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Abstract

The performance of the existing speech enhancement algorithms is not ideal in low signal-to-noise ratio (SNR)
non-stationary noise environments. In order to resolve this problem, a novel speech enhancement algorithm
based on multi-feature and adaptive mask with deep learning is presented in this paper. First, we construct a
new feature called multi-resolution auditory cepstral coefficient (MRACC). This feature which is extracted from
four cochleagrams of different resolutions can capture the local information and spectrotemporal context and
reduce the algorithm complexity. Second, an adaptive mask (AM) which can track noise change for speech
enhancement is put forward. The AM can flexibly combine the advantages of an ideal binary mask (IBM) and an
ideal ratio mask (IRM) with the change of SNR. Third, a deep neural network (DNN) architecture is used as a
nonlinear function to estimate adaptive mask. And the first and second derivatives of MRACC and MRACC are
used as the input of the DNN. Finally, the estimated AM is used to weight the noisy speech to achieve enhanced
speech. Experimental results show that the proposed algorithm not only further improves speech quality and
intelligibility, but also suppresses more noise than the contrast algorithms. In addition, the proposed algorithm
has a lower complexity than the contrast algorithms.
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1 Introduction
Over the past several decades, a large number of ap-
proaches were proposed to solve the problem of speech
enhancement. The traditional methods, such as spectral
subtraction [1], wiener filtering [2, 3], minimum mean
square error (MMSE) [4], statistical model [5, 6], and
wavelet transform [7, 8], make statistical assumptions
about the background noise and do not handle properly
non-stationary noises, which are very common in our
daily life.
With the appearance of the computational auditory

scene analysis (CASA), the method based on the auditory
scene analysis was applied to the speech enhancement [9].
For example, Zhang et al. proposed a speech enhancement
based in CASA [10], which extracted the features and

estimated the spectrum in gammatone domain as well as
filtered out the noise by IRM. This approach has no
hypothesis about noise which makes it fit for handling
non-stationary noises and has a better generalization
capability to process in a complex noise environment.
However, it is difficult to deal with unvoiced speech which
will result in a poor perceptual quality.
As the development of the deep learning, DNN has

become one of the most popular methods for speech
enhancement. The speech enhancement algorithm based
on DNN is to learn the complex nonlinear relationship
between noisy speech and clean speech [11]. Its deep
structures are good at learning the nonlinear relation-
ship between noise and speech and performing better in
non-stationary background noise. According to the training
target, deep learning-based speech enhancement algorithms
can be divided into mapping and masking [11]. Researchers
have proposed many speech enhancement algorithms
in mapping [12]. For example, in 2014, Weninger et al.
proposed a single-channel speech separation with
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memory-enhanced recurrent neural networks [13]. In
this algorithm, a long short-term memory recurrent
neural network (LSTM-RNN) was employed as a non-
linear regression function to predict clean speech as
well as noise features from noisy speech features, and
then a magnitude domain soft mask was constructed
from these features. In 2015, Xu et al. extended the
DNN-based speech enhancement framework to handle
adverse conditions and non-stationary noise types in
real situations [14]. In the same time, Huang et al. put
forward a joint optimization of masks and deep recur-
rent neural networks (DRNN) for Monaural Source
Separation algorithm [15]. In 2016, Vu et al. also pre-
sented a speech enhancement algorithm combining
non-negative matrix factorization and deep neural net-
works [16]. These algorithms mentioned above are all
to estimate the amplitude spectrum of the target
speech. However, it is very difficult to estimate the ampli-
tude spectrum of the target speech accurately, and these
algorithms all have so high algorithm complexity and
long-time delay that they cost much on calculation and
are not suitable for real-time system. Besides, Li et al. pro-
posed an improved least mean square adaptive filtering
(ILMSAF)-based speech enhancement algorithm with
DNN and noise classification [17], which introduces an
adaptive coefficient of filter’s parameters based on
ILMSAF. This algorithm has good performance, but
is too complex to be used in practice.
In addition, many researchers regarded the time-fre-

quency masking as the target of deep learning for speech
enhancement and proposed some speech enhancement
algorithms. For example, Wang et al. presented a
speech enhancement system based on deep neural
network-support vector machine (DNN-SVM) [18]. In
this system, the IBM was the target of the DNN-SVM
model. Arun et al. proposed an IRM estimator using deep
neural networks for robust speech recognition [19]. In this
algorithm, the estimated IRM in the Mel-frequency do-
main is used to filter out noise from noisy Mel spectro-
gram. In 2014, Wang et al. used a fixed set of
complementary features which include amplitude modula-
tion spectrogram, relative spectral transformed perceptual
linear prediction coefficient, Mel-frequency cepstral coef-
ficient (MFCC), and 64-channel gammatone feature [20].
In addition, Chen et al. proposed a new feature called
multi-resolution cochleagram (MRCG) [21]. However, the
MRCG dimension is so large that the algorithm complex-
ity is very high. In 2015, Tseng et al. took a
classification-based approach, where the goal is to esti-
mate an IBM and the sparse non-negative matrix
factorization (SNMF) is used to extract features from the
noisy speech [22]. In 2016, Yi Jiang et al. developed a
DNN parameter mask for binaural reverberant speech
segregation [23]. In 2017, Li et al. presented an IRM

estimation using deep neural networks for monaural
speech segregation in noisy reverberant conditions [24],
Zhang et al. presented a multi-target ensemble learning
for monaural speech separation [25], and Sun et al. also
proposed a multiple-target deep learning for LSTM-RNN-
based speech enhancement [26]. In this algorithm, an
IRM and a log-power spectral are regarded as the goal of
training DNN. But the performance of the above speech
enhancement algorithms based on DNN is non-ideal in
low SNR environments, and the complexity of these algo-
rithms is very high.
Through the above analysis, a speech enhancement

algorithm based on MRACC and DNN is proposed.
Firstly, a new feature parameter called MRACC is pre-
sented on the basis of the MRCG feature adopted [21].
Secondly, in order to remove the noise, an adaptive
mask is constructed. Thirdly, we adopt a DNN model
with four hidden layers to estimate an adaptive mask.
Finally, the enhanced speech is synthesized by using the
estimated adaptive mask and noisy speech. The ex-
perimental results show that the proposed speech
enhancement algorithm has stronger robustness, better
denoising performance, and lower complexity than the
contrast algorithm [20, 21].
This paper is organized as follows. In Section 2, the pro-

posed speech enhancement based on MRACC and AM
with deep neural network is presented. Simulation ex-
periments are given in Section 3 to illustrate the proposed
algorithm performance. Finally, we summarize our work
in Section 4.

