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1  Introduction
Our society is becoming increasingly highly digitized, hyper-connected and globally data 
driven. Many widely anticipated services, including virtual reality (VR), augmented real-
ity (AR), internet of vehicles, and ultra-HD video, are all call for extreme-low latency and 
extreme-low energy consumption in the 6G system [1]. These novel applications usually 
require powerful computational capacity, huge amounts of energy, and rigorous delay 
constraints. However, user equipments

(UEs) usually have limited computational capability. Therefore, it is not practical to 
run such complicated applications on the mobile devices of UEs. To solve this prob-
lem, fog radio access network architecture (F-RANs) is proposed as an extension to the 
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cloud radio access networks (C-RANs), which is deployed much closer to the UEs, and 
could provide the accessible computational resource on the heterogeneous fog access 
points (FAPs) [2]. With the help of F-RANs, UEs can offload their intensively compu-
tational tasks to the proximate FAPs to process to decrease latency rather than offload 
those tasks to the remote cloud center, which not only enable the requirement of UEs 
to be satisfied at anytime and anywhere but also relieve the pressure from the volume 
data traffic of the fronthaul links. Furthermore, device-to-device (D2D) communication 
can be deployed in F-RANs to serve as an effective offload method by providing direct 
communication and computational capabilities between nearby UEs at the edge of the 
network.

However, due to the limited computational resource on FAPs, how and where to 
offload the UE’s tasks while optimizing the computational resource in FAPs are hot 
issues in academic research [3]. Particularly, for computational tasks of UEs with differ-
ent latency or energy requirements, how to strategically make an optimal offloading and 
computational resource allocation policy to ensure that UEs’ quality of service (QoS) 
as well as to reduce the total cost is an essential task that many valuable works have 
been carried [4–7]. For instance, Ref. [4] jointly optimizes the offloading policy and radio 
resource allocation to satisfy the diverse QoS requirements of multi-UEs in the scenario 
of multiple FAPs by utilizing the genetic algorithm. With the same scenario as consid-
ered in Ref. [4], Ref. [5] utilizes separable semi-definite relaxation to minimize the cost 
of energy and delay for all UEs. Ref. [6] adopts a traffic prediction method to conduct a 
problem of dynamic traffic offloading and resource allocation to achieve the compromise 
of latency and energy consumption. In the same way, Ref. [7] achieves a joint optimiza-
tion of offloading policy and computational resource based on the combination of fog 
computing and cloud computing. Moreover, to provide more computational resource at 
the radio access network to enhance the computation capability, the advantages of D2D 
communication technology have been explored in the scenario of F-RAN in Ref. [8, 9]. 
Specifically, Ref. [8] studies partial task offloading in a D2D-assisted F-RAN, where tasks 
are performed by multiple D2D users or FAP, with the objective of maximizing total util-
ity of the F-RAN system, Ref. [8] combines offloading policies, computational resource 
allocation and the selection of D2D pairs into consideration. Ref. [9] proposes that UEs 
who need task offloading can choose the D2D execution mode, FAP execution mode, or 
cloud execution mode, and utilizes a three-layer graph matching algorithm to obtain the 
selection space supported by the three execution modes, finally achieve the minimum 
cost of the considered system.

On the other hand, machine learning (ML) methods have been widely incorporated 
into the 6G wireless networks in recent researches [10]. Specifically, among the ML-
based methods, reinforcement learning (RL) algorithm is greatly suitable for solving 
the problem with dynamically changing Channel State Information (CSI) in wireless 
networks. For instance, Ref. [11] utilizes the Q-learning algorithm to make offloading 
decisions by obtaining the biggest reward to minimize the energy consumption in the 
wireless system. However, although Q-learning can solve the problem of offloading deci-
sions, it still has some issues in practice. For instance, in the Q-learning algorithm, we 
need to compute and store each state-action value expressed as Q value produced from 
each interaction with the environment into a Q-table. However, as the number of the 
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state-action pair increases, the scale of the Q-table becomes too large to manage and 
enquire, which makes it complicated to obtain the optimal solutions efficiently and thus 
will directly affect the QoS of UEs. Therefore, a deep reinforcement learning (DRL) algo-
rithm called deep Q-network (DQN) algorithm is proposed in Ref. [12] to obtain the 
optimal offloading policy and resource allocation, which utilizes the deep neural net-
work to estimate the Q value which is more efficient to solve the problem concerning 
massive data. Researches such as [13–15] also show that the DQN algorithm can achieve 
a better performance in dealing with the problem of offloading decision and resource 
allocation.

However, a potential drawback with the DQN algorithm is that the value function 
in some states is independent of the selected action. To deal with this dilemma, an 
advanced DRL algorithm called dueling deep Q-network (DDQN) algorithm is sug-
gested to overcome the mentioned defect [16]. The core idea of the DDQN algorithm 
lies in that the state-action Q value in the neural network is further divided into two 
parts, namely, the value function independent of action, and the action advantage func-
tion related to action. Moreover, based on the network structure of DDQN, the agent in 
RL will eventually learn more accurate value, which means the DDQN algorithm could 
get better performance than the DQN algorithm in solving the problem related to off-
loading policy and resource. Ref. [17] adopts a DDQN algorithm to predict the offload-
ing behavior of UEs who have tasks with a semi-online distribution, while calculating 
and updating the total rewards after each offloading decisions until the total rewards 
achieve maximum. Similarly, Ref. [18] uses the DDQN algorithm to predict UEs’ off-
loading modes meanwhile achieving a load balance of the MEC server with unknown 
environment information, which is interpreted as the unknown channel state informa-
tion. By adopting the DDQN algorithm, Ref. [18] effectively improved the offloading 
efficiency and decreasing the resource costing. Therefore, in our previous work [19], we 
studied a computing offloading policy for multiple user equipments (UEs) in F-RANs by 
using the DQN algorithm to optimize the total utility of UEs. However, the limitation 
of the work is that computational resource for FAPs has not been optimized. So how to 
design an effective offloading policy as well as an efficient resource allocation scheme is 
essential to improve the total utility of UEs.

