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Abstract

In target tracking applications where an over-the-horizon radar (OTHR) is used to gather measurements, one target
may generate more than one measurement at each scan due to the multi-path propagation effect. However,
traditional tracking methods obtain the data association probabilities based on track-to-measurement data
association events under the assumption that each target can generate at most one detection at each scan, leading
to poor performances if these methods are applied to multiple detection applications such as OTHR applications. In
this paper, we develop a multi-path multi-target tracking algorithm entitled multiple detection joint integrated track
splitting (MD-JITS). This novel algorithm jointly solves the measurement origin uncertainty and measurement path
model uncertainty. The probability of target existence (PTE) is utilized in the OTHR application as a track quality
measure for true track confirmation and false track discrimination. The data association algorithm of MD-JITS the
proposed algorithm is realized based on measurement cells that each measurement cell consists of one or more of
the validated measurements, while considering the measurement path model. The proposed algorithm is compared
with the multiple detection joint integrated probabilistic data association (MD-JIPDA) algorithm in a multi-target
crossing scenario, implementing the OTHR system in the presence of clutter and failed target detections, to
demonstrate the desired effectiveness.
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1 Introduction
The core objective for the remote sensing target localiza-
tion and tracking is to generate target state estimates using
measurements processed by the sensors, such as the radar
[1–3]. The measurements can originate from targets or
from clutter and lead to both true tracks (following the tar-
gets) and false tracks (following the clutter) existing in the
surveillance area. Therefore, false track discrimination [4],
involving true track confirmation and false track termina-
tion, is crucial for tracking algorithms. The probability of
target existence (PTE) was first introduced in [4] as a soft
decision of the existence of a target, which can be used to
alleviate the false track discrimination issue.
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Most target tracking algorithms assume that the sen-
sor can generate at most one detection per target with a
detection probability (usually less than unity) at each scan
[5–10]. After the measurement selection procedure,
multi-target tracking (MTT) algorithms will generate
the joint track-to-measurement assignments across the
tracks. The main difference among the MTT algorithms
lies in the way assignments are realized and how the
corresponding probabilities are evaluated [11].
Among various MTT algorithms, the multiple hypoth-

esis tracking (MHT) is a theoretically optimal track-
ing algorithm that enumerates and evaluates all possi-
ble track-to-measurement association hypotheses [5, 12].
Each hypothesis represents a global association consid-
ering all tracks and measurements over a number of
scans. Based on the different hypothesis generation cri-
teria, different versions of MHT can be divided into two
main groups. Measurement-oriented MHT [5] generates
hypotheses based on measurements, while track-oriented
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MHT [12] generates hypotheses based on tracks. The
maximum likelihood probabilistic multiple hypothesis
tracking (ML-PMHT) is a powerful non-Bayesian algo-
rithm that uses a generalized likelihood ratio test to
confirm target existence [13]. Ciuonzo and Horn [14]
use a Merkle tree to store and organize hypotheses for
a distributed track-oriented multiple hypothesis tracking
(TO-MHT) resulting in an efficient structure for imple-
mentation.
The joint integrated probabilistic data association

(JIPDA) tracker is a single-scan MTT algorithm that
incorporates the probability of target existence into the
JPDA algorithm as a track quality measure [15]. JIPDA is
widely used mainly because it is easy to implement and
has low computational cost, due to how all the data asso-
ciation events for a track are compressed into one track
state at each scan. In the JIPDA framework, the proba-
bility of target existence is used to solve the false track
discrimination problem, and the track state is generated
under the assumption of target existence. Compared to
the multi-scan global hypothesis generated by the MHT
tracker, the JIPDA forms track-to-measurement data asso-
ciation events based only on current scan circumstances,
which significantly lowers the computational expense. As
suggested in [12], under adverse circumstances, especially
when the clutter density is high and the detection proba-
bility is low, JIPDAmay have poor tracking performances.
In [16, 17], the maximum likelihood probabilistic data
association (ML-PDA) algorithm is utilized to identify the
sensor states as well as target states.
The joint integrated track splitting (JITS) algorithm is

a multi-scan MTT tracker [11]. Each track generates a
hypotheses tree consisting of a set of hypotheses. Each
hypothesis is treated as a track component, representing
one assertion of the possible target detections history for
multiple scans. Every component selects measurements
and spawns new components, and these new components
propagate to the next scan. The track state is updated by
a Gaussian mixture of all the components belonging to
that track. The probability of target existence is an inher-
ent part of the tracking state and is recursively updated
based on the measurement likelihood ratio, considering
all the components. Updating the estimated state and the
probability of target existence are two core aspects of
JITS. As the number of hypotheses exponentially grows,
component reduction methods are used. Pruning and
merging are the efficient and most widely used methods
[18, 19] for controlling the number of components. Both
JIPDA and JITS use the probability of target existence to
solve the false track discrimination issue, and the com-
parison results showed that JITS outperforms JIPDA at
the expense of computational complexity [11]. Instead of
the global hypotheses being generated by the MHT, JITS
forms a hypotheses tree for each track, which significantly

reduces the structure complexity. Some of the differences
and tracking performance comparisons of IPDA, ITS, and
MHT are shown in [20]. Kim and Song [21] proposed the
smoothing JITS for multi-target tracking in clutter.
These algorithms assume that for each scan, one tar-

get can give rise to at most one detection with a given
detection probability of PD < 1. However, many prac-
tical applications are plagued by the multiple detection
problem. This problem is especially prominent when a
special kind of radar, called the over-the-horizon radar
(OTHR) [22–24], is used. In [22–24], the multi-path prob-
abilistic data association (MPDA) method is introduced
for single-target tracking. However, the multi-path tracks
are generated as it lacks a means of discrimination. In
the OTHR tracking system [25–28] which is widely used
in remote sensing applications, transmission and receiv-
ing signals can be scattered by different ionospheric layers
which results in different measurement paths (models).
Themulti-path approach leads tomultiple detections gen-
erated by the same target, and the relationship between
measurements and paths is not prior known which results
in the measurement path model uncertainty. If the tar-
gets in the surveillance region are closely spaced and cross
each other, localization and tracking become more diffi-
cult. Moreover, due to the incorrect model and measure-
ment combination, multi-path tracks are generated and
need to be identified. In [25, 27], the multiple detection
multiple hypothesis tracking (MD-MHT) algorithm and
the multi-detection probability hypothesis density (MD-
PHD) algorithm are derived by combining the multiple
hypothesis tracking and the random finite set frame-
work. In [29], the Gaussianmixture probability hypothesis
density (GM-PHD) filter is extended for multi-path multi-
target tracking with the over-the-horizon radar system.
But the MHT and the PHD algorithms lack a specialized
track quality measure for true and false track manage-
ment. In [26, 28], the Bernoulli filter and the cardinality
balanced multi-target multi-Bernoulli filter are applied
to the OTHR applications. However, the Bernoulli filter-
based methods are recommended to use in the envi-
ronment with high detection probability and low clutter
density. In [30], the authors developed the multi-radar
multi-target tracking algorithm for maritime surveillance
at over-the-horizon (OTH) distances.
In multiple detection scenarios, the classic tracking

algorithms, which assume at most one target originated
measurement, lose a large amount of the target motion
information contained in the measurements. This weak-
ness is caused by the fact that each of the data association
events only considers at most a single measurement per
track. Each of the data association events assumes that one
of the validated measurements is generated by a target or
clutter, and then, the track state is updated based on those
hypotheses. If multiple measurements can be considered



