
A reinforcement learning‑based computing
offloading and resource allocation scheme
in F‑RAN
Fan Jiang1*  , Rongxin Ma1, Youjun Gao2 and Zesheng Gu1 

1  Introduction
Our society is becoming increasingly highly digitized, hyper-connected and globally data
driven. Many widely anticipated services, including virtual reality (VR), augmented real-
ity (AR), internet of vehicles, and ultra-HD video, are all call for extreme-low latency and
extreme-low energy consumption in the 6G system [1]. These novel applications usually
require powerful computational capacity, huge amounts of energy, and rigorous delay
constraints. However, user equipments

(UEs) usually have limited computational capability. Therefore, it is not practical to
run such complicated applications on the mobile devices of UEs. To solve this prob-
lem, fog radio access network architecture (F-RANs) is proposed as an extension to the

Abstract 

This paper investigates a computing offloading policy and the allocation of compu-
tational resource for multiple user equipments (UEs) in device-to-device (D2D)-aided
fog radio access networks (F-RANs). Concerning the dynamically changing wireless
environment where the channel state information (CSI) is difficult to predict and know
exactly, we formulate the problem of task offloading and resource optimization as a
mixed-integer nonlinear programming problem to maximize the total utility of all UEs.
Concerning the non-convex property of the formulated problem, we decouple the
original problem into two phases to solve. Firstly, a centralized deep reinforcement
learning (DRL) algorithm called dueling deep Q-network (DDQN) is utilized to obtain
the most suitable offloading mode for each UE. Particularly, to reduce the complexity
of the proposed offloading scheme-based DDQN algorithm, a pre-processing proce-
dure is adopted. Then, a distributed deep Q-network (DQN) algorithm based on the
training result of the DDQN algorithm is further proposed to allocate the appropriate
computational resource for each UE. Combining these two phases, the optimal offload-
ing policy and resource allocation for each UE are finally achieved. Simulation results
demonstrate the performance gains of the proposed scheme compared with other
existing baseline schemes.

Keywords:  Fog radio access networks, Computing offloading, Resource allocation,
Deep reinforcement learning, Dueling deep Q-network, Deep Q-network

Open Access

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Jiang et al. EURASIP J. Adv. Signal Process. (2021) 2021:91
https://doi.org/10.1186/s13634-021-00802-x

EURASIP Journal on Advances
in Signal Processing

*Correspondence:
fjiangwbc@gmail.com
1 Shaanxi Key Laboratory
of Information
Communication
Network and Security,
Xi’an University of Posts
and Telecommunications,
Xi’an, China
Full list of author information
is available at the end of the
article

A preliminary version of
this paper has appeared in
PIMRC’2020 (Fan Jiang et al.,
2020). The current version
contains the extended
Dueling Deep Q-Network
Learning-Based Computing
Offloading Scheme for
F-RAN.

http://orcid.org/0000-0002-8968-5178
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-021-00802-x&domain=pdf

Page 2 of 25Jiang et al. EURASIP J. Adv. Signal Process. (2021) 2021:91

cloud radio access networks (C-RANs), which is deployed much closer to the UEs, and
could provide the accessible computational resource on the heterogeneous fog access
points (FAPs) [2]. With the help of F-RANs, UEs can offload their intensively compu-
tational tasks to the proximate FAPs to process to decrease latency rather than offload
those tasks to the remote cloud center, which not only enable the requirement of UEs
to be satisfied at anytime and anywhere but also relieve the pressure from the volume
data traffic of the fronthaul links. Furthermore, device-to-device (D2D) communication
can be deployed in F-RANs to serve as an effective offload method by providing direct
communication and computational capabilities between nearby UEs at the edge of the
network.

However, due to the limited computational resource on FAPs, how and where to
offload the UE’s tasks while optimizing the computational resource in FAPs are hot
issues in academic research [3]. Particularly, for computational tasks of UEs with differ-
ent latency or energy requirements, how to strategically make an optimal offloading and
computational resource allocation policy to ensure that UEs’ quality of service (QoS)
as well as to reduce the total cost is an essential task that many valuable works have
been carried [4–7]. For instance, Ref. [4] jointly optimizes the offloading policy and radio
resource allocation to satisfy the diverse QoS requirements of multi-UEs in the scenario
of multiple FAPs by utilizing the genetic algorithm. With the same scenario as consid-
ered in Ref. [4], Ref. [5] utilizes separable semi-definite relaxation to minimize the cost
of energy and delay for all UEs. Ref. [6] adopts a traffic prediction method to conduct a
problem of dynamic traffic offloading and resource allocation to achieve the compromise
of latency and energy consumption. In the same way, Ref. [7] achieves a joint optimiza-
tion of offloading policy and computational resource based on the combination of fog
computing and cloud computing. Moreover, to provide more computational resource at
the radio access network to enhance the computation capability, the advantages of D2D
communication technology have been explored in the scenario of F-RAN in Ref. [8, 9].
Specifically, Ref. [8] studies partial task offloading in a D2D-assisted F-RAN, where tasks
are performed by multiple D2D users or FAP, with the objective of maximizing total util-
ity of the F-RAN system, Ref. [8] combines offloading policies, computational resource
allocation and the selection of D2D pairs into consideration. Ref. [9] proposes that UEs
who need task offloading can choose the D2D execution mode, FAP execution mode, or
cloud execution mode, and utilizes a three-layer graph matching algorithm to obtain the
selection space supported by the three execution modes, finally achieve the minimum
cost of the considered system.

On the other hand, machine learning (ML) methods have been widely incorporated
into the 6G wireless networks in recent researches [10]. Specifically, among the ML-
based methods, reinforcement learning (RL) algorithm is greatly suitable for solving
the problem with dynamically changing Channel State Information (CSI) in wireless
networks. For instance, Ref. [11] utilizes the Q-learning algorithm to make offloading
decisions by obtaining the biggest reward to minimize the energy consumption in the
wireless system. However, although Q-learning can solve the problem of offloading deci-
sions, it still has some issues in practice. For instance, in the Q-learning algorithm, we
need to compute and store each state-action value expressed as Q value produced from
each interaction with the environment into a Q-table. However, as the number of the

Page 3 of 25Jiang et al. EURASIP J. Adv. Signal Process. (2021) 2021:91 	

state-action pair increases, the scale of the Q-table becomes too large to manage and
enquire, which makes it complicated to obtain the optimal solutions efficiently and thus
will directly affect the QoS of UEs. Therefore, a deep reinforcement learning (DRL) algo-
rithm called deep Q-network (DQN) algorithm is proposed in Ref. [12] to obtain the
optimal offloading policy and resource allocation, which utilizes the deep neural net-
work to estimate the Q value which is more efficient to solve the problem concerning
massive data. Researches such as [13–15] also show that the DQN algorithm can achieve
a better performance in dealing with the problem of offloading decision and resource
allocation.

However, a potential drawback with the DQN algorithm is that the value function
in some states is independent of the selected action. To deal with this dilemma, an
advanced DRL algorithm called dueling deep Q-network (DDQN) algorithm is sug-
gested to overcome the mentioned defect [16]. The core idea of the DDQN algorithm
lies in that the state-action Q value in the neural network is further divided into two
parts, namely, the value function independent of action, and the action advantage func-
tion related to action. Moreover, based on the network structure of DDQN, the agent in
RL will eventually learn more accurate value, which means the DDQN algorithm could
get better performance than the DQN algorithm in solving the problem related to off-
loading policy and resource. Ref. [17] adopts a DDQN algorithm to predict the offload-
ing behavior of UEs who have tasks with a semi-online distribution, while calculating
and updating the total rewards after each offloading decisions until the total rewards
achieve maximum. Similarly, Ref. [18] uses the DDQN algorithm to predict UEs’ off-
loading modes meanwhile achieving a load balance of the MEC server with unknown
environment information, which is interpreted as the unknown channel state informa-
tion. By adopting the DDQN algorithm, Ref. [18] effectively improved the offloading
efficiency and decreasing the resource costing. Therefore, in our previous work [19], we
studied a computing offloading policy for multiple user equipments (UEs) in F-RANs by
using the DQN algorithm to optimize the total utility of UEs. However, the limitation
of the work is that computational resource for FAPs has not been optimized. So how to
design an effective offloading policy as well as an efficient resource allocation scheme is
essential to improve the total utility of UEs.