Illuminated by the contributions of the aforementioned researches, this paper serves 
to find an optimal offloading policy of UEs’ tasks while optimizing the computational 
resource of FAPs in the considered F-RAN, assuming that each UE has a computation-
ally intensive task to be processed. Especially, since the FAPs are resource-limited, some 
of the tasks can be processed in the FAP, and the others are forwarded to the cloud 
server by the fronthaul link. Moreover, some idle UEs who can provide additional com-
putational resource by D2D communication around the requested UEs are taken into 
consideration to enhance the space of the offloading selection. Consequently, tasks of the 
requested UEs can be offloaded to FAP, nearby idle UE, cloud server, or process locally, 
respectively. This problem is formulated as a joint optimization to the offloading policy 
selection and the computational resource allocation of all UE’s tasks with the objection 
of maximizing the total utility of all requested UEs. This problem has also been proved 
as a non-convex mixed-integer nonlinear programming (MINP) problem in Ref. [5]. To 
solve this challenging problem, we decompose it into two phases. At the first phase, a 
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centralized DDQN algorithm is utilized to select the most appropriate offloading mode 
for each UE. Especially, we utilize a pre-processing procedure to reduce the complexity 
of the used DDQN algorithm. At the second phase, based on the training results of the 
DDQN algorithm, the tasks offloaded to the FAPs are classified according to their delay 
and energy requirements initially. Then, a distributed DQN algorithm is adopted to opti-
mize the computational resource in each FAP to obtain the final offloading policy and 
resource allocation.

The contributions of this paper can be summarized as below: 

1.	 Offloading policy selection:

	 A centralized DDQN algorithm is utilized in the proposed scheme to select the most 
appropriate offloading mode for each UE, which consists of offloading to FAP, nearby 
idle UE, or processing by itself. Due to the complexity of the centralized algorithm in 
the Base Station (BS) will increase with the increasing number of UEs who have the 
offloading requirements, a pre-processing procedure is adopted to reduce the com-
plexity of the DDQN algorithm by directly satisfying some of the UE’s task require-
ments.

2.	 Optimize the computational resource in FAPs:
	 In the second step, there exists a circumstance that multiple UEs might be connected 

to the same FAP for task offloading. Therefore, to ensure the maximization of the 
total utility, some of the tasks in FAP should be sent to the cloud server to process. 
Aiming to jointly allocate the computational resource in FAPs while deciding the off-
loading decision for the UEs whether they be sent to the cloud or stay at FAP to 
process, we put forward a distributed DQN algorithm, and combining with the train-
ing results of the DDQN algorithm, the final optimal offloading policy and resource 
allocation are obtained.

3.	 The performance of the proposed DDQN and DQN algorithms:
	 Simulation experiment compares the proposed offloading policy and resource alloca-

tion scheme with other existing baseline schemes. Meanwhile, the performance of 
the proposed DDQN algorithm and DQN algorithm also is given.

This paper is organized as follows: Sect.  2 describes the system model, computation 
model and problem formulation. The proposed offloading policy based on the DDQN 
algorithm, and the computational resource allocation scheme based on the DQN algo-
rithm, are illustrated in Sect. 3. Simulation results are demonstrated in Sect. 4. Finally, 
conclusions are drawn in Sect. 5.

2 � Method
This section introduces the methods used in the work. we first build formulas of the 
latency, energy consumption in the considered task processing modes, then the formula 
described the total utility of the required UEs can be derived. Accordingly, a centralized 
DDQN algorithm is adopted to solve the problem of offloading mode selection, based on 
the training results of the DDQN algorithm, a distributed DQN algorithm is utilized to 
optimize the computational resource of each FAP. Both of the above deep reinforcement 
learning algorithm is implemented with Python 3.7.7, TensorFlow 2.0, and the Adam 
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optimizer is used to carry out the gradient descent algorithm to minimize the loss func-
tion of the two neural network.

3 � System and computation model
3.1 � System model

The system structure is shown in Fig.  1, a F-RAN architecture is considered which 
includes a single cell scenario consisting of M FAPs, N UEs, and K distributed comput-
ing nodes (DCNs), where DCN typically acts as an idle UE with adequate computational 
resource distributed around UE, and can be connected with UEs by D2D communi-
cation. Assume each UE only has one computationally intensive task to be dealt with 
which is characterized as tn , where Bn is the number of CPU cycles required for com-
puting 1-bit data, and Dn is the size of the task data. To improve the gains brought by 
offloading behavior, we suppose that each UE has four offloading options. Specifically, 
each UE can offload its complete task either to FAP, nearby DCN, cloud server, or pro-
cess locally by itself. Accordingly, the vector of the offloading decision made for the UE 
n is defined as dn , ∂m,βk , �Local , �Cloud = {0, 1}, ∀m ∈ M, ∀k ∈ K  . Specifically, parameter 
“1” indicates the full task of UE will be offloaded, while parameter “0” indicates the full 
task of UE will not be offloaded. Besides, suppose that all the UEs, FAPs, and DCNs have 
already cached some task results in their own storage according to an optimal caching 
matrix proposed by our previous work [20]. Hence, UEs could first search the desired 
result of their requested task before carrying out the offloading behavior. If, fortunately, 
the result can be found within the caching storage, the requirement of the UEs can be 
directly satisfied, and there is no need to offload.