2 Speech enhancement algorithm with deep
neural network
2.1 Time-frequency decomposition
The speech signal is a typical time-varying signal. Its
time-frequency decomposition focused on the time-vary-
ing spectral features of speech signal components, which
decomposes a one-dimensional speech signal into a
two-dimensional signal in order to reveal the relation-
ship between these frequency components obtained and
time [27]. The gammatone filter is an excellent tool for
time-frequency decomposition. It can well simulate the
sharp filtering characteristics of the basilar membrane,
and it is in accordance with the auditory perception of
the human ear [28]. Besides, it is easy to be achieved. So
in this paper, the gammatone filter is used to decompose
the noisy speech into several sub-band signals (see
our previous work [29]). The impulse response of the
gammatone filter is as follows:

gðt; f cÞ ¼ tl−1 e−2πB f ctcosð2π f ct þ∅Þ t≥0 ð1Þ

where t represents the sample index; fc is the center fre-
quency for cth channel, which varies from 50 to 8000 Hz;
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and ф is the initial phase of the gammatone filter. In
order to simplify the model, ф is set to 0. l is the filter
order. A large number of experiments show that, when
l = 4, the filter can well simulate the cochlear filter
characteristics. So l equals 4 in this paper. The sampling
rate of experimental data is set to16 kHz. In order to
better reflect the harmonic characteristics of speech
signal in each sub-band signal, the number of filters is
determined to be 64 in the proposed algorithm. B(fc) is
the bandwidth of each frequency channel, which is
defined as:

B f cð Þ ¼ b � ERB f cð Þ ð2Þ

where b is an attenuation factor, the best filter perfor-
mance can be obtained when b equals 1.019, so b is set
to 1.019 in this paper. ERB(fc) represents the equivalent
rectangular bandwidth (equivalent rectangle bandwidth
(ERB)), and the relationship between the equivalent
rectangular bandwidth and the central frequency fc can
be described by:

ERB f cð Þ ¼ 24:7 4:37 f c=1000þ 1ð Þ ð3Þ

where the coefficients 24.7 and 4.37 are the empirical
values obtained in the experiment [21].
The expression of the input signal can be expressed as:

x tð Þ ¼ s tð Þ þ n tð Þ ð4Þ
where x(t) represents noisy speech signal, s(t) repre-

sents clean signal, and n(t) represents noise signal.
x(t) is decomposed into 64 sub-band signals G(t, fc) by

64-channel gammatone filters, as shown in formula (5):

G t; f cð Þ ¼ g t; f cð Þ � U tð Þ � x tð Þ ð5Þ

where U(t) is the unit step function.
Then, each sub-band signal is divided into time-fre-

quency (T-F) units with a 20-ms frame with a 10-ms

frame shift. A T-F unit corresponds to a small auditory
unit of the noisy speech. It is defined as:

yi t; f cð Þ ¼ w tð Þ � G i−1ð Þ � incþ tð Þ; f cð Þ ð6Þ
where w(t) is a window function. Compared with

the rectangular window, Hamming window can better
reflect the frequency characteristic of speech signal,
so Hamming window is chosen in this paper. yi(t, fc)
is the sub-band T-F unit for cth channel at time frame
i; inc is a frame shift.
The power of the auditory filter (cochleagram) of each

T-F unit CG(i, fc) is calculated by:

CG i; f cð Þ ¼
XL−1
t¼0

yi
2 t; f cð Þ ð7Þ

2.2 Feature extraction
Good features are crucial to the performance of speech
enhancement. In 2014, a feature called MRCG [21] is pro-
posed by Chen et al., which is extracted from four
cochleagrams of different resolutions to capture both local
information and spectrotemporal context. As we all know,
human auditory nonlinearity expands small sounds and
compresses large sounds. The MRCG simulates auditory
nonlinearity by a log function. Log function can well com-
press high power intensity but overexpands very small
signals to infinity. Considering that noise often occurs in
very small energy, log function often emphasizes noise
and results in poor noise robustness; in order to avoid
overexpansion to very small noise, we use a power func-
tion in four cochleagrams, which can better simulate
human auditory nonlinearity. In addition, the dimension
of MRCG is so large that the computational complexity is
very high. In order to reduce the computational com-
plexity, we employ a discrete cosine transform (DCT)
operation on the basis of the power compression. The
modified MRCG is called MRACC.
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Fig. 1 MRCG feature (log compression)
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2.3 Extraction of MRACC feature
Firstly, the noisy speech x(n) is decomposed by the gam-
matone filter bank into 64 sub-band signals, and the first
64-channel cochleagram (CG) is calculated with the
frame length of 20 ms and frame shift of 10 ms. A power
function is applied to the CG of each T-F unit. The
mathematical expression of CG1 is:

CG1 i; f cð Þ ¼ g CG i; f cð Þ½ � ð8Þ

where g() is a power function, g = xa, and in this paper,
a = 1/15 as Kim suggested [30].
Similarly, the second 64-channel cochleagram (CG2) is

computed with the frame length of 200 ms and frame
shift of 10 ms.
The third 64-channel cochleagram (CG3) is derived by

averaging CG1 across a square window of 11 frequency
channels and 11 time frames centered at a given T-F
unit. It can be expressed as:

CG3 i; f cð Þ ¼
Xcþ5

k¼c‐5

Xiþ5

j¼i‐5

CG1 i; f cð Þð Þ= 11 � 11ð Þ ð9Þ

The fourth 4-channel cochleagram (CG4) is calculated
in a similar way to CG3, except that a square window of
23 frequency channels and 23 time frames is used. It can
be shown as:

CG4 i; f cð Þ ¼
Xcþ11

d¼c‐11

Xiþ11

j¼i‐11

CG1 i; f cð Þð Þ= 23�23ð Þ ð10Þ

The CG1, CG2, CG3, and CG4 are connected to
obtain an improved MRCG (IMRCG) feature, which has
64 × 4 dimensions for each time frame. The IMRCG fea-
ture is denoted as:

IMRCG i; f cð Þ ¼ CG1 i; f cð Þ;CG2 i; f cð Þ;CG3 i; f cð Þ;CG4 i; f cð Þ½ �
ð11Þ
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Fig. 3 Results sample of speech enhancement based on MRCG and MRACC features. a Waveform of clean speech. b Waveform of noisy speech.
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The visualization of MRCG feature and the proposed
IMRCG feature is given in Figs. 1 and 2, respectively.
The left plots features extracted from a white noise mix-
ture at − 5 dB SNR, and the right from the correspond-
ing clean speech.
As shown in Figs. 1 and 2, both the MRCG feature

and the IMRCG feature can partially retain spectrote-
mporal information of speech in noise environment. How-
ever, compared with the MRCG feature, the IMRCG
feature has a clearer banded structure of speech than the
MRCG. Therefore, the IMRCG is more capable of charac-
terizing the difference between speech and noise.
In order to reduce the complexity of the algorithm,

we reduce the dimension of the extracted features by
a discrete cosine transform (DCT), because the DCT
has the ability to aggregate the energy to the low
frequency. Therefore, MRACC is obtained by a DCT
operation to the IMRCG, which can be defined as
follows:

MRACC i;mð Þ ¼ 2
M

� �0:5 XM
c¼1

IMRCG i; f cð Þ cos πm 2c−1ð Þ
2M

� �

ð12Þ

where MRACC(i, m) denotes the multi-resolution
auditory cepstral coefficient of the ith frame of the cth

sub-band, M is the number of channels, and M equals
64. m is the feature dimension index. When m > 36, the
value of MRACC(i, m) is relatively small, so we retain
the coefficient of the first 36 of MRACC(i, m).