Illuminated by the contributions of the aforementioned researches, this paper serves
to find an optimal offloading policy of UEs’ tasks while optimizing the computational
resource of FAPs in the considered F-RAN, assuming that each UE has a computation-
ally intensive task to be processed. Especially, since the FAPs are resource-limited, some
of the tasks can be processed in the FAP, and the others are forwarded to the cloud
server by the fronthaul link. Moreover, some idle UEs who can provide additional com-
putational resource by D2D communication around the requested UEs are taken into
consideration to enhance the space of the offloading selection. Consequently, tasks of the
requested UEs can be offloaded to FAP, nearby idle UE, cloud server, or process locally,
respectively. This problem is formulated as a joint optimization to the offloading policy
selection and the computational resource allocation of all UE’s tasks with the objection
of maximizing the total utility of all requested UEs. This problem has also been proved
as a non-convex mixed-integer nonlinear programming (MINP) problem in Ref. [5]. To
solve this challenging problem, we decompose it into two phases. At the first phase, a

Page 4 of 25Jiang et al. EURASIP J. Adv. Signal Process. (2021) 2021:91

centralized DDQN algorithm is utilized to select the most appropriate offloading mode
for each UE. Especially, we utilize a pre-processing procedure to reduce the complexity
of the used DDQN algorithm. At the second phase, based on the training results of the
DDQN algorithm, the tasks offloaded to the FAPs are classified according to their delay
and energy requirements initially. Then, a distributed DQN algorithm is adopted to opti-
mize the computational resource in each FAP to obtain the final offloading policy and
resource allocation.

The contributions of this paper can be summarized as below:

1.	 Offloading policy selection:

	 A centralized DDQN algorithm is utilized in the proposed scheme to select the most
appropriate offloading mode for each UE, which consists of offloading to FAP, nearby
idle UE, or processing by itself. Due to the complexity of the centralized algorithm in
the Base Station (BS) will increase with the increasing number of UEs who have the
offloading requirements, a pre-processing procedure is adopted to reduce the com-
plexity of the DDQN algorithm by directly satisfying some of the UE’s task require-
ments.

2.	 Optimize the computational resource in FAPs:
	 In the second step, there exists a circumstance that multiple UEs might be connected

to the same FAP for task offloading. Therefore, to ensure the maximization of the
total utility, some of the tasks in FAP should be sent to the cloud server to process.
Aiming to jointly allocate the computational resource in FAPs while deciding the off-
loading decision for the UEs whether they be sent to the cloud or stay at FAP to
process, we put forward a distributed DQN algorithm, and combining with the train-
ing results of the DDQN algorithm, the final optimal offloading policy and resource
allocation are obtained.

3.	 The performance of the proposed DDQN and DQN algorithms:
	 Simulation experiment compares the proposed offloading policy and resource alloca-

tion scheme with other existing baseline schemes. Meanwhile, the performance of
the proposed DDQN algorithm and DQN algorithm also is given.

This paper is organized as follows: Sect. 2 describes the system model, computation
model and problem formulation. The proposed offloading policy based on the DDQN
algorithm, and the computational resource allocation scheme based on the DQN algo-
rithm, are illustrated in Sect. 3. Simulation results are demonstrated in Sect. 4. Finally,
conclusions are drawn in Sect. 5.

2 � Method
This section introduces the methods used in the work. we first build formulas of the
latency, energy consumption in the considered task processing modes, then the formula
described the total utility of the required UEs can be derived. Accordingly, a centralized
DDQN algorithm is adopted to solve the problem of offloading mode selection, based on
the training results of the DDQN algorithm, a distributed DQN algorithm is utilized to
optimize the computational resource of each FAP. Both of the above deep reinforcement
learning algorithm is implemented with Python 3.7.7, TensorFlow 2.0, and the Adam

Page 5 of 25Jiang et al. EURASIP J. Adv. Signal Process. (2021) 2021:91 	

optimizer is used to carry out the gradient descent algorithm to minimize the loss func-
tion of the two neural network.

3 � System and computation model
3.1 � System model

The system structure is shown in Fig. 1, a F-RAN architecture is considered which
includes a single cell scenario consisting of M FAPs, N UEs, and K distributed comput-
ing nodes (DCNs), where DCN typically acts as an idle UE with adequate computational
resource distributed around UE, and can be connected with UEs by D2D communi-
cation. Assume each UE only has one computationally intensive task to be dealt with
which is characterized as tn , where Bn is the number of CPU cycles required for com-
puting 1-bit data, and Dn is the size of the task data. To improve the gains brought by
offloading behavior, we suppose that each UE has four offloading options. Specifically,
each UE can offload its complete task either to FAP, nearby DCN, cloud server, or pro-
cess locally by itself. Accordingly, the vector of the offloading decision made for the UE
n is defined as dn , ∂m,βk , �Local , �Cloud = {0, 1}, ∀m ∈ M, ∀k ∈ K  . Specifically, parameter
“1” indicates the full task of UE will be offloaded, while parameter “0” indicates the full
task of UE will not be offloaded. Besides, suppose that all the UEs, FAPs, and DCNs have
already cached some task results in their own storage according to an optimal caching
matrix proposed by our previous work [20]. Hence, UEs could first search the desired
result of their requested task before carrying out the offloading behavior. If, fortunately,
the result can be found within the caching storage, the requirement of the UEs can be
directly satisfied, and there is no need to offload.

For the sake of characterizing the network topology in the considered F-RAN, we
build a matrix P = [pi,j](M+K)×N

 where the columns indicate all the UEs who need to
carry out offloading and the rows consist of the FAPs and DCNs which can be associated
with. If the distance between UE j and FAP j (or DCN j) exceed the maximal distance of
FAP or DCN represented as dFAP , dD2D , pi,j = 0 , otherwise pi,j = 1.

Fig. 1  Computing offloading in F-RAN

Page 6 of 25Jiang et al. EURASIP J. Adv. Signal Process. (2021) 2021:91

Moreover, considering that in practical situation, there might have some DCNs not
willing to provide their computational resource, we build a matrix Y = [yi,j]K×N

 to
donate the willingness of DCNs to participate in the offloading process, where yi,j is
expressed as

Then, matrix Y is used to update matrix P, if yi,j = 1 , then pi,j = 1 , otherwise pi,j = 0 .
Therefore, the matrix P can be updated as pi,j.

The important parameters in this paper are listed in Table 1.

3.2 � Computation model

An orthogonal frequency-division multiple access (OFDMA) method is used to
access the FAP through the cellular channel. When a UE has the requirement to

(1)yi.j =

{
0, the DCN i has not willingness to UE j, i ∈ K , j ∈ N
1, the DCN i has willingness to UE j, i ∈ K , j ∈ N

(2)pi,j =







1, yi,j = 1 and di,j ≤ dD2D, i ∈ K , j ∈ N
1, di,j ≤ dFAP , i ∈ M, j ∈ N
0, otherwise

Table 1  Some important parameters

Parameters Value

M The number of FAPs

N The number of UEs

K The number of DCNs

tn The task of UE n

Bn The number of CPU cycles

Dn The size of the task data

dn Offloading decision vector

P Network topology matrix

dFAP The maximal distance of FAP

Y The willingness matrix of DCN

f ln
The computational capacity of UE n

zn The energy consumption in per CPU cycle of UE n

ρt
n

The weight factors of latency

ρe
n The weight factors of energy

fn,m The allocated computational resource to UE n in FAP m

fk The computational capacity of DCN k

Tc The round-trip transmission delay

f Cloudn
The allocated computational resource to UE n at the cloud server

f FAP The computational resource of FAP

f Cloud The computational resource of cloud server

Cm The maximum accessible number of FAP

T The steps in each training epoch

S The state matrix

C The optimal caching matrix

Nm The number of UEs who offload their tasks to FAP m

Page 7 of 25Jiang et al. EURASIP J. Adv. Signal Process. (2021) 2021:91 	

communicate with FAP or DCN, the BS will allocate one sub-channel (cellular link or
D2D link) to the requested UE. Combined with the four possible options, the corre-
sponding four task processing methods are introduced as follows.