For the sake of characterizing the network topology in the considered F-RAN, we 
build a matrix P = [pi,j](M+K )×N

 where the columns indicate all the UEs who need to 
carry out offloading and the rows consist of the FAPs and DCNs which can be associated 
with. If the distance between UE j and FAP j (or DCN j) exceed the maximal distance of 
FAP or DCN represented as dFAP , dD2D , pi,j = 0 , otherwise pi,j = 1.

Fig. 1  Computing offloading in F-RAN
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Moreover, considering that in practical situation, there might have some DCNs not 
willing to provide their computational resource, we build a matrix Y = [yi,j]K×N

 to 
donate the willingness of DCNs to participate in the offloading process, where yi,j is 
expressed as

Then, matrix Y is used to update matrix P, if yi,j = 1 , then pi,j = 1 , otherwise pi,j = 0 . 
Therefore, the matrix P can be updated as pi,j.

The important parameters in this paper are listed in Table 1.

3.2 � Computation model

An orthogonal frequency-division multiple access (OFDMA) method is used to 
access the FAP through the cellular channel. When a UE has the requirement to 

(1)yi.j =

{
0, the DCN i has not willingness to UE j, i ∈ K , j ∈ N
1, the DCN i has willingness to UE j, i ∈ K , j ∈ N

(2)pi,j =







1, yi,j = 1 and di,j ≤ dD2D, i ∈ K , j ∈ N
1, di,j ≤ dFAP , i ∈ M, j ∈ N
0, otherwise

Table 1  Some important parameters

Parameters Value

M The number of FAPs

N The number of UEs

K The number of DCNs

tn The task of UE n

Bn The number of CPU cycles

Dn The size of the task data

dn Offloading decision vector

P Network topology matrix

dFAP The maximal distance of FAP

Y The willingness matrix of DCN

f ln
The computational capacity of UE n

zn The energy consumption in per CPU cycle of UE n

ρt
n

The weight factors of latency

ρe
n The weight factors of energy

fn,m The allocated computational resource to UE n in FAP m

fk The computational capacity of DCN k

Tc The round-trip transmission delay

f Cloudn
The allocated computational resource to UE n at the cloud server

f FAP The computational resource of FAP

f Cloud The computational resource of cloud server

Cm The maximum accessible number of FAP

T The steps in each training epoch

S The state matrix

C The optimal caching matrix

Nm The number of UEs who offload their tasks to FAP m
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communicate with FAP or DCN, the BS will allocate one sub-channel (cellular link or 
D2D link) to the requested UE. Combined with the four possible options, the corre-
sponding four task processing methods are introduced as follows.

Local processing: If the task of UE n is processed locally, the local execution delay 
is calculated as

where f ln denotes the computational capacity of UE n which means the CPU cycles per 
second when the tasking is being processed. Moreover, we adopt the same energy con-
sumption model for local processing as in Ref. [21], which is expressed

where zn = 10−27(f ln)
2 represents the energy consumption in per CPU cycle of UE n.

Moreover, the utility function obtained by UE n with local processing mode is 
defined as the combination of the saved delay and the saved energy compared when 
the task of UE n is processed locally. Thereby, the utility obtained by UE n in local 
processing is expressed as

where ρt
n and ρe

n indicate the weight factors of each task, respectively, and the value of 
these two parameters ranges from 0 to 1, which satisfies ρt

n + ρe
n = 1 [22]. Moreover, 

since different tasks have different requirements for delay and energy, if the task has a 
higher requirement for low latency, ρt

n will be bigger, otherwise, ρe
n will be bigger.

FAP processing: If the task of UE n is carried out in the FAP processing mode, it takes 
three steps to complete the offloading process. Firstly, the task is initially uploaded to 
the associated FAP. Then, the task is performed by utilizing the computational resource 
provided from the FAP. Finally, the result of the task is returned to the requested UE n. 
Furthermore, since the transmission rate of the cellular link is relatively high while the 
task result is comparatively small, the transmission delay for task results is omitted in 
this paper [23]. Particularly, the uploading delay from UE n to the FAP m is calculated as

where run,m denotes the uplink rate of UE n to the connected FAP m of the cellular link, 
which can be expressed as

In expression (7), pun,m denotes the transmit power of UE n, hun,m represents the upload-
ing channel gain, B indicates the bandwidth in each sub-channel, and N0 stands for the 
noise power in each sub-channel. Thereby, the energy consumption of uploading task tn 
is presented as

(3)Tl
n =

BnDn

f ln
, ∀n ∈ N

(4)El
n = znBnDn, ∀n ∈ N

(5)Ulocal
n = ρt

n(T
l
n − Tl

n)+ ρe
n(E

l
n − El

n) = 0, ∀n ∈ N

(6)Tu
n,m =

Dn

run,m
, ∀n ∈ N , ∀m ∈ M

(7)run,m = B log

(

1+
pun,m

∣
∣hun,m

∣
∣2

N0

)

, ∀n ∈ N , ∀m ∈ M.
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Moreover, the task execution delay to process the task tn with FAP m can be calculated 
by

where fn,m denotes the allocated computational resource to UE n in FAP m. Addition-
ally, the utility obtained by UEs is only related to the delay and the energy consumption 
spent on the UEs side. Thereby, for UE n who has offloaded its task to the FAP m, the 
utility can be represented as

D2D processing: UE n can establish a D2D link to offload its task to a nearby DCN for 
processing. Let

which stands for the achievable data rate for D2D link between user n and the associ-
ated DCN k, where hd2dn,h  and pd2dn,h  denote the channel power gain and transmit power 
between UE n and DCN k, respectively. Then, transmission delay and the energy con-
sumption of UE n’s with the D2D link can be presented as

the execution delay of DCN k is calculated by

where fk indicates the computational capacity of DCN k. Likewise, the utility obtained 
by UE n in DCN processing can be given as

Cloud processing: Since the computational resource of FAPs is always not adequate for 
multiple UEs, so some tasks in FAPs should be offloaded to the cloud to ensure the total 
utility is not affected. With cloud processing mode, it takes the following steps for the 
offloading. Firstly, the task should be upload to the connected FAP, which be further sent 
to the cloud through the fronthaul link. Secondly, the task is executed by utilizing the 
computational resource provided from the cloud server. Finally, the computation result 
of the task is returned to the requested UE n. Specifically, we use Tc to represent the 

(8)Eu
n,m = pun,mT

u
n,m, ∀n ∈ N , ∀m ∈ M.