Huang et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:60 Page 3 of 17

in one date association event, the tracking performance
can be improved significantly due to the target informa-
tion being more efficiently extracted. The measurement
partition method is introduced to generate the possi-
ble target-oriented measurement cells and was embedded
in the JPDA and PHD frameworks [27, 31]. The mea-
surement partition method assumes that more than one
measurement can be generated by one target, forming
all the possible target-oriented measurement combina-
tions based both on the validated measurements and on
the restriction of the maximum number of target detec-
tions. Those measurement cells are then used in the data
association events instead of a single measurement. The
algorithms in [27, 31] are multi-target tracking meth-
ods but do not have the track quality measure which is
essential for distinguishing true and false tracks.
Both JIPDA and JITS assume that at most one mea-

surement per target at each scan, which leads to infor-
mation loss in multiple detection scenarios. By jointly
considering the measurement origin uncertainty and the
measurement path model uncertainty, two novel struc-
tures named multiple detection JIPDA (MD-JIPDA) and
multiple detection JITS (MD-JITS) are designed espe-
cially for use in the OTHR tracking system. In these
two multiple detection structures, after the measurement
selection step, the measurement cells are first generated
such that one measurement cell may contain one or more
of these validated measurements. Then, the data associ-
ation events of MD-JIPDA and MD-JITS are generated
using the measurement cells. Combined with prior infor-
mation from the last scan, the measurement cells are used
to update the track state and the probability of target
existence.
The track state of MD-JIPDA is generated by a Gaus-

sian mixture based on all the data association events, and
then, this track propagates to the next scan. The output
of MD-JIPDA for each track at each scan contains one
Gaussian distribution for the track state and the proba-
bility of target existence. As for MD-JITS, at each scan,
each component selects measurements and generates the
measurement cells separately. Each component generates
new components using any one of its own measurement
cells, where each component is represented by a Gaus-
sian distribution for its state and a component probability.
The final output for the track state is obtained by a Gaus-
sian mixture based on all the components that belong
to the track. Then, the components of the track propa-
gate to the next scan where each component can be seen
as a measurement cell assignment history. Compared to
MD-JIPDA, in which each track propagates as one Gaus-
sian pdf, each MD-JITS track propagates as a set of many
Gaussian components. The number of components of a
track exponentially increases with the number of scans,
but actually not all the components are significant for the

track. Thus, the components with the component prob-
abilities lower than a given threshold are pruned, and if
any two components consecutively use the same mea-
surement cells to update the component states for several
scans, these two components should be merged into one
[18, 19]. Since the MD-JITS track maintains many track
components which can be seen as the target-generated
measurement hypotheses, it outperforms MD-JIPDA in
the multi-target crossing scenarios.
Initial results of MD-JITS are reported in [32] in

which the multiple detection problem occurs from a
high-resolution sensor. The algorithm proposed in [32]
only needs to solve the many-to-one measurements-to-
track associations. However, in order to associate mul-
tiple measurements to one track, the work proposed
here should jointly consider the measurement origin
uncertainty and the measurement path model uncer-
tainty caused by the unknown signal propagation paths
of the OTHR. The same measurement with different
measurement path models provides completely different
target state information. We provide here the rigorous
algorithm derivations of MD-JITS for the OTHR sys-
tem by utilizing the combinations of the measurement
cells and the path models. We also introduce a multi-
path track discrimination method for the data association
structures.
The problem statement is given in Section 2. The math-

ematical derivation of MD-JITS for the OTHR system and
the complexity analyses are given in Section 3. Section 4
contains the simulation studies, followed by conclusions
in Section 5.
In this paper, the following abbreviations, notations, and

the assumption are employed:
A. Abbreviations:
CFT: Confirmed false tracks; CTTs: Confirmed true

tracks; EKF: Extended Kalman filter; JIPDA: Joint inte-
grated probabilistic data association; JITS: Joint integrated
track splitting; MD-JIPDA: Multiple detection joint inte-
grated probabilistic data association; MD-JITS: Multi-
ple detection joint integrated track splitting; MD-MHT:
Multiple detection multiple hypothesis tracking; MD-
PHD:Multi-detection probability hypothesis density;ML-
PDA: Maximum likelihood probabilistic data association;
ML-PMHT: Maximum likelihood probabilistic multiple
hypothesis tracking; MPDA: Multi-path probabilistic data
association; MHT: Multiple hypothesis tracking; MTT:
Multi-target tracking; OTHR: Over-the-horizon radar;
PTE: Probability of target existence; RMSEs: Root mean
square errors
B. Notations:

χ t
k The event that track t is tracking a target i.e., target t

exists.
mk The number of validated measurements at scan k.
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�t,max The maximum number of target originated
measurements in the mk validated measurements,
�t,max = min (L,mk).

z�t ,n�t (k) One measurement cell of track t at time k.
�t The number ofmeasurements originated from target

t such that 1 ≤ �t ≤ �t,max.
n�t An index that indicates is the measurement cell

z�t ,n�t (k) is one of the possible c�t combinations
where there are �t measurements originated from
target t. n�t ∈ {

1, 2, . . . , c�t

}
and c�t = Cmk

�t
=

mk !
�t !(mk−�t)! (the notation Cn

m in this paper represents
the number ofm-combinations from a given set of n
elements).

z (k) The measurement set that of all the val-
idated measurements at scan k, z (k) ={
z1 (k) , z2 (k) , ..., zmk (k)

}
.

Zk A collection of validated measurement sets that
includes all the validated measurements up to and
including scan k, Zk = z (k)

⋃
Zk−1.

The superscript or subscript t indicates that the param-
eter is specified by track t. k always represents the time
index.