Local processing: If the task of UE n is processed locally, the local execution delay
is calculated as

where f ln denotes the computational capacity of UE n which means the CPU cycles per
second when the tasking is being processed. Moreover, we adopt the same energy con-
sumption model for local processing as in Ref. [21], which is expressed

where zn = 10−27(f ln)
2 represents the energy consumption in per CPU cycle of UE n.

Moreover, the utility function obtained by UE n with local processing mode is
defined as the combination of the saved delay and the saved energy compared when
the task of UE n is processed locally. Thereby, the utility obtained by UE n in local
processing is expressed as

where ρt
n and ρe

n indicate the weight factors of each task, respectively, and the value of
these two parameters ranges from 0 to 1, which satisfies ρt

n + ρe
n = 1 [22]. Moreover,

since different tasks have different requirements for delay and energy, if the task has a
higher requirement for low latency, ρt

n will be bigger, otherwise, ρe
n will be bigger.

FAP processing: If the task of UE n is carried out in the FAP processing mode, it takes
three steps to complete the offloading process. Firstly, the task is initially uploaded to
the associated FAP. Then, the task is performed by utilizing the computational resource
provided from the FAP. Finally, the result of the task is returned to the requested UE n.
Furthermore, since the transmission rate of the cellular link is relatively high while the
task result is comparatively small, the transmission delay for task results is omitted in
this paper [23]. Particularly, the uploading delay from UE n to the FAP m is calculated as

where run,m denotes the uplink rate of UE n to the connected FAP m of the cellular link,
which can be expressed as

In expression (7), pun,m denotes the transmit power of UE n, hun,m represents the upload-
ing channel gain, B indicates the bandwidth in each sub-channel, and N0 stands for the
noise power in each sub-channel. Thereby, the energy consumption of uploading task tn
is presented as

(3)Tl
n =

BnDn

f ln
, ∀n ∈ N

(4)El
n = znBnDn, ∀n ∈ N

(5)Ulocal
n = ρt

n(T
l
n − Tl

n)+ ρe
n(E

l
n − El

n) = 0, ∀n ∈ N

(6)Tu
n,m =

Dn

run,m
, ∀n ∈ N , ∀m ∈ M

(7)run,m = B log

(

1+
pun,m

∣
∣hun,m

∣
∣2

N0

)

, ∀n ∈ N , ∀m ∈ M.

Page 8 of 25Jiang et al. EURASIP J. Adv. Signal Process. (2021) 2021:91

Moreover, the task execution delay to process the task tn with FAP m can be calculated
by

where fn,m denotes the allocated computational resource to UE n in FAP m. Addition-
ally, the utility obtained by UEs is only related to the delay and the energy consumption
spent on the UEs side. Thereby, for UE n who has offloaded its task to the FAP m, the
utility can be represented as

D2D processing: UE n can establish a D2D link to offload its task to a nearby DCN for
processing. Let

which stands for the achievable data rate for D2D link between user n and the associ-
ated DCN k, where hd2dn,h and pd2dn,h denote the channel power gain and transmit power
between UE n and DCN k, respectively. Then, transmission delay and the energy con-
sumption of UE n’s with the D2D link can be presented as

the execution delay of DCN k is calculated by

where fk indicates the computational capacity of DCN k. Likewise, the utility obtained
by UE n in DCN processing can be given as

Cloud processing: Since the computational resource of FAPs is always not adequate for
multiple UEs, so some tasks in FAPs should be offloaded to the cloud to ensure the total
utility is not affected. With cloud processing mode, it takes the following steps for the
offloading. Firstly, the task should be upload to the connected FAP, which be further sent
to the cloud through the fronthaul link. Secondly, the task is executed by utilizing the
computational resource provided from the cloud server. Finally, the computation result
of the task is returned to the requested UE n. Specifically, we use Tc to represent the

(8)Eu
n,m = pun,mT

u
n,m, ∀n ∈ N , ∀m ∈ M.

(9)Te
m =

BnDn

fn,m
, ∀n ∈ N , ∀m ∈ M

(10)Um
n = ρt

n(T
l
n − Tu

n,m − Te
m)+ ρe

n(E
l
n − Eu

n,m), ∀n ∈ N , ∀m ∈ M.

(11)rn,k = B log




1+

pd2dn,k

�
�
�hd2dn,k

�
�
�

2

N0




, ∀n ∈ N , ∀k ∈ K

(12)Tn,k =
Dn

rn,k
, ∀n ∈ N , ∀k ∈ K

(13)En,k =pd2dn,k Tn,k , ∀n ∈ N , ∀k ∈ K

(14)Te
k =

BnDn

fk
, ∀n ∈ N , ∀k ∈ K

(15)Uk
n = ρt

n(T
l
n − Tn,k − Te

k)+ ρe
n(E

l
n − En,k), ∀n ∈ N , ∀k ∈ K .

Page 9 of 25Jiang et al. EURASIP J. Adv. Signal Process. (2021) 2021:91 	

round-trip transmission delay in the fronthaul link. Thereby, the execution delay in the
cloud processing is expressed as

where f Cloudn denotes the allocated computational resource to UE n at the cloud server.
With reference to the FAP processing mode, the utility obtained by UE n in cloud pro-
cessing is calculated as

3.3 � Problem formulation

The objection of this paper is to maximize the total utility obtained by all UEs via finding
an optimal offloading policy for each UE and optimizing the computational resource in
each FAP. Combining with the system model and communication model, the optimiza-
tion function can be formulated as

C1 and C2 constrain that each UE can only select one processing mode. C3 and C4
ensure that the computational resource allocated to the offloaded tasks does not exceed
the computational resource of FAP or cloud server presented as f FAP and f Cloud , respec-
tively. C5 states that the number of UEs associated with each FAP should not exceed the
maximum accessible number defined as Cm, m ∈ M . Ref. [24] has proved that the prob-
lem formulated in (18) is a MINP problem, therefore, it is complicated to find the opti-
mal solution by utilizing traditional optimization algorithms. Besides, the scale of the
problem (18) also increases rapidly with the increasing number of UEs, which further
increases the complexity of the solution. Consequently, the total utility obtained by UEs
will also be directly affected. Based on the above challenges, in the following section, the

(16)Te
cloud =

BnDn

f Cloudn

, ∀n ∈ N

(17)UCloud
n = ρt

n(T
l
n − Tu

n,m − Tc − Te
cloud)+ ρe

n(E
l
n − Eu

n,m), ∀n ∈ N , ∀m ∈ M

(18)p : max

N∑

n=1

∂mU
m
n + βkU

k
n + �CloudU

Cloud
n + �localU

local
n

(18a)s.t. C1 : ∂m,βk , �Cloud , �local = {0, 1}, ∀m ∈ M, ∀k ∈ K

(18b)C2 : ∂m + βk + �Cloud + �local = 1, ∀m ∈ M, k ∈ K

(18c)C3 :

N∑

n=1

fn,m ≤ f FAP , ∀n ∈ N ,m ∈ M

(18d)C4 :

N∑

n=1

f Cloudn ≤ f Cloud , ∀n ∈ N

(18e)C5 :

N∑

i

∂ im ≤ Cm, ∀i ∈ N , ∀m ∈ M.

Page 10 of 25Jiang et al. EURASIP J. Adv. Signal Process. (2021) 2021:91

problem formulated in (18) will be solved by jointly optimize the offloading policy and
computational resource allocation. Specifically, we first divide the original problem into
two sub-problems. A centralized DDQN algorithm running at BS is initially adopted to
select the most appropriate offloading mode for each UE in the first phase. Especially, a
pre-processing stage is introduced to decrease the complexity of the proposed DDQN
algorithm. In the second phase, based on the training result of the DDQN algorithm, a
distributed DQN algorithm is adopted to optimize the computational resource at each
FAP. Combining these two phases, the final optimal offloading policy and resource allo-
cation can be obtained.