(9)Te
m =

BnDn

fn,m
, ∀n ∈ N , ∀m ∈ M

(10)Um
n = ρt

n(T
l
n − Tu

n,m − Te
m)+ ρe

n(E
l
n − Eu

n,m), ∀n ∈ N , ∀m ∈ M.

(11)rn,k = B log




1+

pd2dn,k

�
�
�hd2dn,k

�
�
�

2

N0




, ∀n ∈ N , ∀k ∈ K

(12)Tn,k =
Dn

rn,k
, ∀n ∈ N , ∀k ∈ K

(13)En,k =pd2dn,k Tn,k , ∀n ∈ N , ∀k ∈ K

(14)Te
k =

BnDn

fk
, ∀n ∈ N , ∀k ∈ K

(15)Uk
n = ρt

n(T
l
n − Tn,k − Te

k )+ ρe
n(E

l
n − En,k), ∀n ∈ N , ∀k ∈ K .



Page 9 of 25Jiang et al. EURASIP J. Adv. Signal Process.         (2021) 2021:91 	

round-trip transmission delay in the fronthaul link. Thereby, the execution delay in the 
cloud processing is expressed as

where f Cloudn  denotes the allocated computational resource to UE n at the cloud server. 
With reference to the FAP processing mode, the utility obtained by UE n in cloud pro-
cessing is calculated as

3.3 � Problem formulation

The objection of this paper is to maximize the total utility obtained by all UEs via finding 
an optimal offloading policy for each UE and optimizing the computational resource in 
each FAP. Combining with the system model and communication model, the optimiza-
tion function can be formulated as

C1 and C2 constrain that each UE can only select one processing mode. C3 and C4 
ensure that the computational resource allocated to the offloaded tasks does not exceed 
the computational resource of FAP or cloud server presented as f FAP and f Cloud , respec-
tively. C5 states that the number of UEs associated with each FAP should not exceed the 
maximum accessible number defined as Cm, m ∈ M . Ref. [24] has proved that the prob-
lem formulated in (18) is a MINP problem, therefore, it is complicated to find the opti-
mal solution by utilizing traditional optimization algorithms. Besides, the scale of the 
problem (18) also increases rapidly with the increasing number of UEs, which further 
increases the complexity of the solution. Consequently, the total utility obtained by UEs 
will also be directly affected. Based on the above challenges, in the following section, the 

(16)Te
cloud =

BnDn

f Cloudn

, ∀n ∈ N

(17)UCloud
n = ρt

n(T
l
n − Tu

n,m − Tc − Te
cloud)+ ρe

n(E
l
n − Eu

n,m), ∀n ∈ N , ∀m ∈ M

(18)p : max

N∑

n=1

∂mU
m
n + βkU

k
n + �CloudU

Cloud
n + �localU

local
n

(18a)s.t. C1 : ∂m,βk , �Cloud , �local = {0, 1}, ∀m ∈ M, ∀k ∈ K

(18b)C2 : ∂m + βk + �Cloud + �local = 1, ∀m ∈ M, k ∈ K

(18c)C3 :

N∑

n=1

fn,m ≤ f FAP , ∀n ∈ N ,m ∈ M

(18d)C4 :

N∑

n=1

f Cloudn ≤ f Cloud , ∀n ∈ N

(18e)C5 :

N∑

i

∂ im ≤ Cm, ∀i ∈ N , ∀m ∈ M.
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problem formulated in (18) will be solved by jointly optimize the offloading policy and 
computational resource allocation. Specifically, we first divide the original problem into 
two sub-problems. A centralized DDQN algorithm running at BS is initially adopted to 
select the most appropriate offloading mode for each UE in the first phase. Especially, a 
pre-processing stage is introduced to decrease the complexity of the proposed DDQN 
algorithm. In the second phase, based on the training result of the DDQN algorithm, a 
distributed DQN algorithm is adopted to optimize the computational resource at each 
FAP. Combining these two phases, the final optimal offloading policy and resource allo-
cation can be obtained.

4 � The proposed computing offloading policy and resource allocation
This section mainly introduces the proposed DDQN algorithm-based computing off-
loading policy, pre-processing stage, and the DQN algorithm-based computational 
resource allocation scheme, respectively.

4.1 � DDQN algorithm‑based computing offloading

In the first phase, the utility obtained by each UE cannot be computed directly in the 
FAP processing mode because the computational resource in each FAP has not been 
allocated to UE before making the offloading decisions. Hence, we regard all the compu-
tational resource as a whole entirety in each FAP that can be allocated to the requested 
UE in the first phase, and after making the offloading decisions for each UE, we fur-
ther optimize the computational resource in each FAP. Specifically, a DDQN algorithm 
is adopted to find the most appropriate offloading mode for each UE. After choosing the 
appropriate offloading mode, we will continue to decide which tasks should be sent to 
the cloud center while allocating optimal the computational resource to the FAPs.