C. Assumption:
There are Lmeasurement paths, and each target can be

detected at most one time through each of those paths.
This suggests that there are at most L target measure-
ments from each target at each scan.

2 Problem statement
The target motion model is given by

x (k) = f (k, x (k − 1) , v (k − 1)) . (1)

Here, x (k) represents the target state at scan k, f is the
state propagation function, and v (k − 1) is the process
noise.
In the OTHR system, the high frequency wave reflects

through ionospheric layers to detect a target located
beyond the horizon. The signal is emitted by the transmit-
ter and reflected by one of the ionosphere layers before it
reaches the target, and then, it is reflected by the target
and bounces off one of the ionosphere layers before it is
received by the receiver. Therefore, the m different iono-
sphere layers formm2 different measurement paths (mod-
els). In order to demonstrate the measurement geometry
andmeasurement generation processmore concisely, only
two ionosphere layers are considered in this paper. Here,
two assumptions are made: one is the flat earth model and
the other is that the heights of the ionospheric layers are
known and fixed. Those two assumptions are employed
in most OTHR studies [22, 27, 31] for simplicity. In order
to consider the shape of the earth, the earth is introduced
as an ellipsoid based on the WGS-84 coordinate system.

Then, the spherical OTHR measurement geometry can
be modeled according to this coordinate system [33]. In
realistic situations, the ionosphere state evolves intermit-
tently. The noisy height information can be introduced
by tacking into account that the ionosphere state changes
slowly and stays invariable within the sampling period.
Then, OTHR target tracking with the noisy ionosphere
state is performed by joint estimation of fast-updating
multi-target states and intermittent-updating the iono-
sphere state [34–36].
Figure 1 demonstrates the geometry of the planar

OTHRmeasurement model. The receiver is set as the ori-
gin, and the transmitter is installed along the X-axis with
a distance d (T-R distance) away from the origin. The
targets move in the X-Y plane, and the X-Y -Z coordi-
nate system follows the right-hand rule. The ground range
between the target and the receiver is ρ, and the bear-
ing between the Y -axis and ρ is defined as b. θ is the
angle between the X-axis and the received signal satisfies
cos θ = cosϕ sin b, where the signal elevation ϕ is not
measured but has the relation cosϕ = ρ / (2r1) with the
target state ρ if the target state x (k) in (1) consists of the
ground range, ground range rate, bearing, and bearing rate

x (k) =
[
ρ, ρ̇, b, ḃ

]T
. The apparent azimuth is defined by

π / 2−θ . The transmit and receive signals are reflected by
the layers with heights ht and hr , respectively. ht and hr are
used to represent the transmit layer and the receive layer,
respectively. Half of the slant ranges from the transmitter
to target, and from the target to receiver are denoted by r2
and r1, respectively.
Here, two ionospheric layers are considered with verti-

cal heights hE and hF . hE and hF are used to represent the
layer E and layer F , respectively. Under this circumstance,
the signal propagation models are shown in the Table 1
in which the height of the ionospheric layer is used to
represent the layer.

Fig. 1 Geometry of the planar OTHR measurement model
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Table 1 Propagation models

Pathi Model Transmit layer ht Receive layer hr

i = 1 EE hE hE

i = 2 EF hE hF

i = 3 FE hF hE

i = 4 FF hF hF

The measurements generated by the target and clutter
are given by

zi (k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

hEE (x (k)) + wEE (k) model EE, Path1
hEF (x (k)) + wEF (k) model EF, Path2
hFE (x (k)) + wFE (k) model FE, Path3
hFF (x (k)) + wFF (k) model FF, Path4

c clutter
(2)

where htr (t, r ∈ {E, F}) is the measurement function asso-
ciated with the transmit layer t and receive layer r. wtr
(t, r ∈ {E, F}) is the zero mean Gaussian measurement
noise in the corresponding paths. Both htr and wtr are
related to the corresponding model.
The elements of each measurement consist of the slant

range, the rate of change of the slant range, and the
apparent azimuth

[
Rg ,Rr ,Az

]
[22], given by

Rg = r1 + r2

Rr = ρ̇

4

{
ρ

r1
+ η

r2

}
,

Az = sin−1 {ρ sin (b) / (2r1)}
(3)

where the parameters r1, r2, and η are obtained by

r1 = r1 (ρ, hr)
	= √(ρ / 2)

2 + h2r

r2 = r2 (ρ, b, hr)
	=
√

(ρ / 2)2−dρ sin (b) / 2+(d / 2)2+h2t
η = ρ − d sin (b) ,

(4)

where ht and hr represent the height of transmit layer
and receive layer associated with different measurement
models.

3 Multiple detection JITS
In the MD-JITS data association step, one has to con-
sider the possibility that multiple measurements might
originate from the same target. This special issue of the
MD-JITS data association process involves jointly assign-
ing the measurement cells to the tracks. At each scan,
each component of each track employs the gating method
[1, 2] to validate measurements. After obtaining vali-
dated measurements, the measurement partition method

is used to generate the measurement cells from these vali-
datedmeasurements. Eachmeasurement cell contains one
or some of the validated measurements. Then, a mea-
surement cell assigned to a tracker should not share any
elements with other tracks in a feasible joint event [3].
The joint events are used to jointly assign the measure-

ment cells to the tracks, and each joint event is composed
of tracks with disjoint measurement cells. In a joint event,
each track is assigned to one measurement cell or unas-
signed. Then, the joint event probabilities are calculated
for the corresponding joint events.

3.1 Measurement partition method
In order to assign multiple measurements to one track,
the measurement cells are generated. Each measurement
cell can be treated as a measurement set which contains at
most �t,max elements of the validated measurements. In a
data association event, if a measurement cell is assigned to
a track, the measurements contained in this measurement
cell are used for the state estimation and the data associ-
ation probability calculation. The measurement cells are
generated using the validated measurements based on the
assumption that there are �t measurements originated
from target t.
Here, we use an example to show the process of gen-

erating the measurement cells. Suppose that track t vali-
dates threemeasurements {z1 (k) , z2 (k) , z4 (k)} out of the
total cluster measurements {z1 (k) , z2 (k) , z3 (k) , z4 (k)}
at scan k,�t,max is set to be 3. Then, based on the assumed
number of measurements from the target, measurement
cells are generated as follows:

• Suppose that only one of the validated measurements
is the target detection (�t = 1) and n1 ∈ {1, 2, 3}.
The measurement cells are:

z1,1 (k) = {z1 (k)} ;
z1,2 (k) = {z2 (k)} ;
z1,3 (k) = {z4 (k)} .