4 � The proposed computing offloading policy and resource allocation
This section mainly introduces the proposed DDQN algorithm-based computing off-
loading policy, pre-processing stage, and the DQN algorithm-based computational
resource allocation scheme, respectively.

4.1 � DDQN algorithm‑based computing offloading

In the first phase, the utility obtained by each UE cannot be computed directly in the
FAP processing mode because the computational resource in each FAP has not been
allocated to UE before making the offloading decisions. Hence, we regard all the compu-
tational resource as a whole entirety in each FAP that can be allocated to the requested
UE in the first phase, and after making the offloading decisions for each UE, we fur-
ther optimize the computational resource in each FAP. Specifically, a DDQN algorithm
is adopted to find the most appropriate offloading mode for each UE. After choosing the
appropriate offloading mode, we will continue to decide which tasks should be sent to
the cloud center while allocating optimal the computational resource to the FAPs.

4.1.1 � Markov decision process

The DDQN algorithm is based on the DRL algorithm, which as a model-free approach
can address complicated system settings by dynamically interacting with an unknown
environment without any prior knowledge [25]. Meanwhile, DRL also can handle the
potentially large state space problem [26]. In our considered F-RAN system, the problem
of making offloading decisions for UEs is formulated as a finite Markov Decision Process
(MDP) [27]. In our considered F-RAN system, assuming that the time period is divided
into total T steps in each training epoch, and t = (1, 2, 3, ..,T) indicates each step, the
parameter T denotes the number of UEs that need to offload tasks. Combining the con-
sidered F-RAN system and the DRL algorithm, the four essentials in RL presented as
Agent, Action Space, Environment & State, and Immediate Reward, respectively, in each
step t are defined as

Agent: The agent is defined as a learner and a decision-maker in RL. Thereby, in our
considered F-RAN system, BS is selected as the agent of the DDQN algorithm.

Environment & State: The environment in RL is defined as the set of all possible
states, and the essence of RL is to perform actions to cause the state transfer [28]. There-
fore, we set a matrix S as the state, which has the same shape as the matrix P , and the
value of sij in the matrix S should only be 0 or 1, sij = 1 represents the agent selects FAP
i (or DCN i) for UE j, otherwise sij = 0 . At step t = 0 in each training epoch, we initialize

Page 11 of 25Jiang et al. EURASIP J. Adv. Signal Process. (2021) 2021:91 	

the matrix S as a total zero matrix, then, the agent executes actions to interact with the
environment to trigger the change of matrix S.

Action Space: The BS make the offloading decision for each requested UE according
to the network topology matrix P , and the optimization object is to find the optimal off-
loading mode for each UE. Thereby, in the proposed DDQN algorithm, we use at ∈ A to
denote the action in the step t, where A = {∂1, ∂2, ..., ∂M ,β1,β2, ...,βK }.

Immediate Reward: The settings of the reward function always need to be related to
the objective function [29]. Accordingly, we set the immediate reward rt in each step t as
two parts: If the constraints in Eq. (18) can be all satisfied, the agent will obtain a positive
immediate reward rt represented as the utility obtained by the t-th UE. Otherwise, the
reward obtained by the agent is zero. In addition, there exists another situation that the
reward is set to be zero, that is ∃j ∈ N ,

∑M+K+1
i=0 pij = 0 , which means the UE j cannot

be connected with any FAP or DCN. Therefore, when the reward is zero, it means the
UE should carry out local processing. We define the reward function at step t as

At the end of each training epoch, the accumulated reward is represented as the total
utility that the requested UEs.

4.1.2 � The pre‑processing stage

However, the proposed centralized DDQN algorithm in the BS always has a higher algo-
rithm complexity, which is interpreted as the dimensions of the state space in the DDQN
algorithm will increase dramatically as the number of the requested UEs increases,
which increases the complexity of the DDQN algorithm while decreasing the efficiency
of the network training. Thereby, a pre-processing phase is adopted to decrease the
dimensions of the state space to improve the total utility obtained by all UEs. Specifi-
cally, assume that each UE, DCN, and FAP has cached some processing results of dif-
ferent tasks based on the optimal caching matrix C(M+K+N)×N come from our previous
research [20]. Combined with our considered F-RAN system, we extend the dimen-
sion of the matrix P(M+K)×N to the same dimension as C and fill in “1” where they are
extended. Then, dot multiplies the matrix C and obtains a matrix P′ = P • C . In this way,
each task has its own identity to be distinguished from others in P′ . Accordingly, when a
UE has a task to be processed, it will first check whether the task result has been cached
on its local cache. If the result has not been found locally, the identification of the task
will be transmitted to BS, and the BS will search the matrix P′ then select the closest
route to delivery to the requested UE. If the result can be directly obtained in the pre-
processing stage, the maximum utility that UE n can obtain is expressed as

However, if the result cannot be found in the pre-processing stage, the offloading proce-
dure will be adopted. Since the BS server is equipped with a powerful computing server,
the searching and delivery of the task result can be completed so fast that the delay to

(19)rt =







the utility of t-UE, if (18a)-(18e) is satisfied

0, (18a)-(18e) is not all satisfied or ∃j ∈ N ,

M+K+1�

i=0

pij = 0
.

(20)Un = ρt
nT

l
n + ρe

nE
l
n.

Page 12 of 25Jiang et al. EURASIP J. Adv. Signal Process. (2021) 2021:91

transmit can be ignored. Therefore, UEs who no longer need to participate in the task
offloading can find their task results during the pre-processing phase. In this way, the
complexity of the DDQN algorithm can be decreased. The specific algorithm procedure
in the pre-processing phase is shown in Algorithm 1.

4.1.3 � DDQN algorithm

The DDQN algorithm-based offloading scheme is proposed to select the optimal off-
loading mode for UEs who need to be offloaded after the state space has been decreased.
Specifically, the DDQN algorithm is a typical DRL algorithm that utilizes the deep neu-
ral network to approximate the state-action Q value with the aim of maximizing the
expected accumulated discounted reward and get the optimal action [30]. The Q func-
tion is expressed as formula (20)

where

And γ is a discount factor between 0 and 1 that stands for the effect of the future times-
tamp rewards on current time-step rewards. The greater effect makes a bigger γ.

The model and architecture of the DDQN algorithm we designed is shown in Fig. 2,
where we use each step t at a training epoch as an instance to introduce our network
model. In each step t, the input of the DDQN network is the current state st and the
output is the Q value of each possible action at the state st , which can be presented as
Q(st , at) . The agent selects an action according to the ε-Greedy policy then perform the
action, which is interpreted as an action is randomly selected with the probability of ε
and the action that has the maximum value of Q(st , at) is selected with the probabil-
ity of 1− ε . The advantage of using this ε-Greedy policy is that it can make the agent
explores the unknown action and state in each step so as to avoid the algorithm falling
into a locally optimal solution. After selecting an action to execute, the state will transfer
to the next state st+1 . Meanwhile, the agent also gets an immediate reward represented
asrt , and the network will carry on the training at the next step t + 1 until the end of the
training epoch. During the training process, the object of the DDQN network training
is to obtain a series of actions that can achieve the maximized accumulated discounted

(21)Q(s, a) = E

[
T∑

i=0

γ iRt+i|st = s, at = a

]

(22)Rt = rt + rt+1 + · · · + rT .

Page 13 of 25Jiang et al. EURASIP J. Adv. Signal Process. (2021) 2021:91 	

reward. This can be interpreted as the BS aims at achieving the maximum total utility for
all UEs in the considered F-RAN model. To achieve a better performance of the network
training, the DDQN algorithm splits the output Q(st , at) into two different parts, which
is the State Value Function V (st) and Action Advantage Function A(st , at) individually
expressed as

where ω and ϕ are the network parameters for V (st) and A(st , at) , respectively. Specifi-
cally, V (st) stands for the excepted accumulated reward at the state st , and A(st , at) indi-
cates the degree of superiority of action at over the average level in state st presented as
formula (24) and (25).