4.1.1 � Markov decision process

The DDQN algorithm is based on the DRL algorithm, which as a model-free approach 
can address complicated system settings by dynamically interacting with an unknown 
environment without any prior knowledge [25]. Meanwhile, DRL also can handle the 
potentially large state space problem [26]. In our considered F-RAN system, the problem 
of making offloading decisions for UEs is formulated as a finite Markov Decision Process 
(MDP) [27]. In our considered F-RAN system, assuming that the time period is divided 
into total T steps in each training epoch, and t = (1, 2, 3, ..,T ) indicates each step, the 
parameter T denotes the number of UEs that need to offload tasks. Combining the con-
sidered F-RAN system and the DRL algorithm, the four essentials in RL presented as 
Agent, Action Space, Environment & State, and Immediate Reward, respectively, in each 
step t are defined as

Agent: The agent is defined as a learner and a decision-maker in RL. Thereby, in our 
considered F-RAN system, BS is selected as the agent of the DDQN algorithm.

Environment & State: The environment in RL is defined as the set of all possible 
states, and the essence of RL is to perform actions to cause the state transfer [28]. There-
fore, we set a matrix S as the state, which has the same shape as the matrix P , and the 
value of sij in the matrix S should only be 0 or 1, sij = 1 represents the agent selects FAP 
i (or DCN i) for UE j, otherwise sij = 0 . At step t = 0 in each training epoch, we initialize 
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the matrix S as a total zero matrix, then, the agent executes actions to interact with the 
environment to trigger the change of matrix S.

Action Space: The BS make the offloading decision for each requested UE according 
to the network topology matrix P , and the optimization object is to find the optimal off-
loading mode for each UE. Thereby, in the proposed DDQN algorithm, we use at ∈ A to 
denote the action in the step t, where A = {∂1, ∂2, ..., ∂M ,β1,β2, ...,βK }.

Immediate Reward: The settings of the reward function always need to be related to 
the objective function [29]. Accordingly, we set the immediate reward rt in each step t as 
two parts: If the constraints in Eq. (18) can be all satisfied, the agent will obtain a positive 
immediate reward rt represented as the utility obtained by the t-th UE. Otherwise, the 
reward obtained by the agent is zero. In addition, there exists another situation that the 
reward is set to be zero, that is ∃j ∈ N ,

∑M+K+1
i=0 pij = 0 , which means the UE j cannot 

be connected with any FAP or DCN. Therefore, when the reward is zero, it means the 
UE should carry out local processing. We define the reward function at step t as

At the end of each training epoch, the accumulated reward is represented as the total 
utility that the requested UEs.

4.1.2 � The pre‑processing stage

However, the proposed centralized DDQN algorithm in the BS always has a higher algo-
rithm complexity, which is interpreted as the dimensions of the state space in the DDQN 
algorithm will increase dramatically as the number of the requested UEs increases, 
which increases the complexity of the DDQN algorithm while decreasing the efficiency 
of the network training. Thereby, a pre-processing phase is adopted to decrease the 
dimensions of the state space to improve the total utility obtained by all UEs. Specifi-
cally, assume that each UE, DCN, and FAP has cached some processing results of dif-
ferent tasks based on the optimal caching matrix C(M+K+N )×N come from our previous 
research [20]. Combined with our considered F-RAN system, we extend the dimen-
sion of the matrix P(M+K )×N to the same dimension as C and fill in “1” where they are 
extended. Then, dot multiplies the matrix C and obtains a matrix P′ = P • C . In this way, 
each task has its own identity to be distinguished from others in P′ . Accordingly, when a 
UE has a task to be processed, it will first check whether the task result has been cached 
on its local cache. If the result has not been found locally, the identification of the task 
will be transmitted to BS, and the BS will search the matrix P′ then select the closest 
route to delivery to the requested UE. If the result can be directly obtained in the pre-
processing stage, the maximum utility that UE n can obtain is expressed as

However, if the result cannot be found in the pre-processing stage, the offloading proce-
dure will be adopted. Since the BS server is equipped with a powerful computing server, 
the searching and delivery of the task result can be completed so fast that the delay to 

(19)rt =







the utility of t-UE, if (18a)-(18e) is satisfied

0, (18a)-(18e) is not all satisfied or ∃j ∈ N ,

M+K+1�

i=0

pij = 0
.

(20)Un = ρt
nT

l
n + ρe

nE
l
n.
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transmit can be ignored. Therefore, UEs who no longer need to participate in the task 
offloading can find their task results during the pre-processing phase. In this way, the 
complexity of the DDQN algorithm can be decreased. The specific algorithm procedure 
in the pre-processing phase is shown in Algorithm 1.

4.1.3 � DDQN algorithm

The DDQN algorithm-based offloading scheme is proposed to select the optimal off-
loading mode for UEs who need to be offloaded after the state space has been decreased. 
Specifically, the DDQN algorithm is a typical DRL algorithm that utilizes the deep neu-
ral network to approximate the state-action Q value with the aim of maximizing the 
expected accumulated discounted reward and get the optimal action [30]. The Q func-
tion is expressed as formula (20)

where

And γ is a discount factor between 0 and 1 that stands for the effect of the future times-
tamp rewards on current time-step rewards. The greater effect makes a bigger γ.