• Suppose that two of the validated measurements are
the target detections (�t = 2) and n2 ∈ {1, 2, 3}. The
measurement cells are:

z2,1 (k) = {z1 (k) , z2 (k)} ;
z2,2 (k) = {z1 (k) , z4 (k)} ;
z2,3 (k) = {z2 (k) , z4 (k)} .

• Suppose that all these three measurements are the
target detections (�t = 3) and n3 ∈ {1}. The
measurement cell is:

z3,1 (k) = {z1 (k) , z2 (k) , z4 (k)} .
After the measurement partition process, seven mea-

surement cells are generated. Thesemeasurement cells are
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utilized in the data associations for track t. When mea-
surement cell z2,2 (k) is considered in a data association
event, the measurements contained in z2,2 (k), which are
z1 (k) and z4 (k), are treated as target detections.
The number of measurement cells increases with the

number of validated measurements mk and the maxi-
mum number of target originated measurements �t,max.
After the measurement partition process, the number of
measurement cells becomes

∑�t,max
�t=1 Cmk

�t
.

Here, the measurement cells are generated without
considering the measurement cell path model. The mea-
surement cell path model, which contains path models
for each measurement in the measurement cell, will be
specified in Section 3.2.

3.2 MD-JITS
When there are tracks that share measurements, the
feasible joint events are used to solve the track-to-
measurement assignment issue. The feasible joint events
cover all possible track-to-measurement assignments for
all the tracks and the measurements in a cluster. A cluster
at scan k is a set of the tracks and the measurements these
tracks select. A track inside the cluster should share mea-
surements with one or more different tracks in the cluster,
and the tracks not belonging to the cluster do not select
any of the cluster measurements. In the multiple detec-
tion case, the measurement cells composed of different
validated measurements are assigned to the tracks in one
feasible joint event.
In this paper, for reasons of clarity and without loss of

generality, it is assumed that all the measurements in the
cluster are validated by all the tracks belonging to that
cluster and that the detection probability of each path is
considered identical, i.e., PDEE =PDEF = PDFE = PDFF = PD.
MD-JITS is different from MD-JIPDA in the sense that

each track in MD-JITS retains the track components for
propagation. Denote by

κ t (k) =
〈
z�t ,n�t (k) |Mt

jk
(
z�t ,n�t (k)

)〉
,

jk ∈
{
1, 2, . . . ,

L!
(L − �t) !

} (5)

for the event that measurement cell z�t ,n�t (k) is
composed of the �t measurements of track t gener-
ated by a path model Mt

jk
(
z�t ,n�t (k)

)
. Mt

jk
(
z�t ,n�t (k)

)

is the hypothesis that z�t ,n�t (k) is originated from
one of L!

(L−�t)! possible model path allocations. For
example, under the condition that L = 4 for the
measurement cell z2,2 (k) = {z1 (k) , z4 (k)}, the corre-
sponding measurement cell model Mt

jk
(
z2,2 (k)

)
can be

chosen from

{(1, 2) , (2, 1) , (1, 3) , (3, 1) , (1, 4) , (4, 1) , (2, 3) , (3, 2) ,
(2, 4) , (4, 2) , (3, 4) , (4, 3)}.

If the measurement cell model is chosen as (3, 4), this
means that measurement z1 (k) is generated by path 3 and
measurement z4 (k) is generated by path 4 in Table 1. In
OTHR target tracking applications, the measurements are
used with the specified path models since the same mea-
surement with different path models provides different
target state information.
Denote by

κ t (k) = 〈0|0〉 (6)

the event that none of the validated measurements are the
detections of target t.
One possible history of the validated measurement cells

for track t during the interval between scan 1 and scan k is
represented by a set of events that represents a sequence
of the measurement cells and the corresponding path
model in the interval:

κ t,k 	=
{
κ t (1) =

〈
z�t ,n�t (1) |Mt

j1
(
z�t ,n�t (1)

)〉
,

..., κ t (k) =
〈
z�t ,n�t (k) |Mt

jk
(
z�t ,n�t (k)

)〉}
,

(7)

where each κ t (i), i ∈ {1, 2, . . . , k} can be of the form from
(5) or (6). Each κ t,k represents one component for track t
at time k.
Here, one recursion of MD-JITS at scan k is illus-

trated. At scan k, the following posterior information
at scan k − 1 is assumed to be available: (1) The
track state probability density function (pdf) for track
t, p

(
xt (k − 1) |χ t

k−1,Z
k−1
)
; (2) the probability of target

existence for track t, P
(
χ t
k−1|Zk−1

)
, which represents the

probability of target existence of a target tracked by track
t; (3) the component state for each component of track t,
p
(
xt (k − 1) |χ t

k−1, κ
t,k−1,Zk−1

)
; and (4) the component

probability for each component belongs to track t, which
is P

(
κ t,k−1|χk−1,Zk−1).

The prediction and the measurement selection pro-
cesses are implemented by each component of track t.
Here, track t represents one of the existing or the initi-
ated tracks at scan k. The component state prediction is
governed by

p
(
xt (k) |χ t

k , κ
t,k−1,Zk−1

)

=
∫

xt(k−1)

p
(
xt (k) |xt (k − 1) ,χ t

k , κ
t,k−1,Zk−1

)
4

· p
(
xt (k − 1) |χ t

k , κ
t,k−1,Zk−1

)
dxt (k − 1) ,

(8)
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where the Kalman filter prediction can be used for a linear
state propagation model. If κ t,k−1 is omitted, this equation
can be used for MD-JIPDA track state prediction.
The component probability prediction is given as

P
(
κ t,k−1|χ t

k ,Z
k−1
)

= P
(
κ t,k−1|χ t

k−1,Z
k−1
)
; (9)

the details can be found in [12, 20].
The following describes the measurement selection of

each component of track t. Each component of track
t selects the measurements in its validation gate, and
all the components of track t form a common valida-
tion gate and common validated measurements of track t
[20, 37]. Based on (8) and the selection process of the vali-
datedmeasurements, each component of track t generates
the predicted measurement for each measurement Pathi
and selects the measurements inside the validation gate
corresponding to Pathi using an ellipse gating method [3].
After selecting the measurements, the measurement

partition for the set of validated measurements is applied
to generate the measurement cells for possible multiple
detection. Then, the component measurement cell likeli-
hood function for each measurement cell is calculated as

p
(
z�t ,n�t (k) |χ t

k , κ
t,k−1,Mt

jk

(
z�t ,n�t (k)

)
,Zk−1

)

=
N
(
z�t ,n�t (k) |ζMt

jk

(
z�t ,n�t

(k)
), SMt

jk

(
z�t ,n�t

(k)
)
)

(PG)�t
.