According to Ref. [31], formula (23) can reformulated as

Furthermore, according to the training procedure of DRL [32], we build the loss function
of the DDQN algorithm as

where rt + γmax
a

Q̂(st+1, a,ω
−,ϕ−) represents the target network and Q(st , at;ω,ϕ) rep-

resents the predict network value. Actually, these two networks have the same structure
but different parameters, where the parameters of the former are copied from the latter
every I steps. During each training epoch of the DDQN network, the gradient descent

(23)Q(st , at ,ω,ϕ) = V (st;ω)+ A(st , at;ϕ)

(24)V (s) =E

[
T∑

i=0

γ iRt+i|st = s

]

(25)A(st , at) �Q(st , at)− V (st).

(26)Q(st , at;ω,ϕ) = V (st;ω)+ (A(st , at;ϕ)−
1

|A|

∑

a

A(st , at;ϕ)).

(27)L = (rt + γmax
a

Q̂(st+1, a,ω
−,ϕ−)− Q(st , at;ω,ϕ))

2

Fig. 2  Dueling deep Q-network model and architecture

Page 14 of 25Jiang et al. EURASIP J. Adv. Signal Process. (2021) 2021:91

algorithm is utilized to minimize the loss function to find the optimal parameters of the
predict network, which is further used to evaluate the Q value of each chosen action
[33]. In the DDQN algorithm, an experience pool is introduced to ensure the stability of
the network training, where the specific approach is to put the latest interaction data
(st , at , rt , st+1) into an experience memory pool, when the training is start, a mini-batch
(s′t , a

′
t+1, r

′
t+1, s

′
t+1) will be randomly sampled from the pool. As a result, the experi-

ence replay mechanism not only makes the agent learn from the previous experiences
repeatedly but also removes the correlations between the observations. Thereby, the
DDQN network training will become more stable and more efficient. The whole proce-
dure of the above proposed DDQN algorithm is drawn in Fig. 3, and the proposed
DDQN algorithm-based offloading scheme is presented in Algorithm 2.

4.2 � DQN algorithm‑based computation resource allocation scheme

Since multiple UEs connected to the same FAP will cause resource competition, some
of the tasks in FAP should be relayed to the cloud server to ensure the maximization
of total utility. Meanwhile, the computational resource in each FAP should be allo-
cated to the UEs whose task has offloaded to the corresponded FAP. In this part, we
first classify the tasks in each FAP into two different parts according to UE’s different
requirements in latency which is characterized with the delay revenue coefficient ρt

n .
Specifically, tasks with higher delay requirement that are represented as ρt

n ≥ 0.5 are
set to be remain at FAP to process. Otherwise, when ρt

n < 0.5 , the tasks will be sent
to the cloud to process. Since the cloud center has abundant computational resources
and owns powerful processing capability, while the computational resource of FAPs is
limited. Thereby, we assume that the tasks sent to the cloud center can be processed
in parallel [34]. Meanwhile, a distributed DQN algorithm is adopted to optimize the
resource allocation in each FAP.

Page 15 of 25Jiang et al. EURASIP J. Adv. Signal Process. (2021) 2021:91 	

DQN algorithm is also a typical model-free DQL [35], so the computational
resource allocation problem can be formulated as MDP as well, the Agent, State,
Action, and Reward are described as follows.

Agent: In the proposed distributed DQN algorithm, since the object is to optimize
the computational resource in each FAP, we define the Agent as each FAP.

Environment & State: The state is defined as a combination of the available
resources in each FAP and the obtained utility of UE in each FAP, which can be
expressed as s = (Fm,

∑Nm
i=1Ui) , where Nm stands for the number of UEs who offload

their tasks to FAP m.
Action Space: The action should contain all possible schemes of resource allocation to

the UEs who remain at the FAP m. Besides, the DQN algorithm is mainly oriented to the
problem with discrete actions. Thereby, the computational resource in each FAP should
also be discrete, and the discrete computational resource blocks should be allocated to
each UE. Supposed the computational resource in FAP m is divided equally into X parts.
Therefore, the action is expressed as at = (f1, f2, ..., fi, ..., fNm), fi ∈ {1, 2, 3, ...,X} , where fi
denotes the number of computational resource block which is allocated to the UE i.

Immediate Reward: Since the agent act as each FAP in this distributed DQN-based
resource allocation problem, so FAP m will immediately get a positive reward denoted
as the utility of UEs in FAP m, which is expressed as

∑Nm
i Ui . In practice, if the vari-

able range of reward value does not exceed a threshold quantity which is represented
as a small value in ten consecutive time steps in the training epoch, we set this train-
ing epoch is terminated, and the network will be start at the next training epoch.

Fig. 3  Dueling deep Q-network model

Page 16 of 25Jiang et al. EURASIP J. Adv. Signal Process. (2021) 2021:91

As shown in Fig. 4, the input of the DQN is the state st in each step t, then three
fully connected layers are utilized to extract the features of the input data, finally, the
output of the DQN is the resource allocation vector. When the DQN algorithm tends
to converge, the agent can eventually learn the optimal resource allocation vector
(f1

∗, f2
∗, ..., fi

∗, ..., fNm
∗).

Similarly, the DQN algorithm uses the gradient descent algorithm to update the
Q-network during each training epoch to minimize the loss function, which is formu-
lated as

where θ ′ represents the parameter of the target network which is copied from the pre-
dict network parameter θ every several steps. As with the DDQN algorithm, the DQN
algorithm also adopts the experience replay mechanism to remove the correlation of the
data to make the training of the network more stable. The proposed DQN algorithm-
based computational resource allocation is illustrated in Algorithm 3.

5 � Results and discussion
In this section, the parameters and results of the simulation experiment are presented to
verify the performance of our proposed offloading and resource allocation scheme.

We consider a single cell with a radius of 400 m which distributed with 20–100 UEs
and 2–10 FAPs. Also, some important parameters are listed in Table 2. Moreover, In

(28)Lt(θ) = E















�

rt + γmax
at+1

Q
�
st+1, at+1, θ

′
�
�

� �� �

Target

−Q(st , at , θ)








2






Page 17 of 25Jiang et al. EURASIP J. Adv. Signal Process. (2021) 2021:91 	

the DDQN algorithm-based offloading scheme, we set the input layer has (M + K)× N
neurons, where we use three fully connected hidden layers to extract the feature of the
input data, each of which comprises 256 neurons. Especially, to divide the State Value
Function and the Action Advantage Function, we split the third hidden layer into two
halves, which means that 128 neurons represent the State Value Function and another
128 neurons represent the Action Advantage Function. Besides, the discount factor γ in
the DDQN and DQN algorithm is set as 0.99. Similarly, the DQN algorithm also adopts
three full connected hidden layers and each layer comprises 256 neurons. The DDQN
and DQN algorithms are implemented by TensorFlow 2.0 based on Python 3.7.7. More-
over, to train the DDQN and the DQN network, we use Adam optimizer and set the
learning rate as 0.0002 to realize the gradient descent algorithm to minimize the loss
function. For the action selection of each step, we set the parameter ε in the ε-Greedy
policy as decaying from 0.08 to 0.01 through the network training process, which means
that the predict Q-network tends to select the action with the maximal Q value to

Fig. 4  Deep Q-network model

Table 2  Simulation parameters

Parameters Values

dFAP 150 m

dD2D 30 m

Bn Select from [500, 1000] cycles/bit

Dn Randomly for each UE but fix the
average size to 1 MB

fn 900 MHz

fDCN 1 GHz

f FAP 4 GHz

fcloud 10 GHz

ρt
n , ρ

e
n

Uniform distributed in [0, 1]

B 10MHz

N0 − 174 dBm/Hz

Transmit power of UE 30 dBm

Transmit power of FAP 33 dBm

Channel gains of cellular and D2D links CN (0, 1)

Page 18 of 25Jiang et al. EURASIP J. Adv. Signal Process. (2021) 2021:91

further improve the learning efficiency. Furthermore, when dividing the computational
resources of each FAP, in order to avoid missing the optimal solution, we set that each
resource block is 0.1

Figures 5 and 6 display the learning curves representing the accumulated reward
obtained by the agent in each training epoch of the DDQN algorithm and the DQN
algorithm, respectively. The number of UEs is set as 20, and the average required num-
ber of CPU cycles is 760 cycles/bit. We can see that the accumulated reward is gradually
increasing with a bit of fluctuation and eventually become stable and converges both in
the DDQN algorithm and the DQN algorithm, which indicates that the two networks
have been trained perfectly while the optimal offloading decision and resource allocation
has finally reached.