The model and architecture of the DDQN algorithm we designed is shown in Fig. 2, 
where we use each step t at a training epoch as an instance to introduce our network 
model. In each step t, the input of the DDQN network is the current state st and the 
output is the Q value of each possible action at the state st , which can be presented as 
Q(st , at) . The agent selects an action according to the ε-Greedy policy then perform the 
action, which is interpreted as an action is randomly selected with the probability of ε 
and the action that has the maximum value of Q(st , at) is selected with the probabil-
ity of 1− ε . The advantage of using this ε-Greedy policy is that it can make the agent 
explores the unknown action and state in each step so as to avoid the algorithm falling 
into a locally optimal solution. After selecting an action to execute, the state will transfer 
to the next state st+1 . Meanwhile, the agent also gets an immediate reward represented 
asrt , and the network will carry on the training at the next step t + 1 until the end of the 
training epoch. During the training process, the object of the DDQN network training 
is to obtain a series of actions that can achieve the maximized accumulated discounted 

(21)Q(s, a) = E

[
T∑

i=0

γ iRt+i|st = s, at = a

]

(22)Rt = rt + rt+1 + · · · + rT .
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reward. This can be interpreted as the BS aims at achieving the maximum total utility for 
all UEs in the considered F-RAN model. To achieve a better performance of the network 
training, the DDQN algorithm splits the output Q(st , at) into two different parts, which 
is the State Value Function V (st) and Action Advantage Function A(st , at) individually 
expressed as

where ω and ϕ are the network parameters for V (st) and A(st , at) , respectively. Specifi-
cally, V (st) stands for the excepted accumulated reward at the state st , and A(st , at) indi-
cates the degree of superiority of action at over the average level in state st presented as 
formula (24) and (25).

According to Ref. [31], formula (23) can reformulated as

Furthermore, according to the training procedure of DRL [32], we build the loss function 
of the DDQN algorithm as

where rt + γmax
a

Q̂(st+1, a,ω
−,ϕ−) represents the target network and Q(st , at;ω,ϕ) rep-

resents the predict network value. Actually, these two networks have the same structure 
but different parameters, where the parameters of the former are copied from the latter 
every I steps. During each training epoch of the DDQN network, the gradient descent 

(23)Q(st , at ,ω,ϕ) = V (st;ω)+ A(st , at;ϕ)

(24)V (s) =E

[
T∑

i=0

γ iRt+i|st = s

]

(25)A(st , at) �Q(st , at)− V (st).

(26)Q(st , at;ω,ϕ) = V (st;ω)+ (A(st , at;ϕ)−
1

|A|

∑

a

A(st , at;ϕ)).

(27)L = (rt + γmax
a

Q̂(st+1, a,ω
−,ϕ−)− Q(st , at;ω,ϕ))

2

Fig. 2  Dueling deep Q-network model and architecture
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algorithm is utilized to minimize the loss function to find the optimal parameters of the 
predict network, which is further used to evaluate the Q value of each chosen action 
[33]. In the DDQN algorithm, an experience pool is introduced to ensure the stability of 
the network training, where the specific approach is to put the latest interaction data 
(st , at , rt , st+1) into an experience memory pool, when the training is start, a mini-batch 
(s′t , a

′
t+1, r

′
t+1, s

′
t+1) will be randomly sampled from the pool. As a result, the experi-

ence replay mechanism not only makes the agent learn from the previous experiences 
repeatedly but also removes the correlations between the observations. Thereby, the 
DDQN network training will become more stable and more efficient. The whole proce-
dure of the above proposed DDQN algorithm is drawn in Fig.  3, and the proposed 
DDQN algorithm-based offloading scheme is presented in Algorithm 2.

4.2 � DQN algorithm‑based computation resource allocation scheme

Since multiple UEs connected to the same FAP will cause resource competition, some 
of the tasks in FAP should be relayed to the cloud server to ensure the maximization 
of total utility. Meanwhile, the computational resource in each FAP should be allo-
cated to the UEs whose task has offloaded to the corresponded FAP. In this part, we 
first classify the tasks in each FAP into two different parts according to UE’s different 
requirements in latency which is characterized with the delay revenue coefficient ρt

n . 
Specifically, tasks with higher delay requirement that are represented as ρt

n ≥ 0.5 are 
set to be remain at FAP to process. Otherwise, when ρt

n < 0.5 , the tasks will be sent 
to the cloud to process. Since the cloud center has abundant computational resources 
and owns powerful processing capability, while the computational resource of FAPs is 
limited. Thereby, we assume that the tasks sent to the cloud center can be processed 
in parallel [34]. Meanwhile, a distributed DQN algorithm is adopted to optimize the 
resource allocation in each FAP.
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DQN algorithm is also a typical model-free DQL [35], so the computational 
resource allocation problem can be formulated as MDP as well, the Agent, State, 
Action, and Reward are described as follows.

Agent: In the proposed distributed DQN algorithm, since the object is to optimize 
the computational resource in each FAP, we define the Agent as each FAP.

Environment & State: The state is defined as a combination of the available 
resources in each FAP and the obtained utility of UE in each FAP, which can be 
expressed as s = (Fm,

∑Nm
i=1Ui) , where Nm stands for the number of UEs who offload 

their tasks to FAP m.
Action Space: The action should contain all possible schemes of resource allocation to 

the UEs who remain at the FAP m. Besides, the DQN algorithm is mainly oriented to the 
problem with discrete actions. Thereby, the computational resource in each FAP should 
also be discrete, and the discrete computational resource blocks should be allocated to 
each UE. Supposed the computational resource in FAP m is divided equally into X parts. 
Therefore, the action is expressed as at = (f1, f2, ..., fi, ..., fNm), fi ∈ {1, 2, 3, ...,X} , where fi 
denotes the number of computational resource block which is allocated to the UE i.

Immediate Reward: Since the agent act as each FAP in this distributed DQN-based 
resource allocation problem, so FAP m will immediately get a positive reward denoted 
as the utility of UEs in FAP m, which is expressed as 

∑Nm
i Ui . In practice, if the vari-

able range of reward value does not exceed a threshold quantity which is represented 
as a small value in ten consecutive time steps in the training epoch, we set this train-
ing epoch is terminated, and the network will be start at the next training epoch.