(10)

In (10), PG is the gating probability of a single detec-
tion. The Gaussian pdf for measurement cell z�t ,n�t (k)
is employed, and each measurement cell is allocated
with one measurement cell path model Mt

jk
(
z�t ,n�t (k)

)
.

Note that ζMt
jk

(
z�t ,n�t

(k)
) represents the measurement

prediction based on the state prediction (8) and mea-
surement cell path model Mt

jk
(
z�t ,n�t (k)

)
. Note also

that SMt
jk

(
z�t ,n�t

(k)
) represents the measurement cell

innovation covariance corresponding to measurement
cell z�t ,n�t (k) given measurement cell path model
Mt

jk
(
z�t ,n�t (k)

)
. One can apply the extended Kalman fil-

ter (EKF) to obtain state estimates for the equations.
The details for generating these estimates can be found
in [22, 23].
Equation (10) is the measurement cell likelihood func-

tion calculated for each component. The combined mea-
surement cell likelihood of track t for measurement cell
z�t ,n�t (k) with allocated path model Mt

jk
(
z�t ,n�t (k)

)
is

the sum of products of the component measurement cell
likelihood function and the component probability of the
track components of track t, written as

p
(
z�t ,n�t (k) |χ t

k ,M
t
jk

(
z�t ,n�t (k)

)
,Zk−1

)

=
∑

κ t,k−1

p
(
z�t ,n�t (k) |χ t

k , κ
t,k−1,Mt

jk

(
z�t ,n�t (k)

)
,Zk−1

)

P
(
κ t,k−1|χ t

k ,Z
k−1
)
,

(11)

where this combined measurement likelihood function
utilizes all the components that use measurement cell
z�t ,n�t (k) with the allocated path modelMt

jk
(
z�t ,n�t (k)

)
.

This combined measurement cell likelihood is used to
calculate the joint event probability.
Then, the data association step is processed. In the

following derivations, “track” and “measurement” mean
cluster tracks and cluster measurements in a cluster,
respectively. The validated measurement set z(k) is the
union of the validated measurements validated by each
of the tracks belonging to the cluster. A joint event ε is
an event of assigning measurement cells including non-
detection to all the tracks. One joint event should sat-
isfy the following: (1) Each track is assigned to at most
one measurement cell and (2) each measurement cell is
assigned to at most one track.
To generate the a posteriori probability of the joint event

ε, the tracks are divided into different sets. Tε is the set of
tracks that are assigned a measurement cell, and the num-
ber of tracks in this set is Nε . Tε

0 is the set of tracks that
are not assigned measurement cells (i.e., assigned to non-
detection), and the number of tracks in this set is Nε

0 . The
a posteriori probability of the joint event ε, using Bayes’
formula, is

P
(
ε|Zk

)
=p
(
ε, z (k) ,mk|Zk−1)

p
(
z (k) |Zk−1)

=1
c
p
(
z (k)|ε,mk ,Zk−1)P

(
mk|ε,Zk−1

)
P
(
ε|Zk−1

)
,

(12)

where c is a normalization constant and mk is the
number of validated measurements in the cluster.
p
(
z (k) |ε,mk ,Zk−1) is the joint measurement likelihood

function for measurement set z(k); P
(
mk|ε,Zk−1) rep-

resents the a priori probability for the number of the
measurements; and P

(
ε|Zk−1) is the a priori probability

of the joint event.
The joint measurement likelihood p

(
z (k) |ε,mk ,Zk−1)

of z(k) in (12) is calculated by

p
(
z (k) |ε,mk ,Zk−1

)
= Vk

−
(
mk−

∑Nε

t=1 �t
)

·
∏

t∈Tε

p
(
z�t ,n�t (k) |χ t

k ,M
t
jk
(
z�t ,n�t (k)

)
,Zk−1

)
,
(13)

where Vk is the volume of the surveillance region.
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For the joint event ε, the relation between measure-
ment cell z�t ,n�t (k) and measurement cell path model
Mt

jk
(
z�t ,n�t (k)

)
for every track involved in ε is already

known.
The number of clutter measurements follows a Pois-

son distribution [38]. Given mk measurements at scan k,
mk − ∑Nε

t=1 �t is the number of clutter-generated mea-
surements. The probability that mk − ∑Nε

t=1 �t clutter
measurements are generated at scan k is given by

P
(
mk −

∑Nε

t=1
�t|Zk−1

)
= e−m̂k

(
m̂k
)mk−

∑Nε

t=1 �t

(
mk −∑Nε

t=1 �t
)
!
,

(14)

where m̂k is the mean number of clutter measurements
such that m̂k = λVk with the clutter measurement
density λ.
In (12), the a priori probability of the joint event ε is

given by

P
(
ε|Zk−1

)

=c1−1P

⎛

⎝
⋂

t∈Tε
0

εtk,0
⋂

t∈Tε

(

χ t
k , ε

t
k,
〈
z�t ,n�t

(k)|Mt
jk

(
z�t ,n�t

(k)
)〉

)

|Zk−1

⎞

⎠

= c1−1
∏

t∈Tε
0

[
1 − PtDecP

(
χ t
k|Zk−1

)]

· P
(
⋂

t∈Tε

εt
k,
〈
z�t ,n�t

(k)|Mt
jk

(
z�t ,n�t

(k)
)〉|
⋂

t∈Tε

χ t
k ,Z

k−1
)

· P
(
⋂

t∈Tε

χ t
k|Zk−1

)

.

(15)

In (15), the a priori probability of the event that no vali-
dated measurement is generated by target t including the
hypothesis of non existence of target t at scan k is

P
(
εtk,0|Zk−1

)
= 1 − PtDecP

(
χ t
k|Zk−1

)
, (16)

where P
(
χ t
k|Zk−1) is the predicted probability of the exis-

tence of target t. The probability that there is at least one
target detection in the validation gate is given by PDec =
1 − (1 − PDPG)L.
In (15), P

(
χ t
k|Zk−1) is the predicted probability of tar-

get existence. The propagation of the probability of target
existence for each target is modeled as a Markov chain
[4, 15]. The existence probability of target t and the non-
existence probability at time k are denoted by P

(
χ t
k|Zk)

and P
(
χ̄ t
k|Zk), respectively. The predicted existence prob-

abilities are denoted as P
(
χ t
k|Zk−1) and P

(
χ̄ t
k|Zk−1),

respectively. The Markov chain model defines two events

χ t
k and χ̄ t

k by a random variable etk such that etk = 1 repre-
sents χ t

k and etk = 2 represents χ̄ t
k . The predicted state of

target existence from scan k − 1 to scan k is given by

[
P
(
χ t
k|Zk−1)

P
(
χ̄ t
k|Zk−1)

]
=
[
P11 P21
P12 P22

]⎡

⎣
P
(
χ t
k−1|Zk−1

)

P
(
χ̄ t
k−1|Zk−1

)

⎤

⎦ .