2.4 Extraction of dynamic feature
In order to improve the accuracy of the target estimate,
dynamic features are extracted from the MRACC, be-
cause delta features contain some temporal context.
Therefore, the combination of the original and dynamic
features can improve the accuracy of the target estima-
tion. This method avoids having to rely on recurrent
neural network to get temporal dynamics and reduce
algorithm complexity.
The dynamic features (ΔMRACC and ΔΔMRACC) are

obtained from formulas (13) and (14):

ΔMRACC i;mð Þ ¼
PK

k¼1k MRACC iþ k;mð Þ−MRACC i−k;mð Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
PK

k¼1k
2

q

ð13Þ

ΔΔMRACC i;mð Þ ¼
PK

k¼1k ΔMRACC iþ k;mð Þ−ΔMRACC i−k;mð Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
PK

k¼1k
2

q

ð14Þ

where k is a constant and it is set to 2, which represents
the first two frames and the last two frames of the current

frame. So, in this paper, the proposed feature v can be
defined as:

v i;mð Þ ¼ MRACC i;mð Þ;ΔMRACC i;mð Þ;ΔΔMRACC i;mð Þ½ �
ð15Þ

Figure 3 shows the waveform and spectrogram of an
utterance tested based on the proposed MRACC feature
and the MRCG feature.
It can be seen from Fig. 3 that the residual noise in

enhanced speech based on the MRACC feature is almost
as much as the noise of the enhanced speech based on the
MRCG feature. But compared with the enhanced speech
based on MRCG feature, the enhanced speech based on
MRACC feature retains more speech information and is
closer to the clean speech. Therefore, the MRACC feature
is better than the MRCG feature.

2.5 Deep neural network model
Due to the strong nonlinear mapping ability of DNN, we
proposed a DNN-based adaptive mask estimator to
calculate the adaptive mask for each T-F unit of the
noisy speech. In the training phase, the adaptive mask
for each T-F unit of noisy speech in the training data is
calculated (see in Section 2.4) and used as the training
target to train the DNN. Then, in the test phase, the
adaptive mask is estimated by the trained DNN with
MRACC inputs, which is used to synthesize the en-
hanced speech with noisy speech. The DNN is usually
made up of three parts: the input layer, the hidden layer,
and output layer. The input layer is the feature vector of
the noisy speech, the hidden layer is stacked by the mul-
tiple hidden layers, and the output layer is an adaptive

Fig. 4 The architecture of DNN
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mask. The structure of the DNN in this paper is shown
in Fig. 4.
The structure of the DNN model constructed in this

paper is composed of one input layer, four hidden layers,
and one output layer. The proposed MRACC feature is a
432-dimensional vector, so the number of input layer’s
neuron is 432. The experimental results show that DNN
has the best performance when the hidden layer units are
1024. Therefore, each hidden layer has 1024 rectified linear
units (relu), which can improve generalization and avoid
gradient disappearance problem. One frame adaptive mask-
ing threshold is a 64-dimensional vector, so the number of
output layer’s unit is 64. The activation function of the out-
put layer is a sigmoid function. Consequently, the structure
of DNN is 432-1024-1024-1024-1024-64.

The training of DNN employs the standard backpro-
pagation (BP) algorithm which couples with dropout
regularization. Dropout regularization can overcome
the overfitting in DNN training, which discards a cer-
tain percentage of the neural units randomly to prevent
complex co-adaptation among hidden units, forcing
each hidden unit not to rely on each other. In this
paper, the dropout rate is 0.2. Besides, no unsupervised
pre-training is used. For a large training set, the effect
of pre-training will be weakened. The mean squared
error (MSE) is used as the loss function in the standard
backpropagation algorithm. To improve the MSE func-
tion, we use an adaptive gradient descent algorithm along
with a momentum term. In the training processing,
the number of epochs is 25. For the first five epochs,

Fig. 6 The principle block diagram of speech enhancement algorithm
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a momentum rate is set to 0.5, after which the rate
increases to 0.9.
IBM is the main computing objective of computational

auditory scene analysis. It has been proved to be able to
greatly improve speech intelligibility [11], but it seriously
damages the quality of speech. Compared with IBM,

IRM has a better speech quality, but it has a worse
speech intelligibility [18]. Therefore, in order to balance
speech quality and intelligibility, we propose an AM as
the training target which is adaptively obtained by IBM
and IRM according to the noise change. We calculate
the energy of each time-frequency unit of speech and

Table 1 The SegSNR of the proposed algorithm and the contrast algorithm

Noise type SNR
(dB)

SegSNR (dB) Noise type SNR
(dB)

SegSNR (dB)