Then, we compare the performance of the proposed DDQN algorithm-based off-
loading scheme with other methods, which are random task offloading scheme (RO),
non-D2D offloading scheme (ND2D), non-pre-processing offloading scheme (NP), and
random tasks selection scheme of FAP and the cloud (RS), respectively.

Figure 7 shows the total utility of UEs versus the different numbers of UEs. Assume
that the average required number of CPU cycles is fixed to 760 cycles/bit. It can be
seen from Fig. 7 that the proposed DDQN algorithm-based offloading scheme can
achieve the maximal total utility compared with other schemes. We give the following
explanations. Firstly, for the RS scheme, since the tasks are randomly selected to be
processed by the cloud, thereby, this scheme cannot guarantee the higher requirement
of some UEs’ tasks for latency. Hence, even the resources have been optimized in
each FAP, the utility obtained by some UEs cannot be maximized. Besides, as for the
non-pre-processing offloading scheme represented as NP, it can be observed that as
the number of UEs increases, the interval between the NP scheme and the proposed
DDQN scheme has gradually become lager. This phenomenon can be interpreted as
that more UEs indicates more task requirements are produced. Thereby, the probabil-
ity that the task results could be found within the matrix also increases, resulting in

Fig. 5  Learning curve of DDQN algorithm

Page 19 of 25Jiang et al. EURASIP J. Adv. Signal Process. (2021) 2021:91 	

that more UEs can achieve the desired utility by directly obtain the task result which
contributes to the gradually increased total utility. Moreover, for the random task off-
loading scheme represented as RO, it is clearly shown that the performance is signifi-
cantly worse than the proposed scheme, the reason might be explained as because the
BS selects the farther FAP or proximity devices for some UEs, which results in the
increased transmission delay, then the obtained total utility of UEs cannot be satis-
fied. In some situations, the total utility might even be numerically negative, which
is responsible for the poor performance of the total utility. Additionally, for the non-
D2D offloading scheme represented as ND2D, the total utility is obviously lower than
other schemes. The reason is that without the assistance of the nearby DCNs, tasks of
UEs can only be offloaded to FAPs or cloud, and the computational resources of some

Fig. 6  Learning curve of DQN algorithm

Fig. 7  The total utility of UEs over the number of UEs

Page 20 of 25Jiang et al. EURASIP J. Adv. Signal Process. (2021) 2021:91

nearby DCNs are not well utilized. Thereby, UEs cannot beneficial from the DCNs,
which causes the lowest total utility compared with other schemes.

Figure 8 illustrates the total utility obtained by UEs versus the different average
required computational resource of tasks, where we fix the number of UEs to 100. It can
be seen that as the average required computational resource of tasks increases, the total
utility obtained by UEs also increases. This trend is explained as more required com-
putational resource from UEs means larger execution delays with the local computing
method. Accordingly, UEs can benefit by offloading their tasks to FAP, nearby DCNs,
or cloud, respectively, through an optimal offloading scheme, which brings larger total
utilities than execute the task locally.

Figure 9 demonstrates the number of the beneficial UEs versus the different numbers
of FAPs, where we fixed the total number of UE to 150, and the average required number
of CPU cycles to 760 cycles/bit. It can be obviously observed that as the number of FAP
increases, the total number of UE who can obtain the utility through offloading tasks to
others (Total beneficial) also increases. The reason is given as follows. Since more FAPs
will provide more alternative offloading modes to more UEs, and consequently UEs can
enjoy the more abundant computational resource provided by the FAPs. Compared with
DCN offloading mode (DCN offloading), we can observe that as the number of FAPs
increase, the number of UEs offloaded to DCNs gradually decreases. The reason behind
this phenomenon is twofold. Initially, the competition for offloading opportunities
among UEs is fierce when the resource of FAPs is scarce. However, if UE cannot connect
to any FAP, it tends to offload to the nearby DCN to increase the utility. Consequently,
some tasks of UEs have to be offloaded to the nearby DCN. However, compared with
offload the task to DCN, as the numbers of FAPs increase, the computational resource
provided by FAPs gradually become abundant to satisfy UEs’ demands for lower execu-
tion delay of the task. Since the utility obtained from the FAP is larger than that from
DCN, more UEs will choose FAP offloading mode for higher utility. Therefore, as the
number of FAP increases, more UE will increasingly prefer FAP offloading mode (FAP

Fig. 8  The total utility of UEs over the average required computational resource of tasks

Page 21 of 25Jiang et al. EURASIP J. Adv. Signal Process. (2021) 2021:91 	

offloading) instead of DCN offloading mode. On the other hand, for UEs who can obtain
utility directly during the pre-processing phase (pre-obtained), the increased number of
FAP means the larger probability that the task result has been cached, which can satisfy
the requirements of more UEs. Therefore, the number of UEs who can directly obtaining
the utility in the pre-processing stage grows with the increase in FAP number.

Then, we compare the proposed algorithm with three other methods, namely, Full-
FAP offloading where the tasks in FAP remain in FAP to process with non-resource opti-
mization, and Full-cloud offloading which means that the tasks in FAP are all sent to the
cloud to process.

Figure 10 displays the total utility of UEs versus the different numbers of UEs, where
we fixed the number of FAP to 10. It can be seen that as the increasing number of
UEs, the total utility initially increases then gradually becomes stable. This is because
as the number of UEs increases, more computational resource in FAP and cloud need
to be allocated to more users, which will incur the longer execution delay of each UE’s
task. This is responsible for the slow growth of the total utility. Compared to the pro-
posed resource optimization scheme to the non-resource optimization scheme, the
DQN algorithm optimizes the allocation of the computational resource in each FAP,
which improves the total utility. Besides, the performance of the Full-FAP offloading
and the Full-cloud offloading is not as good as expected. This is due to the fact that if
all UEs’ tasks oriented to the FAP are executed at the FAP, the computational resource
of each UE is insufficient, which will directly affect the execution delay. The lower
utility of the Full-cloud offloading may be due to the long round-trip delay or the con-
gestion in the fronthaul link, which increases the transmission delay of the task, and
affects the total utility.

Figure 11 presents the total utility of UEs versus the different numbers of FAP. It
can be seen that the total utility increases with the increasing number of FAP. This is
because more FAPs can provide more computational resource, so that more UE with
good channel conditions can choose nearby FAP to offload their tasks, which reduces

Fig. 9  The total utility of UEs over the average required computational resource of tasks

Page 22 of 25Jiang et al. EURASIP J. Adv. Signal Process. (2021) 2021:91

the transmission delay and execution delay of UEs’ tasks, thus improves the total util-
ity of UEs.

Figure 12 illustrates the total utility of UEs versus the average computational
resource required of tasks. The quantity of UE and FAP are set to 100 and 10, respec-
tively. It can be observed that the total utility is gradually increasing. This is explained
as the more average required computational resource of tasks responsible for a longer
execution delay. Compared to processing locally, all offloading schemes such as off-
loading to FAP, DCN, or cloud will impact the utility of UEs because of the increased
delay.

