat-
ing capability at the server and the budget of the user. The feasibility of the solution of 
the whole optimization P1 highly depends on the training and the design of DQN. As 
a part of the designed DQN, the solution of P2 has a limited impact on the training of 
the DQN. Moreover, a powerful DQN can still get a reliable and feasible solution to the 
whole problem even P2 cannot obtain the optimal solution. Therefore, it is worthwhile 
to find a solution with a lower complexity for P2 . Hence, we firstly limit the capabil-
ity allocated to users in their budget and then based on the limit, we get the solution 
constraints by the total capability at the server shared by all users. To this end, we firstly 
relax the constraint C2 and transform P2 into a convex problem,

Then, we adopt the Lagrange multiplier method to optimize the problem P3 , and the 
Lagrange function can be written as

where � > 0 is a Lagrange multiplier. From (19), we set the first partial derivative of 
L (fm, �) with respect to fm and � to zero,

By combining and solving the above two equations, we can obtain the optimal solution 
of P3 as

After obtaining the optimal solution of the relaxed problem P3 , we further consider the 
constraint C2 and give a feasible solution for P2 . According to (8) and (9), we can obtain

(17)

P2 : min
{fm}

T total

s.t. C1 :
M∑

m=1

fm ≤ F ,

C2 : Um ≤ Umax
m , ∀m ∈ [1,M].

(18)

P3 : min
{fm}

T total

s.t. C1 :
M∑

m=1

fm ≤ F .

(19)L (fm, �) =
M∑

m=1

TCAP
m + �(

M∑

m=1

fm − F),

(20)






∂L

∂fm
= − lmαm

f 2m
+ � = 0,

∂L

∂�
=

M�

m=1

fm − F = 0.

(21)
√
� = 1

F

M∑

m=1

√
lmαm,

(22)
fm = lmαmF

M∑

m1=1

√
lm1αm1

.
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By jointly considering (22) and (23), we can finally obtain a feasible solution of P2,

From the above description, we can summarize the procedure of the proposed DQN and 
convex optimization algorithm in Algorithm 1.

3.3 � Some discussions on the system design and optimization

Besides the above works, one should note that there maybe exist some malicious vehi-
cles which may overheat the confidential message from the data offloading. In this case, 
some privacy protection methods such as the encryption [36] and physical-layer secure 
schemes [37] should be used to enhance the security of the considered IoV networks. 
Moreover, some novel wireless techniques should be incorporated into the considered 
system, such as advanced offloading strategies [38], relaying techniques [39–41], and 
UAV [42, 43]. In further, some intelligent algorithms should be developed to allocate the 
system resources in a much more intelligent approach, such as deep learning [44–46], 
deep reinforcement learning [47] and federated learning [48].

4 � Results and discussion
This section shows the performance of the proposed DQN and convex optimization 
algorithm in the vehicular MEC network from simulations. Channels used in our work 
obey Rayleigh flat fading, and the variance of AWGN is 0.01. The task sizes of users are 
lm = (100+ 5×m) Mb, and the transmit power of each user is randomly set to either 2 
W or 3 W. Moreover, the calculating capability of users is set to 2× 108 cycle/sec, and 
the number of required cycles per bit of data for computing is set as C = 40 . All results 
given in this paper are the average of 5 experimental results.

As to the network structure, we implement both the target-network and actor-net-
work of DQN through two hidden layers with 256 and 64 nodes and employ the BP 
algorithm as the updater. The values of Tl and Tu in the DQN are set to 50 and 100, 

(23)0 ≤ fm ≤ Umax
m − ηl lmαm

ηf
.

(24)fm =






lmαmF

M�

m=1

√
lmαm

, If lmαmF
M�

m=1

√
lmαm

≤ Umax
m −ηl lmαm

ηf
,

Umax
m −ηl lmαm

ηf
, Else.
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respectively. The size of experience replay is set to 20000, and the mini-batch size of 
sampling is set to 32.

Figure  3 plots the latency of the devised scheme versus the number of episodes, 
where the number of users is set to 3, the budget of users is set to 210, the total cal-
culating capability of CAP is set to 5× 108 cycle/sec, and the bandwidth of a wire-
less link is 1 MHz. To compare with the proposed DQN and convex optimization 
scheme, we plot the performance of two other schemes. One is the All-local scheme 
where users compute their tasks locally, and another is the ALL-CAP scheme where 
users offload all tasks to the CAP and obtain the calculating capability from CAP 
with the maximum budget. From this figure, we can see that the system latency of 
the proposed scheme gradually decreases when the episode varies from 0 to 20, and 
it converges to about 10 after 20 episodes. In contrast, the system latency of All-local 
scheme and ALL-CAP scheme remains unchanged at the level of 23 and 17.5, respec-
tively. The fast convergence of the proposed scheme indicates that it can obtain an 
effective offloading decision and the calculating capability allocation. Moreover, the 
proposed scheme has the best performance among the three plotted schemes. Spe-
cifically, the system latency of the proposed scheme is about 56% and 10% lower than 
that of All-local scheme and ALL-CAP scheme. Obviously, the proposed scheme can 
not only converge rapidly but also outperform the other two schemes.

Figure 4 demonstrates the convergence of the proposed scheme with different num-
bers of users, where the total calculating capability at the server, the budget of users, 
and the bandwidth of a wireless link are set to 5× 108 cycle/sec, 210, and 5 MHz, 
respectively. The figure shows that for the different numbers of users, the system 
latency of the devised scheme decreases in the first 30 episodes, and it converges to a 
low latency after 30 episodes. This result indicates that the proposed scheme can con-
verge under various numbers of users. Moreover, the value of convergence increases 
with a larger M. This is because increasing the number of users causes more calcu-
lating tasks, which results in larger system latency. This further illustrates that the 
proposed scheme obtains a reasonable offloading decision and calculating capability 
allocation for different numbers of vehicles.