Fig. 3  Dueling deep Q-network model
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As shown in Fig. 4, the input of the DQN is the state st in each step t, then three 
fully connected layers are utilized to extract the features of the input data, finally, the 
output of the DQN is the resource allocation vector. When the DQN algorithm tends 
to converge, the agent can eventually learn the optimal resource allocation vector 
(f1

∗, f2
∗, ..., fi

∗, ..., fNm
∗).

Similarly, the DQN algorithm uses the gradient descent algorithm to update the 
Q-network during each training epoch to minimize the loss function, which is formu-
lated as

where θ ′ represents the parameter of the target network which is copied from the pre-
dict network parameter θ every several steps. As with the DDQN algorithm, the DQN 
algorithm also adopts the experience replay mechanism to remove the correlation of the 
data to make the training of the network more stable. The proposed DQN algorithm-
based computational resource allocation is illustrated in Algorithm 3.

5 � Results and discussion
In this section, the parameters and results of the simulation experiment are presented to 
verify the performance of our proposed offloading and resource allocation scheme.

We consider a single cell with a radius of 400 m which distributed with 20–100 UEs 
and 2–10 FAPs. Also, some important parameters are listed in Table  2. Moreover, In 

(28)Lt(θ) = E
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the DDQN algorithm-based offloading scheme, we set the input layer has (M + K )× N  
neurons, where we use three fully connected hidden layers to extract the feature of the 
input data, each of which comprises 256 neurons. Especially, to divide the State Value 
Function and the Action Advantage Function, we split the third hidden layer into two 
halves, which means that 128 neurons represent the State Value Function and another 
128 neurons represent the Action Advantage Function. Besides, the discount factor γ in 
the DDQN and DQN algorithm is set as 0.99. Similarly, the DQN algorithm also adopts 
three full connected hidden layers and each layer comprises 256 neurons. The DDQN 
and DQN algorithms are implemented by TensorFlow 2.0 based on Python 3.7.7. More-
over, to train the DDQN and the DQN network, we use Adam optimizer and set the 
learning rate as 0.0002 to realize the gradient descent algorithm to minimize the loss 
function. For the action selection of each step, we set the parameter ε in the ε-Greedy 
policy as decaying from 0.08 to 0.01 through the network training process, which means 
that the predict Q-network tends to select the action with the maximal Q value to 

Fig. 4  Deep Q-network model

Table 2  Simulation parameters

Parameters Values

dFAP 150 m

dD2D 30 m

Bn Select from [500, 1000] cycles/bit

Dn Randomly for each UE but fix the 
average size to 1 MB

fn 900 MHz

fDCN 1 GHz

f FAP 4 GHz

fcloud 10 GHz

ρt
n , ρ

e
n

Uniform distributed in [0, 1]

B 10MHz

N0 − 174 dBm/Hz

Transmit power of UE 30 dBm

Transmit power of FAP 33 dBm

Channel gains of cellular and D2D links CN (0, 1)
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further improve the learning efficiency. Furthermore, when dividing the computational 
resources of each FAP, in order to avoid missing the optimal solution, we set that each 
resource block is 0.1

Figures  5 and 6 display the learning curves representing the accumulated reward 
obtained by the agent in each training epoch of the DDQN algorithm and the DQN 
algorithm, respectively. The number of UEs is set as 20, and the average required num-
ber of CPU cycles is 760 cycles/bit. We can see that the accumulated reward is gradually 
increasing with a bit of fluctuation and eventually become stable and converges both in 
the DDQN algorithm and the DQN algorithm, which indicates that the two networks 
have been trained perfectly while the optimal offloading decision and resource allocation 
has finally reached.

Then, we compare the performance of the proposed DDQN algorithm-based off-
loading scheme with other methods, which are random task offloading scheme (RO), 
non-D2D offloading scheme (ND2D), non-pre-processing offloading scheme (NP), and 
random tasks selection scheme of FAP and the cloud (RS), respectively.

Figure 7 shows the total utility of UEs versus the different numbers of UEs. Assume 
that the average required number of CPU cycles is fixed to 760 cycles/bit. It can be 
seen from Fig.  7 that the proposed DDQN algorithm-based offloading scheme can 
achieve the maximal total utility compared with other schemes. We give the following 
explanations. Firstly, for the RS scheme, since the tasks are randomly selected to be 
processed by the cloud, thereby, this scheme cannot guarantee the higher requirement 
of some UEs’ tasks for latency. Hence, even the resources have been optimized in 
each FAP, the utility obtained by some UEs cannot be maximized. Besides, as for the 
non-pre-processing offloading scheme represented as NP, it can be observed that as 
the number of UEs increases, the interval between the NP scheme and the proposed 
DDQN scheme has gradually become lager. This phenomenon can be interpreted as 
that more UEs indicates more task requirements are produced. Thereby, the probabil-
ity that the task results could be found within the matrix also increases, resulting in 

Fig. 5  Learning curve of DDQN algorithm
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that more UEs can achieve the desired utility by directly obtain the task result which 
contributes to the gradually increased total utility. Moreover, for the random task off-
loading scheme represented as RO, it is clearly shown that the performance is signifi-
cantly worse than the proposed scheme, the reason might be explained as because the 
BS selects the farther FAP or proximity devices for some UEs, which results in the 
increased transmission delay, then the obtained total utility of UEs cannot be satis-
fied. In some situations, the total utility might even be numerically negative, which 
is responsible for the poor performance of the total utility. Additionally, for the non-
D2D offloading scheme represented as ND2D, the total utility is obviously lower than 
other schemes. The reason is that without the assistance of the nearby DCNs, tasks of 
UEs can only be offloaded to FAPs or cloud, and the computational resources of some 

Fig. 6  Learning curve of DQN algorithm

Fig. 7  The total utility of UEs over the number of UEs
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nearby DCNs are not well utilized. Thereby, UEs cannot beneficial from the DCNs, 
which causes the lowest total utility compared with other schemes.