(17)

Equation (17) represents the prediction pro-
cess for the probability of target existence where
Pij = P

[
etk = j|etk−1 = i

]
, j ∈ {1, 2} represents the transi-

tional probability between the existence states. Pij satisfies
2∑

j=1
Pij = 1 for i ∈ {1, 2}.

In (15), the a priori probability that the assignment is
correct becomes

P
(
⋂

t∈Tε

εt
k,
〈
z�t ,n�t

(k)|Mt
jk

(
z�t ,n�t

(k)
)〉| ⋂

t∈Tε

χ t
k ,Z

k−1

)

= 1

Cmk
�1

Cmk−�1
�2

···Cmk−∑Nε−1
i=1 �i

�Nε

∏

t∈Tε

(L−�t)!
L!

∏

t∈Tε

PDG�t

=
(
mk−

∑Nε

i=1 �i
)
!

mk !
∏

t∈Tε

P̄DG�t ,

(18)

where PDG�t is the probability that there are �t measure-
ments detected and fall into the gate, given by

PDG�t = L!
�t ! (L − �t) !

(PDPG)�t (1 − PDPG)L−�t

	= L!
�t ! (L − �t) !

P̄DG�t .
(19)

Combining (13), (14), and (15) yields the a posteriori
probability of the joint association event ε as

P
(
ε|Zk

)

= c−1Vk
−
(
mk−

∑Nε

t=1 �t
)

e−m̂k
(mk)

mk−
∑Nε

t=1 �t
(
mk −∑Nε

t=1 �t
)
!

(
mk −∑Nε

t=1 �t
)
!

mk !

·
∏

t∈Tε
0

[
1 − PtDecP

(
χ t
k |Zk−1

)]

·
∏

t∈Tε

[
p
(
z�t ,n�t (k) |Mt

jk
(
z�t ,n�t (k)

)
,Zk−1

)
P̄DG�t P

(
χ t
k |Zk−1

)]

= C−1
∏

t∈Tε
0

[
1 − PtDecP

(
χ t
k |Zk−1

)]

·
∏

t∈Tε

⎡

⎣
p
(
z�t ,n�t (k) |χ t

k ,M
t
jk
(
z�t ,n�t (k)

)
,Zk−1

)

λ�t
P̄DG�t P

(
χ t
k |Zk−1

)
⎤

⎦.

(20)
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Then, those joint events and the corresponding event
probabilities are used to generate the data association
probabilities of measurement cell-to-track assignments
for MD-JIPDA and MD-JITS.
Denote by �

(
ε,
〈
z�t ,n�t (k) |Mt

jk
(
z�t ,n�t (k)

)〉)
the set

of all the joint events that allocate measurement cell
z�t ,n�t (k) to track t with measurement cell path model
Mt

jk
(
z�t ,n�t (k)

)
. The probability that non-detection is

assigned to track t is the probability of the union of all joint
events that assign non-detection to track t, given by

P
(
κ t (k) = 〈0|0〉 |Zk

)
=

∑

ε∈�(t,〈0|0〉)
P
(
ε|Zk

)
. (21)

The probability that no measurement in the cluster is
generated by target t under the assumption that target t
exists is given as

P
(
χ t
k , κ

t (k) = 〈0|0〉 |Zk
)

= P
(
χ t
k |κ t (k) = 〈0|0〉 ,Zk

)
P
(
κ t (k) = 〈0|0〉 |Zk

)

= P
(
χ t
k , z (k) |κ t (k) = 〈0|0〉 ,Zk−1)

P
(
z (k) |κ t (k) = 〈0|0〉 ,Zk−1)

· P
(
κ t (k) = 〈0|0〉 |Zk

)

=
(
1 − PtDec

)
p
(
χ t
k |Zk−1)

1 − PtDecp
(
χ t
k |Zk−1) P

(
κ t (k) = 〈0|0〉 |Zk

)
.

(22)

The details for deriving (22) can be found in [11, 20].
Then, the probability that measurement cell z�t ,n�t (k)

with measurement cell path modelMt
jk
(
z�t ,n�t (k)

)
is tar-

get t detection (detection of object t implies existence of
object t) is

P
(
χ t
k , κ

t (k) =
〈
z�t ,n�t (k) |Mt

jk
(
z�t ,n�t (k)

)〉 |Zk
)

=
∑

ε∈�
(
t,
〈
z�t ,n�t

(k)|Mt
jk

(
z�t ,n�t

(k)
)〉)

P
(
ε|Zk

)
.

(23)

The events that contain
{
χ t
k , κ

t (k)
}
are mutually exclu-

sive, and their union is the event of target existence.
Therefore, the a posteriori probability of target existence
is

P
(
χ t
k|Zk

)
=
∑

κ t(k)

P
(
χ t
k , κ

t (k) |Zk
)
, (24)

where
∑

κ t(k)
denotes the summation through all feasible

joint events that contain the measurement cells with the
allocated measurement cell path models of track t includ-
ing κ t (k) = 〈0|0〉. The probability of non-existence
P
(
χ̄ t
k|Zk) is equal to 1 − P

(
χ t
k|Zk).

The data association probabilities are given by

βt
k (〈0|0〉) = P

(
κ t (k) = 〈0|0〉 |χ t

k ,Z
k
)

= P
(
χ t
k , κ

t (k) = 〈0|0〉 |Zk)

P
(
χ t
k|Zk) ,

(25)

βt
k

(〈
z�t ,n�t (k) |Mt

jk
(
z�t ,n�t (k)

)〉)

= P
(
κ t (k) =

〈
z�t ,n�t (k) |Mt

jk
(
z�t ,n�t (k)

)〉 |χ t
k ,Z

k
)

=
P
(
χ t
k , κ

t (k) =
〈
z�t ,n�t (k) |Mt

jk
(
z�t ,n�t (k)

)〉 |Zk
)

P
(
χ t
k|Zk) .