Noisy
speech

Contrast1 Contrast2 Proposed
algorithm

Noisy
speech

Contrast1 Contrast2 Proposed
algorithm

Buccaneer1 10 − 16.39 1.99 1.52 3.13 hfchannel 10 − 16.44 4.58 4.77 5.26

5 − 21.18 0.03 − 0.09 0.92 5 − 21.13 2.45 2.16 2.78

0 − 25.68 − 1.82 − 1.82 − 1.16 0 − 25.70 − 0.04 0.02 0.51

− 5 − 29.59 − 4.72 − 4.91 − 4.69 − 5 − 29.65 − 2.38 − 2.74 − 2.23

Buccaneer2 10 − 16.40 2.36 2.33 3.75 Leopard 10 − 15.66 2.15 2.07 3.34

5 − 21.15 0.43 0.56 1.57 5 − 20.36 0.96 0.73 1.51

0 − 25.69 − 1.71 − 1.56 − 1.01 0 − 24.86 − 0.98 − 1.48 − 1.03

− 5 − 29.52 − 4.92 − 4.51 − 4.41 − 5 − 28.92 − 6.25 − 5.50 − 5.90

Babble 10 − 15.91 0.86 1.55 2.45 m109 10 − 15.78 3.57 3.14 4.58

5 − 20.59 − 1.95 − 1.45 0.24 5 − 20.55 1.18 0.75 2.06

0 − 25.05 − 6.40 − 5.40 − 4.50 0 − 25.10 − 0.72 − 0.61 0.11

− 5 − 28.82 − 14.84 − 11.66 − 12.15 − 5 − 28.98 − 3.15 − 2.53 − 3.09

Destroyerengine 10 − 16.26 2.87 2.67 3.80 Machinegun 10 − 2.16 10.76 10.16 10.82

5 − 21.03 0.96 0.68 1.73 5 − 7.53 8.29 8.08 8.57

0 − 25.56 − 0.75 − 0.92 − 0.38 0 − 12.82 6.13 6.14 6.16

− 5 − 29.46 − 3.15 − 2.86 − 2.81 − 5 − 15.84 2.96 3.16 3.44

Destroyerops 10 − 16.09 1.66 1.63 3.30 Pink 10 − 16.24 2.33 2.48 3.99

5 − 20.99 − 0.55 − 0.28 0.90 5 − 20.97 0.59 0.49 1.66

0 − 25.29 − 2.66 − 2.13 − 1.68 0 − 25.45 − 1.65 − 1.07 − 0.09

− 5 − 29.21 − 5.67 − 6.24 − 5.24 − 5 − 29.33 − 5.18 − 4.20 − 3.34

f16 10 − 16.20 2.46 2.58 3.90 Volvo 10 − 13.99 8.57 8.20 9.80

5 − 20.98 0.48 0.54 1.64 5 − 18.77 6.85 6.23 7.86

0 − 25.50 − 1.53 − 0.83 − 0.26 0 − 23.20 5.01 5.44 6.12

− 5 − 29.33 − 4.66 − 2.42 − 2.22 − 5 − 27.14 3.73 3.12 3.85

Factory1 10 − 15.88 1.74 2.18 3.48 White 10 − 16.41 3.50 3.45 5.00

5 − 20.80 − 0.67 0.17 1.18 5 − 21.20 1.16 1.08 2.45

0 − 25.11 − 4.09 − 2.25 − 2.16 0 − 25.73 − 0.87 − 1.44 − 0.42

− 5 − 29.00 − 11.71 − 19.01 − 8.52 − 5 − 29.30 − 3.23 − 4.95 − 2.90

Factory2 10 − 15.76 2.63 2.70 4.14 Street 10 − 16.04 − 3.37 − 3.25 − 2.92

5 − 20.55 0.43 0.63 1.73 5 − 19.81 − 6.89 − 5.94 − 4.88

0 − 25.09 − 1.87 − 1.04 − 0.49 0 − 24.39 − 9.93 − 9.60 − 7.02

− 5 − 29.02 − 6.17 − 3.98 − 3.83 − 5 − 27.23 − 14.62 − 13.61 − 11.60

Office 10 − 16.52 0.23 0.95 1.15 Average 10 − 15.18 2.87 2.89 4.06

5 − 21.56 − 3.63 − 2.97 − 1.57 5 − 19.95 0.59 0.66 1.79

0 − 25.24 − 9.84 − 8.38 − 6.70 0 − 24.44 − 1.98 − 1.58 − 0.82

− 5 − 28.93 − 18.61 − 16.34 − 15.98 − 5 − 28.19 − 5.30 − 5.83 − 4.80
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noise and obtain the IBM, IRM, and signal-to-noise
ratio corresponding to the noisy speech according to
Eqs. (17~20) and (22~25). The adaptive masking co-
efficient (a) is derived by the signal-to-noise ratio,
which is used to weight IBM and IRM to get the
adaptive mask as the training target for DNN through
Eq. (16).

The formula of adaptive mask proposed in this paper
is as follows:

AM i; f cð Þ ¼ 1−α i; f cð Þð Þ � IBM i; f cð Þ
þ α i; f cð Þ � IRM i; f cð Þ ð16Þ

Table 2 The LSD of the proposed algorithm and the contrast algorithm

Noise type SNR
(dB)

LSD (dB) Noise type SNR
(dB)

LSD (dB)

noisy
speech

Contrast1 Contrast2 Proposed
algorithm

noisy
speech

Contrast1 Contrast2 Proposed
algorithm

Buccaneer1 10 14.81 6.98 4.47 4.12 hfchannel 10 13.35 6.29 3.97 3.97

5 16.73 7.80 4.72 4.62 5 15.11 7.06 4.50 4.49

0 18.63 8.71 5.29 5.21 0 16.92 8.07 5.05 4.98

− 5 20.35 10.37 7.19 7.12 − 5 18.54 8.99 5.95 5.94

Buccaneer2 10 16.43 7.77 4.95 4.43 Leopard 10 9.82 5.26 3.74 3.54

5 18.43 8.49 4.95 4.62 5 11.35 5.69 3.75 3.74

0 20.41 10.00 6.27 6.27 0 12.95 6.38 4.36 4.29

− 5 22.13 11.63 8.18 8.08 − 5 14.54 8.06 4.98 5.85

Babble 10 11.55 6.31 4.33 4.11 m109 10 11.76 5.71 5.80 3.61

5 13.27 7.31 5.04 4.67 5 13.43 6.57 6.57 4.03

0 14.95 8.95 6.41 6.14 0 15.16 7.28 7.22 4.43

− 5 16.43 11.63 8.95 9.36 − 5 16.78 8.20 8.04 5.24

Destroyerengine 10 13.06 6.30 4.03 4.03 Machinegun 10 6.17 2.89 3.65 2.80

5 14.87 7.12 4.41 4.24 5 7.42 3.04 4.22 3.01

0 16.67 7.90 4.71 4.68 0 8.61 4.63 4.67 3.39

− 5 18.27 9.00 5.42 5.41 − 5 9.35 5.32 5.32 3.96

Destroyerops 10 13.47 6.69 4.32 3.97 Pink 10 15.13 7.10 7.04 4.02

5 15.39 7.41 4.68 4.48 5 17.05 7.89 7.76 4.46

0 17.08 8.39 5.12 5.08 0 18.96 8.97 8.64 5.06

− 5 18.74 9.76 7.11 6.66 − 5 20.68 10.82 10.46 6.54

f16 10 13.57 6.42 3.94 3.88 Volvo 10 9.31 4.45 4.34 2.78

5 15.41 7.22 4.48 4.32 5 10.92 5.09 4.98 2.98

0 17.20 8.21 4.65 4.64 0 12.47 5.55 5.60 3.19

− 5 18.85 9.78 5.62 5.55 − 5 13.92 6.12 6.19 3.57

Factory1 10 13.72 6.94 4.51 4.14 White 10 16.95 7.82 8.07 4.52

5 15.56 7.67 4.73 4.68 5 18.98 8.93 9.10 5.29

0 17.37 9.09 5.95 5.94 0 20.99 10.27 6.75 6.67

− 5 18.85 11.91 14.12 8.93 − 5 22.80 11.70 8.60 8.23

Factory2 10 11.37 5.92 4.10 3.81 Street 10 9.92 7.19 6.75 5.85

5 13.01 6.59 4.55 4.42 5 11.46 9.93 9.23 8.27

0 14.72 7.72 5.07 4.99 0 13.31 11.78 10.41 9.69

− 5 16.32 9.25 6.07 6.07 − 5 15.67 12.50 11.48 10.53

Office 10 12.78 10.91 9.63 9.05 Average 10 12.54 6.53 5.16 4.27

5 14.85 13.03 12.73 11.59 5 14.30 7.40 5.79 4.82

0 16.41 15.14 14.67 13.48 0 16.05 8.51 6.40 5.67

− 5 17.25 16.03 15.89 14.43 − 5 17.55 9.95 8.09 7.08
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where IBM(i, fc) denotes the ideal binary mask (IBM)
[18]; it can be defined as follows:

IBM i; f cð Þ ¼ 1 Es i; f cð Þ≥En i; f cð Þ � 10 lc
10

0 else

�
ð17Þ

Es(i, fc) and En(i, fc) represent the energy of clean speech
and noise, respectively. They are calculated by formulas
(18) and (19). lc is a threshold and is usually set to 1.