0 10 20 30 40 50 60 07 80

Episode

10

12

14

16

18

20

22

24

La
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y

DQN
All-local
All-CAP

Fig. 3  Performance comparison of three scheme versus the number of episodes
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Figure 5 shows the effect of wireless bandwidth on the system latency, where the total 
calculating capability at the server is 5× 108 cycle/sec, the budget of users is set to 130, 
and the bandwidth varies from 1 MHz to 5 MHz. This figure shows that the system 
latency of the proposed scheme and ALL-CAP scheme drops sharply when the band-
width varies from 1 MHz to 3 MHz and becomes steady when W > 3 MHz, while the 
system latency of All-local scheme remains unchanged with various values of bandwidth. 
The reason for this trend is that a larger bandwidth can reduce the transmission latency 
of the proposed scheme and ALL-CAP scheme, while the tasks of All-local scheme are 
not transmitted to the CAP. Moreover, the proposed scheme can obtain a lower latency 
for various values of bandwidth compared with the other two schemes. Specifically, 
when the bandwidth is 5 MHz, the latency of the proposed scheme is about 70% and 40% 
lower than that of All-local and ALL-CAP scheme. In further, for the three schemes, the 
system latency with M = 3 is always lower than that with M = 7 . This is because a larger 
amount of tasks are produced due to the increasing number of users, which causes more 
communication and computation latency in the network. These results illustrate that the 
proposed scheme can outperform the other two schemes.
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Fig. 4  Convergence of the proposed scheme with different number of users
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Fig. 5  Effect of the bandwidth on the system latency of the three schemes
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Figure 6 reveals the effect of the total calculating capability on the system latency of 
the proposed scheme with the variation of the total calculating capability of CAP under 
different bandwidths, where the number of users is set to 3, the budget of users is set 
to 210, and the total calculating capability at the server varies from 1× 108 cycle/sec to 
5× 108 cycle/sec. This figure illustrates that the system latency of the devised scheme 
decreases when the total calculating capability at the CAP increases. This is because 
the CAP with a larger calculating capability can help users compute the tasks quickly, 
which leads to a reduction in the system latency. Moreover, with the variation of the 
total calculating capability from 1× 108 cycle/sec to 5× 108 cycle/sec, the performance 
improvement due to the enhanced calculating capability at the CAP becomes larger 
when the bandwidth increases. Specifically, the system latency drops by about 58% from 
F = 1× 108 cycle/sec to F = 5× 108 cycle/sec at W = 5 MHz, and it drops by 20% at 
W = 1 MHz. This is because the bandwidth affects the transmission latency and the 
total calculating capability affects the calculating latency at the CAP. These two types of 
latency both contribute to the system latency.

Figure 7 demonstrates the effect of the user budget on the system latency, where the 
total calculating capability at the CAP is set to 5× 108 cycle/sec, the bandwidth is set 
to 5 MHz, and the budget of users varies from 70 to 150. This figure expresses that the 
system latency of the proposed scheme firstly decreases with the budget from 70 to 
110, and then, it becomes steady when Umax

m ≥ 110 , while that of All-local scheme is 
unchanged. This is because when the user budget is small, the calculating capability at 
the CAP allocated to the users is limited, which results in high calculating latency in 
the system. Moreover, the calculating capability allocated to each user decreases as the 
user number increases. This also verifies that the proposed scheme can make an effec-
tive offloading decision and calculating capability allocation compared with the All-local 
scheme.

Figure 8 illustrates the effect of the total CAP calculating capability and the user 
budget on the system latency, where the number of users is set to 3, the bandwidth is 
1 MHz, the total calculating capability of the server varies from 1× 108 cycle/sec to 
5× 108 cycle/sec, and the budget of users varies from 30 to 190. Observing this fig-
ure, we can see that the system latency of the proposed scheme is marginally affected 
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Fig. 6  Effect of the total calculating capability of CAP on the system latency of the proposed scheme
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by the calculating capability at the CAP, when the user budget is small. The reason is 
that the budget limits the allocation of calculating capability to the vehicles, no mat-
ter how the total calculating capability changes. Similarly, when the total calculating 
capability at the server is small, the system latency is also marginally affected by the 
user budget, no matter how the budget changes. This is because the CAP does not 
have enough calculating capability to help the users compute the tasks. On the con-
trary, when the budget and total calculating capability at the CAP are both large, the 
system latency can be reduced to a small value. This is because when the CAP has 
enough calculating capability and users are rich enough, the allocation of calculat-
ing resources is no longer constrained, which makes a low system latency. All the 
above phenomena show that the system latency is limited by both the CAP calculat-
ing capability and the budget of users, and also indicate that the devised scheme in 
this paper has good performance in reducing system latency.
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Fig. 8  Effect of the total CAP calculating capability and the user budget on the system latency
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5 � Conclusion
This article studied a vehicle MEC network, in which the CAP with limited calculating 
capability could receive part tasks from users to do the faster process, which can reduce 
system latency. We firstly formulated the optimization problem of latency by considering 
the limited calculating capability at the CAP and the budget of users. Then, we proposed 
a DQN and convex optimization algorithm to solve the problem. Simulations were finally 
conducted to show that the devised algorithm performs better than traditional methods, 
and it is robust to practical conditions of the vehicular MEC networks. As to future works, 
we consider that in the MEC networks, multiple CAPs can provide more options for users 
to do offloading, which can further reduce the calculating latency. Moreover, the computing 
of tasks and the transmission of tasks cause energy consumption, and the energy consump-
tion is another important performance metric of the MEC networks in some scenarios. 
Therefore, we will consider multiple CAPs for the MEC networks and study the energy con-
sumption in future works.
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