Fig. 10  The total utility of UEs versus the number of UEs

Fig. 11  The total utility of UEs versus the number of FAPs

Page 23 of 25Jiang et al. EURASIP J. Adv. Signal Process. (2021) 2021:91 	

6 � Conclusion
In this paper, we have studied an offloading selection and computational resource alloca-
tion scheme in F-RAN. Aiming at maximizing the total utility of all UEs who have the
task to be processed, a DDQN algorithm-based offloading selection scheme is proposed
to initially make the optimal offloading decision for each UE with an unpredictable CSI.
Especially, the proposed DDQN algorithm is a centralized algorithm carried out at the
BS, so we utilize a pre-processing phase to decrease the complexity of the DDQN algo-
rithm before the network training. After getting the optimal action for each UE, we then
utilize the distributed DQN algorithm to optimize the computational resource at each
FAP. Simulation results demonstrated that the proposed offloading and resource opti-
mization scheme can effectively increase the utility obtain by the required UEs while
achieving a better performance compared with other schemes.

Abbreviations
VR: Virtual Reality; AR: Augmented Reality; UEs: User Equipments; F-RANs: Fog Radio Access Network Architecture;
C-RANs: Cloud Radio Access Networks; FAPs: Fog Access Points; D2D: Device-to-Device; QoS: Quality of Service; ML:
Machine Learning; RL: Reinforcement Learning; CSI: Channel State Information; DRL: Deep Reinforcement Learning;
DQN: Deep Q-Network; DDQN: Dueling Deep Q-Network; MINP: Mixed-Integer Nonlinear Programming; BS: Base Station;
DCNs: Distributed Computing Nodes; OFDMA: Orthogonal Frequency-Division Multiple Access; MDP: Markov Decision
Process; RO: Random Task Offloading Scheme; ND2D: Non-D2D Offloading Scheme; NP: Non-pre-processing Offloading
Scheme; RS: Random Tasks Selection Scheme of FAP and the Cloud.

Acknowledgements
The authors would like to acknowledge all the participants for their contributions to this research study.

Author’s contributions
Both authors have contributed toward this work as well as in compilation of this manuscript. The author(s) read and
approved the final manuscript.

Funding
This research was supported by the National Natural Science Foundation of China (Grant Nos. 62071377, 61801382,
61901367); The Key Project of Natural Science Foundation of Shaanxi Province (Grant Nos. 2020JQ-849, 2021JM-465,
2019ZDLGY07-06).

Availability of data and materials
Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Fig. 12  The total utility of UEs over the average required computational resource of tasks

Page 24 of 25Jiang et al. EURASIP J. Adv. Signal Process. (2021) 2021:91

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
The manuscript does not contain any individual person’s data in any form (including individual details, images, or videos)
and therefore the consent to publish is not applicable to this article.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Shaanxi Key Laboratory of Information Communication Network and Security, Xi’an University of Posts and Telecommu-
nications, Xi’an, China. 2 China Mobile System Integration Co., Ltd., Beijing, China.

Received: 7 May 2021 Accepted: 22 September 2021

References
	1.	 M. Latva-Aho, K. Leppänen, Key drivers and research challenges for 6G ubiquitous wireless intelligence (white paper).

Oulu, Finland: 6G Flagship, (2019)
	2.	 Y. Lan, X. Wang, D. Wang, Z. Liu et al., Task caching, offloading, and resource allocation in D2D-aided fog computing

networks. IEEE Access 7, 104876–104891 (2019)
	3.	 M. Yang, H. Zhu, H. Wang, Y. Koucheryavy, K. Samouylov, H. Qian, An online learning approach to computation offload-

ing in dynamic fog networks. IEEE Internet Things J (2020). https://​doi.​org/​10.​1109/​JIOT.​2020.​30155​22
	4.	 Y. Ma, H. Wang, J. Xiong, J. Diao, D. Ma, Joint allocation on communication and computing resources for fog radio access

networks. IEEE Access 8, 108310–108323 (2020). https://​doi.​org/​10.​1109/​ACCESS.​2020.​30008​32
	5.	 M. Chen, B. Liang, M. Dong, Multi-user multi-task offloading and resource allocation in mobile cloud systems. IEEE Trans

Wirel Commun 17(10), 6790–6805 (2018). https://​doi.​org/​10.​1109/​TWC.​2018.​28645​59
	6.	 Q. Li, J. Zhao, Y. Gong et al., Energy-efficient computation offloading and resource allocation in fog computing for inter-

net of everything. China Commun 16(3), 32–41 (2019)
	7.	 Y. Lan, X. Wang, D. Wang et al., Task caching, offloading, and resource allocation in D2D-aided fog computing networks.

IEEE Access 7, 104876–104891 (2019)
	8.	 X. Chen, J. Zhang, When D2D meets cloud: hybrid mobile task offloading in fog computing, in 2017 IEEE International

Conference on Communications (ICC). IEEE , 1–6 (2017)
	9.	 A. Bozorgchenani, D. Tarchi, G.E. Corazza, Mobile edge computing partial offloading techniques for mobile urban

scenarios, in IEEE Global Communications Conference (GLOBECOM), IEEE, (2018), pp. 1–6
	10.	 N. Docomo, White paper 5g evolution and 6g. Accessed on 1(2020)
	11.	 F. Jiang, W. Liu, J. Wang, X. Liu, Q-learning based task offloading and resource allocation scheme for internet of vehicles,

in 2020 IEEE/CIC International Conference on Communications in China (ICCC), Chongqing, China, (2020), pp. 460–465,
https://​doi.​org/​10.​1109/​ICCC4​9849.​2020.​92389​25

	12.	 H. Ke, J. Wang, H. Wang, Y. Ge, Joint optimization of data offloading and resource allocation with renewable energy
aware for IoT devices: a deep reinforcement learning approach. IEEE Access 7, 179349–179363 (2019). https://​doi.​org/​10.​
1109/​ACCESS.​2019.​29593​48

	13.	 S. Nath, Y. Li, J. Wu, P. Fan, Multi-user multi-channel computation offloading and resource allocation for mobile edge
computing, in ICC 2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, (2020), pp. 1-6,
https://​doi.​org/​10.​1109/​ICC40​277.​2020.​91491​24

	14.	 X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, M. Bennis, Optimized computation offloading performance in virtual edge com-
puting systems via deep reinforcement learning. IEEE Internet Things J 6(3), 4005–4018 (2019). https://​doi.​org/​10.​1109/​
JIOT.​2018.​28762​79

	15.	 J. Baek, G. Kaddoum, Heterogeneous task offloading and resource allocations via deep recurrent reinforcement learning
in partial observable multi-fog networks. IEEE Internet Things J (2020). https://​doi.​org/​10.​1109/​JIOT.​2020.​30095​40

	16.	 Z. Wang, T. Schaul, M. Hessel, et al. Dueling network architectures for deep reinforcement learning. arXiv preprint arXiv:​
1511.​06581 (2015)

	17.	 Y. Ouyang, Task offloading algorithm of vehicle edge computing environment based on Dueling-DQN, in Journal of
Physics: Conference Series, Vol. 1873. No. 1. IOP Publishing, (2021)

	18.	 S. Song, Z. Fang, Z. Zhang, C. Chen, H. Sun, Semi-online computational offloading by dueling deep-Q network for user
behavior prediction. IEEE Access 8, 118192–118204 (2020). https://​doi.​org/​10.​1109/​ACCESS.​2020.​30048​61

	19.	 F. Jiang, R. Ma, C. Sun, Z. Gu, Dueling deep Q-network learning based computing offloading scheme for F-RAN, in IEEE
31st Annual International Symposium on Personal. Indoor and Mobile Radio Communications, London, UK 2020, 1–6 (2020).
https://​doi.​org/​10.​1109/​PIMRC​48278.​2020.​92173​55

	20.	 F. Jiang, Z. Yuan, C. Sun, J. Wang, Deep Q-learning-based content caching with update strategy for fog radio access
networks. IEEE Access 7, 97505–97514 (2019). https://​doi.​org/​10.​1109/​ACCESS.​2019.​29278​36

	21.	 J. Zhang, W. Xia, F. Yan, L. Shen, Joint computation offloading and resource allocation optimization in heterogeneous
networks with mobile edge computing. IEEE Access 6, 19324–19337 (2018)