Es i; f cð Þ ¼
XL−1
t¼0

si
2 t; f cð Þ ð18Þ

Table 3 The PESQ of the proposed algorithm and the contrast algorithm

Noise type SNR
(dB)

PESQ (score) Noise type SNR
(dB)

PESQ (score)

Noisy
speech

Contrast1 Contrast2 Proposed
algorithm

Noisy
speech

Contrast1 Contrast2 Proposed
algorithm

Buccaneer1 10 2.40 2.79 2.84 2.92 hfchannel 10 1.81 2.95 2.81 3.02

5 1.95 2.45 2.44 2.52 5 1.52 2.65 2.38 2.68

0 1.61 2.03 2.03 2.10 0 1.33 2.31 2.21 2.35

− 5 1.34 1.51 1.49 1.54 − 5 1.21 1.97 1.74 1.98

Buccaneer2 10 2.04 2.93 2.90 3.20 Leopard 10 2.12 2.54 2.41 2.75

5 1.62 2.66 2.63 2.87 5 1.86 2.33 2.44 2.69

0 1.34 2.34 2.32 2.56 0 1.80 2.13 2.11 2.34

− 5 1.16 1.91 1.92 2.17 − 5 1.73 2.05 2.01 2.28

Babble 10 2.23 3.02 3.13 3.16 m109 10 2.70 2.90 2.81 3.05

5 1.78 2.76 1.84 2.81 5 2.62 2.36 2.40 2.79

0 1.42 2.42 1.75 2.45 0 1.97 2.19 2.25 2.54

− 5 1.14 1.99 1.66 2.04 − 5 1.55 1.71 1.82 1.91

Destroyerengine 10 2.18 2.97 2.83 3.06 Machinegun 10 2.93 3.43 3.01 3.53

5 1.77 2.73 2.41 2.73 5 2.62 3.18 2.99 3.30

0 1.54 2.30 2.01 2.39 0 2.36 2.97 2.96 3.04

− 5 1.39 2.03 1.42 2.04 − 5 1.25 2.51 2.43 2.79

Destroyerops 10 2.50 2.96 2.82 3.12 Pink 10 2.52 2.69 2.50 2.89

5 2.02 2.70 2.16 2.72 5 2.11 2.38 2.43 2.58

0 1.60 2.35 1.82 2.38 0 1.97 2.09 2.15 2.50

− 5 1.24 1.92 1.57 1.97 − 5 1.65 1.81 1.92 3.02

f16 10 2.57 2.72 2.94 3.10 Volvo 10 2.30 2.64 2.53 2.86

5 2..01 2.22 2.48 2.82 5 1.96 2.34 2.33 2.78

0 1.80 2.01 2.15 2.45 0 1.65 1.79 1.97 2.00

− 5 1.30 1.95 1.62 1.98 − 5 1.22 1.63 1.51 1.75

Factory1 10 2.21 2.86 2.79 2.99 White 10 2.47 2.57 2.83 3.10

5 1.79 2.53 2.33 2.59 5 2.17 2.49 2.65 2.80

0 1.44 2.08 1.95 2.10 0 1.90 2.11 2.31 2.56

− 5 1.21 1.58 1.32 1.68 − 5 1.62 1.84 1.91 2.90

Factory2 10 2.53 3.04 2.91 3.19 Street 10 2.05 2.31 2.25 2.56

5 2.16 2.84 2.72 2.85 5 1.80 2.04 2.14 2.32

0 1.72 2.40 2.35 2.47 0 1.59 1.85 1.92 2.08

− 5 1.39 2.06 1.92 2.07 − 5 1.36 1.60 1.65 1.90

Office 10 2.01 2.56 2.54 2.91 Average 10 2.33 2.81 2.75 3.02

5 1.75 2.03 2.15 2.55 5 1.97 2.51 2.40 2.73

0 1.45 1.96 1.98 2.17 0 1.75 2.19 2.13 2.38

− 5 1.18 1.59 1.73 1.94 − 5 1.35 1.86 1.74 2.12
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En i; f cð Þ ¼
XL−1
t¼0

ni
2 t; f cð Þ ð19Þ

IRM(i, fc) is an ideal ratio mask (IRM) [23], which is
defined as:

IRMgamm i; f cð Þ ¼ Es i; f cð Þ
Es i; f cð Þ þ En i; f cð Þ

� �β

ð20Þ

β is an adjustable scale factor, and a large number of
experiments show that when β = 0.5, the IRM has the
best performance. Therefore, β is set to 0.5.

Table 4 The STOI of the proposed algorithm and the contrast algorithm

Noise type SNR
(dB)

STOI (score) Noise type SNR
(dB)

STOI (score)