(26)

So far, we have obtained the data association proba-
bilities for track-to-measurement cell assignments for all
the cluster tracks. In MD-JIPDA, each data association
event generates one track a posteriori state pdf denoted by
p
(
xt (k) |χ t

k , κ
t (k) ,Zk), which can be obtained from the

existing nonlinear filters, such as the EKF. The state for
track t in MD-JIPDA is obtained by summing the proba-
bilities of all the data association events related to track t
under the assumption of target existence, given as

p
(
xt (k) |χ t

k ,Z
k
)

=
∑

κ t(k)

p
(
xt (k) |χ t

k , κ
t (k) ,Zk

)
P
(
κ t (k) |χ t

k ,Z
k
)
.

(27)

The component probability for
{
κ t (k) = 〈0|0〉 , κ t,k−1}

is

P
(
κ t,k|χ t

k ,Z
k
)

=P
(
κ t (k) = 〈0|0〉 , κ t,k−1|χ t

k ,Z
k
)

=βt
k (〈0|0〉)P

(
κk−1|χ t

k ,Z
k−1
)
.

(28)

The component probability for
{
κ t (k) =

〈
z�t ,n�t (k)

|Mt
jk
(
z�t ,n�t (k)

)〉
, κ t,k−1

}
is

P
(
κ t,k |χ t

k ,Z
k
)

=P
(
κ t,k−1|χ t

k , κ
t (k) =

〈
z�t ,n�t (k) |Mt

jk
(
z�t ,n�t (k)

)〉
,Zk
)

· P
(
κ t (k) =

〈
z�t ,n�t (k) |Mt

jk
(
z�t ,n�t (k)

)〉 |χ t
k ,Z

k
)

=
p
(
z�t ,n�t (k) |χ t

k , κ
t,k−1,Mt

jk
(
z�t ,n�t (k)

)
,Zk−1

)

p
(
z�t ,n�t (k) |χ t

k ,M
t
jk
(
z�t ,n�t (k)

)
,Zk−1

)

· P
(
κ t,k−1|χ t

k ,Z
k−1
)

βt
k

(〈
z�t ,n�t (k) |Mt

jk
(
z�t ,n�t (k)

)〉)
,

(29)

where the likelihood functions p
(
z�t ,n�t (k) |χ t

k , κ
t,k−1,

Mt
jk
(
z�t ,n�t (k)

)
,Zk−1

)
and p

(
z�t ,n�t (k) |χ t

k ,M
t
jk
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(
z�t ,n�t (k)

)
,Zk−1) are presented in (10) and (11),

respectively.
The track state is updated using a Gaussian mixture of

all the component state pdfs, given by

p
(
xt (k) |χ t

k ,Z
k
)
=
∑

κ t,k

p
(
xt (k) |χ t

k , κ
t,k ,Zk

)
P
(
κ t,k|χ t

k ,Z
k
)
,

(30)

where p
(
xt (k) |χ t

k , κ
t,k ,Zk) is the a posteriori state pdf

for each component, which can be updated by the exist-
ing nonlinear filters. If the EKF is used, the details to
calculate the Jacobian matrix can be found in [22, 23].
P
(
κ t,k|χ t

k ,Z
k) is the a posteriori component probability,

presented in either (28) or (29) depending on context.
Equation (30) is different from Eq. (27) since the associ-
ation history, which is κ t,k , is considered in (30) and the
association at current scan, which is κ t (k), is considered
in (27).
For comparison, the pseudo-codes for MD-JITS and

MD-JIPDA are given in Table 2.

3.3 Complexity analyses
Multiple detection multi-target tracking algorithms allow
for many-to-one measurements-to-track assignments in
the joint events. The number of feasible joint assignments
(i.e., the number of the joint events) is combinatorial in
the number of the measurements and the number of the
tracks. In multiple detection multi-target tracking, most
of the computational load is generated by these joint
assignments. The computational load generated by this
part is identical in MD-JITS and MD-JIPDA, because
the same joint assignment process is used in these two
algorithms.
The main difference between MD-JITS and MD-JIPDA

lies in the track structure. In MD-JITS, each track is mod-
eled as a set of track components that each component has
a unique measurement assignment history that consists of
zero or some of the validated measurements at each scan.
A track is the union of its mutually exclusive components.
However, each track in MD-JIPDA is expressed by one
Gaussian pdf. The track structure difference makes MD-
JITS more robust but more time-consuming compared to
MD-JIPDA.
In order to analyze the complexity of MD-JITS, the

joint measurements-to-track assignments and the track
structure are discussed.

A. Complexity of joint measurements-to-track assign-
ments
In Section 3, we have shown the measurement cell

generation process for a track t. Here, we analyze the com-
plexity of joint measurements-to-track assignments con-
sidering all the validated measurements with the specified

Table 2 Pseudo-codes for MD-JITS and MD-JIPDA

MD-JITS track update process

for each track

1. Probability of target existence prediction, P
(
χ t
k |Zk−1

)
, (17)

2. Track component state prediction, p
(
xt (k) |χ t

k , κ
t,k−1, Zk−1

)
, (8)

3. Measurement selection based on track components

4. Measurement cells generation usingmeasurement partitionmethod

5. Data association event probabilities,

β t
k (〈0|0〉) and β t

k

(〈
z�t ,n�t

(k) |Mt
jk

(
z�t ,n�t

(k)
)〉)

, (25) and (26)

6. Track component probability, P
(
κ t,k|χk , Zk

)
, (28) and (29)

7. Component state generation using nonlinear filter,

p
(
xt (k) |χ t

k , κ
t,k , Zk

)

8. Track state at scan k, p
(
xt (k) |χ t

k , Z
k
)
, (30)

9. The probability of target existence at scan k, P
(
χ t
k |Zk

)
, (24)

end for

MD-JIPDA track update process

for each track

1. Probability of target existence prediction, P
(
χ t
k |Zk−1

)
, (17)

2. Track state prediction, p
(
xt (k) |χ t

k , Z
k−1
)
, (8)

3. Measurement selection based on track

4. Measurement cells generation usingmeasurement partitionmethod

5. Data association event probabilities,

β t
k (〈0|0〉) and β t

k

(〈
z�t ,n�t

(k) |Mt
jk

(
z�t ,n�t

(k)
)〉)

, (25) and (26)

6. Track state generated by each data association event using

existing nonlinear filter

7. Track state at scan k, p
(
xt (k) |χ t

k , Z
k
)
, (27)

8. The probability of target existence at scan k, P
(
χ t
k |Zk

)
, (24)

end for

path models and all the cluster tracks. We assume that all
the validated measurements are shared among the clus-
ter tracks, and there areMk path-assigned measurements
that satisfies

Mk ≥
N∑

t=1
�t,max, (31)

where N is the number of tracks considered.
Each joint event assigns zero or some of the Mk path-

assigned measurements to each of the N cluster tracks.
The total number of feasible joint events becomes

�1,max∑

l1=0

�2,max∑

l2=0
, . . . ,

�N ,max∑

lN=0

⎡

⎢
⎣CMk

l1 CMk−l1
l2 · · ·C

Mk−
N−1∑

j=1
lj

lN

⎤

⎥
⎦.