Figure  8 illustrates the total utility obtained by UEs versus the different average 
required computational resource of tasks, where we fix the number of UEs to 100. It can 
be seen that as the average required computational resource of tasks increases, the total 
utility obtained by UEs also increases. This trend is explained as more required com-
putational resource from UEs means larger execution delays with the local computing 
method. Accordingly, UEs can benefit by offloading their tasks to FAP, nearby DCNs, 
or cloud, respectively, through an optimal offloading scheme, which brings larger total 
utilities than execute the task locally.

Figure 9 demonstrates the number of the beneficial UEs versus the different numbers 
of FAPs, where we fixed the total number of UE to 150, and the average required number 
of CPU cycles to 760 cycles/bit. It can be obviously observed that as the number of FAP 
increases, the total number of UE who can obtain the utility through offloading tasks to 
others (Total beneficial) also increases. The reason is given as follows. Since more FAPs 
will provide more alternative offloading modes to more UEs, and consequently UEs can 
enjoy the more abundant computational resource provided by the FAPs. Compared with 
DCN offloading mode (DCN offloading), we can observe that as the number of FAPs 
increase, the number of UEs offloaded to DCNs gradually decreases. The reason behind 
this phenomenon is twofold. Initially, the competition for offloading opportunities 
among UEs is fierce when the resource of FAPs is scarce. However, if UE cannot connect 
to any FAP, it tends to offload to the nearby DCN to increase the utility. Consequently, 
some tasks of UEs have to be offloaded to the nearby DCN. However, compared with 
offload the task to DCN, as the numbers of FAPs increase, the computational resource 
provided by FAPs gradually become abundant to satisfy UEs’ demands for lower execu-
tion delay of the task. Since the utility obtained from the FAP is larger than that from 
DCN, more UEs will choose FAP offloading mode for higher utility. Therefore, as the 
number of FAP increases, more UE will increasingly prefer FAP offloading mode (FAP 

Fig. 8  The total utility of UEs over the average required computational resource of tasks
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offloading) instead of DCN offloading mode. On the other hand, for UEs who can obtain 
utility directly during the pre-processing phase (pre-obtained), the increased number of 
FAP means the larger probability that the task result has been cached, which can satisfy 
the requirements of more UEs. Therefore, the number of UEs who can directly obtaining 
the utility in the pre-processing stage grows with the increase in FAP number.

Then, we compare the proposed algorithm with three other methods, namely, Full-
FAP offloading where the tasks in FAP remain in FAP to process with non-resource opti-
mization, and Full-cloud offloading which means that the tasks in FAP are all sent to the 
cloud to process.

Figure 10 displays the total utility of UEs versus the different numbers of UEs, where 
we fixed the number of FAP to 10. It can be seen that as the increasing number of 
UEs, the total utility initially increases then gradually becomes stable. This is because 
as the number of UEs increases, more computational resource in FAP and cloud need 
to be allocated to more users, which will incur the longer execution delay of each UE’s 
task. This is responsible for the slow growth of the total utility. Compared to the pro-
posed resource optimization scheme to the non-resource optimization scheme, the 
DQN algorithm optimizes the allocation of the computational resource in each FAP, 
which improves the total utility. Besides, the performance of the Full-FAP offloading 
and the Full-cloud offloading is not as good as expected. This is due to the fact that if 
all UEs’ tasks oriented to the FAP are executed at the FAP, the computational resource 
of each UE is insufficient, which will directly affect the execution delay. The lower 
utility of the Full-cloud offloading may be due to the long round-trip delay or the con-
gestion in the fronthaul link, which increases the transmission delay of the task, and 
affects the total utility.

Figure  11 presents the total utility of UEs versus the different numbers of FAP. It 
can be seen that the total utility increases with the increasing number of FAP. This is 
because more FAPs can provide more computational resource, so that more UE with 
good channel conditions can choose nearby FAP to offload their tasks, which reduces 

Fig. 9  The total utility of UEs over the average required computational resource of tasks
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the transmission delay and execution delay of UEs’ tasks, thus improves the total util-
ity of UEs.

Figure  12 illustrates the total utility of UEs versus the average computational 
resource required of tasks. The quantity of UE and FAP are set to 100 and 10, respec-
tively. It can be observed that the total utility is gradually increasing. This is explained 
as the more average required computational resource of tasks responsible for a longer 
execution delay. Compared to processing locally, all offloading schemes such as off-
loading to FAP, DCN, or cloud will impact the utility of UEs because of the increased 
delay.

Fig. 10  The total utility of UEs versus the number of UEs

Fig. 11  The total utility of UEs versus the number of FAPs
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6 � Conclusion
In this paper, we have studied an offloading selection and computational resource alloca-
tion scheme in F-RAN. Aiming at maximizing the total utility of all UEs who have the 
task to be processed, a DDQN algorithm-based offloading selection scheme is proposed 
to initially make the optimal offloading decision for each UE with an unpredictable CSI. 
Especially, the proposed DDQN algorithm is a centralized algorithm carried out at the 
BS, so we utilize a pre-processing phase to decrease the complexity of the DDQN algo-
rithm before the network training. After getting the optimal action for each UE, we then 
utilize the distributed DQN algorithm to optimize the computational resource at each 
FAP. Simulation results demonstrated that the proposed offloading and resource opti-
mization scheme can effectively increase the utility obtain by the required UEs while 
achieving a better performance compared with other schemes.
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