	22.	 Y. Wei, Z. Wang, D. Guo, F.R. Yu, Deep q-learning based computation offloading strategy for mobile edge computing.
Comput. Mater. Continua 59(1), 89–104 (2019). https://​doi.​org/​10.​32604/​cmc.​2019.​04836

https://doi.org/10.1109/JIOT.2020.3015522
https://doi.org/10.1109/ACCESS.2020.3000832
https://doi.org/10.1109/TWC.2018.2864559
https://doi.org/10.1109/ICCC49849.2020.9238925
https://doi.org/10.1109/ACCESS.2019.2959348
https://doi.org/10.1109/ACCESS.2019.2959348
https://doi.org/10.1109/ICC40277.2020.9149124
https://doi.org/10.1109/JIOT.2018.2876279
https://doi.org/10.1109/JIOT.2018.2876279
https://doi.org/10.1109/JIOT.2020.3009540
http://arxiv.org/abs/1511.06581
http://arxiv.org/abs/1511.06581
https://doi.org/10.1109/ACCESS.2020.3004861
https://doi.org/10.1109/PIMRC48278.2020.9217355
https://doi.org/10.1109/ACCESS.2019.2927836
https://doi.org/10.32604/cmc.2019.04836

Page 25 of 25Jiang et al. EURASIP J. Adv. Signal Process. (2021) 2021:91 	

	23.	 L. Zhang, B. Cao, Y. Li, M. Peng, G. Feng, A multi-stage stochastic programming-based offloading policy for fog enabled
IoT-eHealth. IEEE J. Sel. Areas Commun. 39(2), 411–425 (2021). https://​doi.​org/​10.​1109/​JSAC.​2020.​30206​59

	24.	 A.A. Majeed, P. Kilpatrick, I. Spence, B. Varghese, Modelling fog offloading performance, in 2020 IEEE 4th International
Conference on Fog and Edge Computing (ICFEC), Melbourne, VIC, Australia, 2020, pp. 29–38, https://​doi.​org/​10.​1109/​ICFEC​
50348.​2020.​00011

	25.	 M. Tang, V.W.S. Wong, Deep reinforcement learning for task offloading in mobile edge computing systems. IEEE Trans.
Mob. Comput. (2020). https://​doi.​org/​10.​1109/​TMC.​2020.​30368​71

	26.	 Y. Li, F. Qi, Z. Wang, X. Yu, S. Shao, Distributed edge computing offloading algorithm based on deep reinforcement learn-
ing. IEEE Access 8, 85204–85215 (2020). https://​doi.​org/​10.​1109/​ACCESS.​2020.​29917​73

	27.	 D. Van Le, C. Tham, A deep reinforcement learning based offloading scheme in ad-hoc mobile clouds, in IEEE INFOCOM
2018—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Honolulu, HI, (2018), pp. 760–765,
https://​doi.​org/​10.​1109/​INFCO​MW.​2018.​84068​81

	28.	 C. Huang, P. Chen, Joint demand forecasting and DQN-based control for energy-aware mobile traffic offloading. IEEE
Access 8, 66588–66597 (2020). https://​doi.​org/​10.​1109/​ACCESS.​2020.​29856​79

	29.	 Z. Wei, B. Zhao, J. Su, X. Lu, Dynamic edge computation offloading for internet of things with energy harvesting: a learn-
ing method. IEEE Internet Things J 6(3), 4436–4447 (2019). https://​doi.​org/​10.​1109/​JIOT.​2018.​28827​83

	30.	 Y. Huang, G. Wei, Y. Wang, V-D D3QN: the variant of double deep Q-learning network with dueling architecture, in 2018
37th Chinese Control Conference (CCC), Wuhan, (2018), pp. 9130–9135, https://​doi.​org/​10.​23919/​ChiCC.​2018.​84834​78

	31.	 B.-A. Han, J.-J. Yang, Research on adaptive job shop scheduling problems based on dueling double DQN. IEEE Access 8,
186474–186495 (2020). https://​doi.​org/​10.​1109/​ACCESS.​2020.​30298​68

	32.	 H. Sasaki, T. Horiuchi, S. Kato, A study on vision-based mobile robot learning by deep Q-network, in 2017 56th Annual
Conference of the Society of Instrument and Control Engineers of Japan (SICE), Kanazawa, (2017), pp. 799–804, https://​doi.​
org/​10.​23919/​SICE.​2017.​81055​97

	33.	 H. Ge, Y. Song, C. Wu, J. Ren, G. Tan, Cooperative deep Q-learning with Q-value transfer for multi-intersection signal
control. IEEE Access 7, 40797–40809 (2019). https://​doi.​org/​10.​1109/​ACCESS.​2019.​29076​18

	34.	 K. Elgazzar, P. Martin, H.S. Hassanein, Cloud-assisted computation offloading to support mobile services. IEEE Trans.
Cloud Comput. 4(3), 279–292 (2016). https://​doi.​org/​10.​1109/​TCC.​2014.​23504​71

	35.	 P. Ajay Rao, B. Navaneesh Kumar, S. Cadabam, T. Praveena, Distributed deep reinforcement learning using tensorflow, in
2017 International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC), Mysore,
(2017), pp. 171–174, https://​doi.​org/​10.​1109/​CTCEEC.​2017.​84551​96

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Fan Jiang  received the B.S. degree and the M.S. degree in communication engineering and communi-
cations and information systems from Xidian University, Xi’an, China, in 2004 and 2007, respectively,
and the Ph.D. degree in circuit and system from Beijing University of Posts and Telecommunications,
Beijing, China in 2010. She is currently a full professor with Xi’an University of Posts and Telecommu-
nications. Her research interests include wireless communication systems, such as device-to-device com-
munications, fog computing, edge caching, and radio resource allocation and management.

Rongxin Ma  received the B.E. degree in communication engineering from the Xi’an University of
Posts and Telecommunications, Xi’an, China, in 2018, where she is currently pursuing the M.S. degree.
Her research interests include reinforcement learning, optimization, and its application in fog computing
and computing offloading strategy.

Youjun Gao  received the Ph.D. degree in Circuit and System from the Beijing University of Posts and
Telecommunications, Beijing, China, in 2008. He is currently with China Mobile System Integration Co.,
Ltd. His research interests include key technology for future wireless communication, and the applications
in smart city and internet of things field.

Zesheng Gu  received the B.E. degree in electrical and information engineering from the Lanzhou Poly-
technical College, Lanzhou, China in 2016. He is currently pursuing the M.S. degree in electronic com-
munications engineering in the Xi’an University of Posts and Telecommunications, Xi’an, China. His
research interests include reinforcement learning, optimization, and Non-orthogonal Multiple Access in
the 5G technology.

https://doi.org/10.1109/JSAC.2020.3020659
https://doi.org/10.1109/ICFEC50348.2020.00011
https://doi.org/10.1109/ICFEC50348.2020.00011
https://doi.org/10.1109/TMC.2020.3036871
https://doi.org/10.1109/ACCESS.2020.2991773
https://doi.org/10.1109/INFCOMW.2018.8406881
https://doi.org/10.1109/ACCESS.2020.2985679
https://doi.org/10.1109/JIOT.2018.2882783
https://doi.org/10.23919/ChiCC.2018.8483478
https://doi.org/10.1109/ACCESS.2020.3029868
https://doi.org/10.23919/SICE.2017.8105597
https://doi.org/10.23919/SICE.2017.8105597
https://doi.org/10.1109/ACCESS.2019.2907618
https://doi.org/10.1109/TCC.2014.2350471
https://doi.org/10.1109/CTCEEC.2017.8455196

	A reinforcement learning-based computing offloading and resource allocation scheme in F-RAN
	Abstract
	1 Introduction
	2 Method
	3 System and computation model
	3.1 System model
	3.2 Computation model
	3.3 Problem formulation

	4 The proposed computing offloading policy and resource allocation
	4.1 DDQN algorithm-based computing offloading
	4.1.1 Markov decision process
	4.1.2 The pre-processing stage
	4.1.3 DDQN algorithm

	4.2 DQN algorithm-based computation resource allocation scheme

	5 Results and discussion
	6 Conclusion
	Acknowledgements
	References