Noisy
speech

Contrast1 Contrast2 Proposed
algorithm

Noisy
speech

Contrast1 Contrast2 Proposed
algorithm

Buccaneer1 10 0.905 0.945 0.947 0.948 hfchannel 10 0.908 0.950 0.949 0.950

5 0.832 0.902 0.900 0.903 5 0.848 0.916 0.914 0.917

0 0.738 0.834 0.835 0.836 0 0.776 0.869 0.863 0.869

− 5 0.630 0.749 0.743 0.750 − 5 0.694 0.804 0.799 0.805

Buccaneer2 10 0.931 0.955 0.955 0.956 Leopard 10 0.953 0.968 0.966 0.967

5 0.871 0.913 0.913 0.914 5 0.923 0.943 0.938 0.939

0 0.824 0.843 0.845 0.847 0 0.877 0.907 0.894 0.903

− 5 0.675 0.754 0.750 0.758 − 5 0.823 0.848 0.843 0.842

Babble 10 0.929 0.944 0.945 0.941 m109 10 0.969 0.978 0.978 0.978

5 0.858 0.891 0.883 0.880 5 0.934 0.955 0.953 0.954

0 0.757 0.806 0.782 0.777 0 0.871 0.912 0.907 0.907

− 5 0.633 0.655 0.624 0.650 − 5 0.775 0.834 0.836 0.830

Destroyerengine 10 0.923 0.956 0.959 0.959 Machinegun 10 0.968 0.974 0.975 0.975

5 0.867 0.926 0.927 0.929 5 0.941 0.960 0.960 0.961

0 0.788 0.867 0.875 0.875 0 0.901 0.939 0.930 0.940

− 5 0.688 0.796 0.796 0.798 − 5 0.839 0.901 0.901 0.902

Destroyerops 10 0.936 0.955 0.952 0.956 Pink 10 0.930 0.957 0.956 0.957

5 0.873 0.907 0.910 0.910 5 0.868 0.915 0.916 0.916

0 0.784 0.840 0.839 0.840 0 0.776 0.834 0.849 0.850

− 5 0.667 0.730 0.732 0.733 − 5 0.663 0.753 0.748 0.753

f16 10 0.930 0.959 0.979 0.979 Volvo 10 0.988 0.990 0.994 0.995

5 0.869 0.920 0.922 0.922 5 0.980 0.983 0.989 0.990

0 0.782 0.864 0.863 0.864 0 0.967 0.974 0.980 0.981

− 5 0.673 0.778 0.772 0.779 − 5 0.945 0.957 0.963 0.965

Factory1 10 0.924 0.940 0.942 0.942 White 10 0.930 0.956 0.957 0.957

5 0.857 0.880 0.885 0.888 5 0.874 0.922 0.921 0.922

0 0.759 0.805 0.796 0.805 0 0.802 0.847 0.862 0.863

− 5 0.643 0.660 0.658 0.661 − 5 0.720 0.772 0.788 0.788

Factory2 10 0.956 0.968 0.967 0.968 Street 10 0.925 0.948 0.950 0.953

5 0.913 0.937 0.936 0.937 5 0.897 0.916 0.920 0.925

0 0.840 0.876 0.874 0.876 0 0.809 0.835 0.833 0.837

− 5 0.736 0.792 0.789 0.795 − 5 0.756 0.795 0.792 0.800

Office 10 0.915 0.925 0.923 0.927 Average 10 0.937 0.956 0.958 0.960

5 0.837 0.842 0.840 0.845 5 0.885 0.919 0.919 0.920

0 0.740 0.765 0.763 0.767 0 0.811 0.859 0.862 0.862

− 5 0.605 0.612 0.615 0.620 − 5 0.715 0.775 0.773 0.778

Li et al. EURASIP Journal on Advances in Signal Processing         (2019) 2019:22 Page 10 of 16



The adaptive coefficient α(i, fc) is defined as [7]:

α i; f cð Þ ¼ 1
1þ exp −SNR i; f cð Þð Þ ð21Þ

Here, SNR(i, fc) is a signal-to-noise ratio of each frame,
which is calculated by formula:

SNR i; f cð Þ ¼ y2 i; f cð Þ
n2 i; f cð Þ ð22Þ

y2(i, fc) and n2(i, fc) denote the noisy speech and noise en-
ergy of the ith frame and cth sub-band signal, respectively.
Assuming that the first six frames are noise, the noise

energy of the remaining five frames except the first
frame is calculated by the (Eqs. 23, 24, and 25), which is
used as the noise energy of the sixth frame.

n2 i; f cð Þ ¼ 1
5

X4
a¼0

n2 i−a; f cð Þ ð23Þ

y2 i; f cð Þ ¼ 1
N

XN−1

t¼0

yi t; f cð Þð Þ2 ð24Þ

n2 i; f cð Þ ¼ α i; f cð Þ � ni−1
2 t; f cð Þ þ 1−α i; f cð Þð Þ

� yi
2 t; f cð Þ ð25Þ

where n(i, fc) is the initial noise energy, N is the num-
ber of sampling point in one frame and is set to 320, and
a is the frame index.
Figure 5 shows the waveform and spectrogram of an

utterance tested based on IBM, IRM, and the proposed
adaptive mask. In Fig. 5, compared with the enhanced
speech with IRM, the enhanced speech with IBM has
less noise; however, the quality of the enhanced speech
is poor. The enhanced speech with IRM can keep more
speech information but the intelligibility of the enhanced
speech. Through analyzing the advantages and disadvan-
tages of IBM and IRM, we proposed an adaptive mask
combining with IBM and IRM. The enhanced speech
with adaptive mask not only has less residual noise but
also retains speech information well. So, the proposed
adaptive mask is outperformed than IBM and IRM.

Table 6 The A/B test of the proposed algorithm and the
contrast algorithm with street and office noise

Algorithm Noise type

Street Office

Preference % Preference %

Proposed algorithm 33.75 28.00

Contrast1 27.50 25.25

Contrast2 18.75 22.75

No preference 20.00 24.00

Table 5 The A/B test of the proposed algorithm and the contrast algorithm with 15 noise types

Algorithm Noise type

Babble Buccaneer1 Buccaneer2 Destroyerengine Destroyerops

Preference % Preference % Preference % Preference % Preference %

Proposed algorithm 70.25 73.55 70.25 54.25 54.50

Contrast1 15.25 6.75 15.50 16.25 20.50

Contrast2 10.25 4.75 12.25 11.50 15.00

No preference 4.25 15.00 1.50 18.25 10.00

Algorithm Noise type

m109 Machinegun Pink Volvo White

Preference % Preference % Preference % Preference % Preference %

Proposed algorithm 43.75 68.00 40.75 46.00 60.50

Contrast1 17.50 15.25 11.50 17.50 11.75

Contrast2 20.00 15.75 14.00 20.25 20.50

No preference 18.75 1.00 33.75 16.25 7.25

Algorithm Noise type

f16 Factory1 Factory2 hfchannel Leopard

Preference % Preference % Preference % Preference % Preference %

Proposed algorithm 57.50 59.25 81.25 77.25 41.00

Contrast1 10.00 8.25 2.00 0.00 23.00

Contrast2 15.50 10.50 5.00 10.00 25.25

No preference 17.50 22.00 11.75 12.75 10.75
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Table 8 The MOS of the proposed algorithm and the contrast algorithm
Noise type SNR

(dB)
MOS (score) Noise type SNR

(dB)
MOS (score)

Noisy
speech

Contrast1 Contrast2 Proposed
algorithm

Noisy
speech

Contrast1 Contrast2 Proposed
algorithm

Buccaneer1 10 2.40 2.89 2.90 3.15 hfchannel 10 1.81 3.95 3.81 4.24

5 1.85 2.35 2.34 2.62 5 1.52 3.65 3.38 3.68

0 1.51 1.93 2.02 2.20 0 1.33 2.31 2.21 2.85

− 5 1.04 1.55 1.50 2.00 − 5 1.21 1.97 1.74 2.01

Buccaneer2 10 2.54 3.53 3.20 4.20 Leopard 10 2.12 3.54 3.41 3.75

5 1.62 2.86 2.83 3.27 5 1.86 2.83 2.64 3.12

0 1.34 2.34 2.32 2.56 0 1.80 2.13 2.21 2.74

− 5 0.51 1.91 1.92 2.17 − 5 1.73 2.05 2.01 2.58

Babble 10 2.23 4.02 4.13 4.36 m109 10 2.70 3.97 4.15 4.35

5 1.78 3.26 3.34 3.81 5 2.62 3.36 3.40 3.89

0 1.42 2.82 2.56 3.05 0 1.97 2.99 2.85 3.14

− 5 1.14 1.99 1.66 2.04 − 5 1.55 2.31 2.22 2.81

Destroyerengine 10 2.18 3.97 4.05 4.46 Machinegun 10 2.53 4.13 4.21 4.73

5 1.77 2.73 2.41 3.53 5 2.02 3.78 3.99 4.30

0 1.54 2.49 2.51 2.96 0 1.86 3.07 3.16 3.94

− 5 1.39 2.33 2.42 2.74 − 5 1.25 2.71 2.83 3.02

Destroyerops 10 2.50 3.96 3.82 4.12 Pink 10 2.52 3.69 3.50 3.89

5 2.02 3.70 3.16 3.82 5 2.11 2.38 2.43 2.58

0 1.60 2.35 2.82 3.38 0 1.97 2.09 2.15 2.50

− 5 1.24 2.92 2.57 2.97 − 5 1.65 1.81 1.92 2.32

f16 10 2.57 3.72 3.94 4.10 Volvo 10 2.30 3.64 3.83 4.26

5 2..01 3.22 3.48 3.82 5 1.96 2.84 2.93 3.58

0 1.80 3.01 3.15 3.45 0 1.65 2.29 2.37 3.00

− 5 1.30 2.95 2.62 2.98 − 5 1.22 1.93 1.81 2.75

Factory1 10 2.21 3.86 3.79 3.99 White 10 2.47 2.57 2.83 3.10

5 1.79 3.53 3.33 3.59 5 2.17 2.49 2.65 2.80

0 1.44 2.88 2.95 3.10 0 1.90 2.11 2.31 2.56

− 5 1.21 2.58 2.32 2.88 − 5 1.62 1.84 1.91 2.20

Factory2 10 2.53 3.84 3.91 4.39 Street 10 2.05 2.31 2.25 2.56

5 2.16 3.34 3.52 3.95 5 1.50 2.04 2.14 2.32

0 1.72 2.98 3.05 3.47 0 1.29 1.85 1.92 2.08

− 5 1.39 2.16 1.92 2.97 − 5 0.85 1.60 1.65 1.90

Office 10 2.01 2.96 3.04 3.11 Average 10 2.33 3.56 3.57 3.93

5 1.75 2.03 2.25 2.85 5 1.91 2.96 2.95 3.38

0 1.45 1.96 1.98 2.17 0 1.62 2.45 2.50 2.89

− 5 1.08 1.59 1.73 1.94 − 5 1.26 2.13 2.04 2.48

Table 7 The A/B test of the proposed algorithm and the contrast algorithm at different SNRs

Algorithm SNR (dB)

10 5 0 − 5

Preference % Preference % Preference % Preference %

Proposed algorithm 75.00 48.21 46.55 46.87

Contrast1 10.56 16.03 21.20 18.63

Contrast2 11.44 21.36 28.45 21.30

No preference 3.00 14.40 3.80 13.20
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2.6 Algorithm implementation steps
The block diagram of complementation steps of the pro-
posed algorithm is shown in Fig. 6. Figure 6 shows the
processing pipeline of the proposed speech enhancement
algorithm. In the training phase, we calculate the energy
of each T-F unit of speech and noise and obtain the
IBM, IRM, and signal-to-noise ratio corresponding to
the noisy speech. The adaptive masking coefficient (a) is
derived by the signal-to-noise ratio, which is used to
weight IBM and IRM to get the adaptive mask (AM) as
the training target for DNN. Then, the MRACC features
of noisy speech are extracted as the inputs for deep
learning. We train the DNN model and save the weights
and thresholds of the DNN model after the training is
completed. In this paper, the DNN architecture is
432-1024-1024-1024-1024-64. In the test phase, the
MRACC feature vector of test sample is entered in
the trained DNN network model to obtain an esti-
mated adaptive mask, then the enhanced speech is
synthesized by using the test sample and the esti-
mated adaptive mask.

3 Results and discussions
3.1 Experimental data
In the experiment, clean utterances come from the NTT
corpus. The sampling rate of data is set to 16 kHz. Three
kinds of clean utterances are selected from the NTT cor-
pus, including English, Chinese, and French. Each lan-
guage library contains 96 sentences, which are produced
by 8 speakers (4 male and 4 female speakers, and 12
utterances for each speaker). The length of each sentence
is 8 s. Therefore, there are (96 × 3) 288 clean utterances.
For each language, 76 clean sentences are randomly

selected as the training data, and the remaining 20 sen-
tences are tested as the test data. There are 17 noise types,
namely buccaneer1, buccaneer2, babble, destroyerengine,
destroyerops, f16, factory1, factory2, hfchannel, leopard,
m109, machinegun, pink, volvo, white, office, and street
selected from the NoiseX-92 database. The training set
covers the first 15 noise types mentioned above. To
evaluate the performance of the proposed algorithm
in an unknown noise environment, office and street
noise are used as the noise types that are not in-
cluded in the training set. The 288 clean sentences
are corrupted with abovementioned 17 noise types at
4 levels of SNR, i.e., 10 dB, 5 dB, 0 dB, and − 5 dB, to
build a multi-condition data set.
In order to verify the effectiveness of the proposed

algorithm, we select on training targets for supervised
speech separation as the first contrast algorithm [20],
and a feature study for classification-based speech sepa-
ration at very low signal-to-noise ratio is considered as
the second contrast algorithm [21].

3.2 Objective performance evaluation
The purpose of this test is to evaluate the performance
of our proposed algorithm in complex noise environ-
ments. In this test, segment SNR (SegSNR), perceptual
evaluation of speech quality (PESQ), log-spectral dis-
tortion (LSD), and short-time objective intelligibility

Table 9 The operation time comparison

Algorithm Contrast1 Contrast2 Proposed algorithm

Time (s) 7.23 12.10 6.61
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Fig. 7 Speech enhancement effect samples with − 5 dB factory2 noise. a Waveform of clean speech. b Waveform of noisy speech. c Waveform of
enhanced speech with the contrast algorithm 1. d Waveform of enhanced speech with the contrast algorithm 2. e Waveform of enhanced
speech with the proposed algorithm. f Spectrogram of clean speech. g Spectrogram of noisy speech. h Spectrogram of enhanced speech with
the contrast algorithm 1. i Spectrogram of enhanced speech with the contrast algorithm 2. j Spectrogram of enhanced speech with the
proposed algorithm
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(STOI) are adopted as the objective measures of speech
quality [31–33].
For the 17 noise types, the test results of SegSNR, PESQ,

LSD, and STOI are shown in Tables 1, 2, 3, and 4,
respectively.
It can be seen from Table 1 that for leopard noise with

SNRs of 0 dB and − 5 dB, the SegSNR of the proposed
algorithm is better than that of the contrast algorithm 1,
but less than that of the contrast algorithm 2. For babble
and m109 noise with SNR − 5 dB, the SegSNR of the
proposed algorithm is better than that of the contrast al-
gorithm 1, but less than that of the contrast algorithm 2.
Compared with other noises, leopard and m109 noise
have more complex time-frequency characteristics and
the babble noise is similar to speech, so it is difficult to
distinguish between speech and noise. But the average
SegSNR under different SNRs of the proposed algorithm
is all higher than that of the contrast algorithm. The
reason is the MRACC feature in the proposed algorithm
contains more phonetic information so that the speech
signal will be separated from complex noise environ-
ments by DNN. So the proposed algorithm is better than
the contrast algorithm in general.
As shown in Table 2, for babble and leopard noise

with SNR − 5 dB, the LSD of the proposed algorithm is
better than that of the contrast algorithm 1, but is a little
weaker than that of the contrast algorithm 2. But for
other noise types, compared with the contrast algorithm,
the distortions all are reduced. And the average LSD
under different SNRs of the proposed algorithm is all
better than that of the contrast algorithm. Therefore, the
distortion of enhanced speech based on the proposed
algorithm is less than that based on the contrast algo-
rithm on the whole.
We can know from Table 3, for 17 kinds of noise, the

PESQ of the proposed algorithm is all greater than that
of the contrast algorithm. Consequently, for the complex
noise environment, the speech quality of enhanced
speech based on our proposed algorithm is better than
the contrast algorithm.
It can be seen from Table 4 that for babble noise,

leopard noise, and m109 noise, the STOI of the pro-
posed algorithm is similar to or slightly less than that of
the contrast algorithm. But for other noises, the STOI of
the proposed algorithm is a little better than that of the
contrast algorithm and the average STOI of the pro-
posed algorithm is all higher than that of the contrast
lgorithm in every SNR condition. Therefore, the STOI
of the proposed algorithm is slightly greater than the
contrast algorithm overall.

3.3 Subjective performance evaluation
In order to test the performance of the proposed algo-
rithm further, A/B test method, MOS (mean opinion

score), waveform, and spectrogram are adopted as the
subjective measures of speech quality. The A/B test
method which is often used for page and process testing
can reflect the user’s preference for different versions of
the page or process. Therefore, the A/B test method is
adopted by this paper to test the subjective performance.
Ten testers (five males and five females) are invited to
conduct A/B test and MOS on the enhanced speech of
the proposed algorithm and the comparison algorithm,
respectively.
For the 17 noise types, SNR conditions include − 5 dB,

0 dB, 5 dB, and 10 dB; the test results of A/B test method
are summarized in Tables 5, 6, and 7. The MOS score
from 0 to 5 indicated that the speech quality is getting
better. Table 8 presents the results of MOS at different
SNRs across the 17 noise types.
We can see from Table 5 for 15 kinds of noise, the A/B

test of the proposed algorithm is all higher than that of
the contrast algorithm in every noise condition. In Table 6,
for office noise and street noise, the A/B test of the
proposed algorithm is also better than that of the con-
trast algorithm. Consequently, for the complex noise
environment, the proposed algorithm has the stronger
robustness. Therefore, the subjective speech quantity
of the proposed algorithm is better than that of the
contrast algorithm.
Table 7 shows that the A/B test of the proposed algo-

rithm is higher than that of the contrast algorithm at
different SNRs.
As shown in Table 8, for the 17 noise types, the MOS

of the proposed algorithm is all higher than that of the
compared method. Therefore, the subjective quality of
enhanced speech based on the proposed algorithm is
greater than that based on the contrast algorithm.
Figure 7 shows the waveform and spectrogram of the

proposed algorithm and the contrast algorithm with
factory2 noise at SNR = − 5 dB. We can know from
Fig. 7, for factory2 noise with the SNR of − 5 dB, the
proposed algorithm can eliminate most of the noise to
a certain extent. But there is still a lot of noise in the
contrast algorithm, which makes the listeners feel
annoying. Consequently, the denoising effect of the
proposed algorithm is better than that of the contrast
algorithm. Therefore, the enhancement effect of the
proposed algorithm is greater than that of the contrast
algorithm on the whole.
According to the analysis of the above test results, we

can come to the conclusion that the performances of
SegSNR, LSD, PESQ, STOI, A/B test, and MOS of the
proposed algorithm are greater than those of the com-
pared method. Moreover, in the low SNR environments,
the performance of the proposed algorithm is very ex-
cellent. Therefore, the proposed algorithm is more
suitable for low SNR environments.
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3.4 Algorithm complexity test
In order to test the algorithm complexity of this algo-
rithm, the MATLAB operation time of each algorithm is
shown in Table 9 in this paper. Each algorithm deals
with all speech signals and then calculates the average
length of time it takes for each speech to be processed.
It can be seen that the operation time of the proposed
algorithm is less than that of the contrast algorithm.
After analysis, we can know that there are two reasons.
Firstly, the complexity of the extraction process of
MRACC feature in the proposed algorithm is lower
than that of the contrast algorithm 1. Secondly, com-
pared with the MRCG feature in contrast algorithm 2,
the proposed MRACC feature dimension is reduced.
Therefore, in a large number of experiments, the oper-
ation time of the proposed algorithm is lower than that
of the contrast algorithm.

4 Conclusion
In this paper, a speech enhancement algorithm based on
MRACC and adaptive mask with deep learning is pro-
posed. In this algorithm, firstly, a new feature, MRACC,
is presented. Compared with the MRCG feature, this
feature uses power function instead of log function so
that it can capture local information and spectro-
temporal contexts, and DCT is employed to gather the
power to the low frequency in this feature so that the
dimension of feature is reduced according to the power’s
distribution. Therefore, the algorithm complexity of the
proposed algorithm is reduced. Secondly, an adaptive
mask which can track the noise changes is used for
speech enhancement. Because the adaptive mask com-
bines the advantages of IRM and IBM, so it has more
accurate estimation on the target speech energy ratio
with DNN. Thirdly, we adopt a DNN model with four
hidden layers to estimate an adaptive mask. DNN has
strong nonlinear processing ability, which could well
describe the complex nonlinear relationship between
noise and speech. So our proposed algorithm has better
quality and intelligibility as well as lower algorithm
complexity than the contrast algorithm overall.
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