(32)

where lt (t = 1, · · · ,N) represents the number of the path-
assigned measurements allocated to track t.
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Suppose that �t,max = 3. In Table 3, the numbers of
joint events for different Mk and different numbers of
tracks are shown. In this table, the number of joint events
exponentially grows with the number of tracks and the
number of the path-assigned measurements. �t,max is a
parameter predetermined by the designer, and it also has
an influence on the number of the joint events.

B. Complexity of the track structure
In this part, the complexities of the track propagation of

a track in MD-JITS and MD-JIPDA are analyzed.
Let Bk denote the number of the path-assigned

measurement cells represented by
〈
z�t ,n�t (k) |Mt

jk
(
z�t ,n�t (k)

) 〉
including the special case 〈0|0〉. In MD-

JITS, each measurement cell and path model combination
(
〈
z�t ,n�t (k) |Mt

jk
(
z�t ,n�t (k)

)〉
or 〈0|0〉) is combined to

the parent component κ t,k−1 to make a new component.
Thus, component κ t,k−1 becomes Bk new components
after processing the combinations. Finally, the total num-
ber of new components becomes K · Bk after processing
all the combinations with all the K parent components.
For each component, as well as for each track, the state
estimate and the a posteriori component probability are
computed recursively. The MD-JITS track propagation
has the complexity of O (K · Bk) at scan k. The complex-
ity of this algorithm increases as the increasing of the
number of measurement.
The number of components grows exponentially in

time. Practical implementation of MD-JITS must include
procedures to control the number of components. Com-
ponent merging and pruning techniques have been
described in [37].
Each track in MD-JIPDA keeps only one Gaussian pdf,

representing the track state estimate. At scan k, Bk combi-
nations are associated to a track. This association problem
can be solved with the complexityO (Bk).

4 Results and discussion
In this section, the simulation performances of MD-
JIPDA and MD-JITS are compared. In total, 250 Monte
Carlo simulation runs are employed, where each run com-
prises 40 scans. Four targets exist from the initial scan to

Table 3 Number of joint events

Mk
Number of tracks

1 2 3

9 130 6799 136,348

10 176 8980 398,476

11 232 11,603 1,079,464

12 299 14,710 2,715,541

the final scan, and they propagate according to a nearly
constant velocity (NCV) model. In each of the simulation
runs, the influence of process noise is added to the true
target trajectories, as shown in Fig. 2. Target 1 and target
2 intersect at scan 30. Both MD-JIPDA and MD-JITS use
the same measurement set for the simulations.
The OTHR system geometry is as shown in Fig. 1,

and the information on the surveillance area is given in
Table 4. The average number of the clutter measurements
at each scan is set to be 25. The NCV model for target
dynamics is employed as

x (k) = Fx (k − 1) + v (k − 1) , (33)

where x (k) is the target state at scan k, the sampling inter-
val is 20 s, F is the state propagation matrix, and v(k − 1)
is the zero-mean Gaussian process noise with covariance
Q. The process noise covariance is given by

Q = blockdiag
([

7.8 × 10−1, 4.4 × 10−4

4.4 × 10−4, 1.3 × 10−5

]
,

[
1.5 × 10−12, 1.1 × 10−13

1.1 × 10−13, 1.1 × 10−14

])
,

(34)

The target measurement
[
Rg ,Rr ,Az

]
in (km, km/s, rad)

is generated by (3) including the zero-mean Gaussian
measurement noise with covariance R given by

R = diag
(
25km2, 1 × 10−6km2/s2, 9 × 10−6rad2

)
.
(35)

The target state contains information on the range,
range rate, bearing, and bearing rate x (k) = [ ρ ρ̇ b ḃ

]T ,
and the initial target states are given in Table 5. The tar-
get detection probability of each path PD and the gating
probability PG are given in Table 5.
The initial track state covariance, which is needed in the

track initialization step, is given by

P0|0 =diag
(
25 km2, 1 × 10−5 km2/s2, 9 × 10−6 rad2,

6.4 × 10−8 rad2/s2
)
.

(36)

The rate of bearing is set to be 0 in the initialization step.
Some of those parameters are the same as given in [39].
The transitional probabilities used in the Markov chain

process are given by
[
P11 P21
P12 P22

]
=
[
0.98 0
0.02 1

]
(37)

In order to initialize tracks, the inverse mapping of the
measurements from radar coordinates to target motion
coordinates is given by
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⎧
⎪⎪⎨

⎪⎪⎩

ρ = 2
√
r21 − h2r

ρ̇ = 4Rr / r1 + (η / r2)(ρ / r1 + η / r2)
b = sin−1

(
sin(Az)
cos(ϕ)

)
,

(38)

where
{
r1 = R2g+h2r−h2t −(d/ 2)2

2Rg−d sin(Az)

r2 = Rg − r1.
(39)

4.1 False track discrimination and track accuracy
The tracking performance is tested with emphasis on the
false track discrimination and tracking accuracy. Both
MD-JIPDA and MD-JITS use the probability of target
existence to solve the false track discrimination issue as
follows:

• A track is initialized by the one-point initialization
method. Each track is assigned an initial probability
of target existence in the track initialization step. The
values of the initial probability of target existence for

Table 4 Surveillance area parameters

Parameter Value

Slant range size 1000–1400 km

Rate of slant range size 0.013889–0.22222 km/s

Apparent azimuth size 0.069813–0.17453 rad

T to R distance d 100 km

Hight of layer E 100 km

Hight of layer F 260 km

MD-JIPDA tracks and MD-JITS tracks are different,
ensuring that those two trackers have the same
number of confirmed false tracks.

• The probability of target existence of a track is
updated scan by scan, and once it exceeds the
confirmation probability of target existence (0.98),
the track becomes a confirmed track.

• The confirmed track is tested as to whether it is a
confirmed true track or a confirmed false track by the
following criteria:

(x̃ (k|k))TP−1
0|0x̃ (k|k) < 20 for comfirmed true track,

(x̃ (k|k))TP−1
0|0x̃ (k|k) > 40 for comfirmed false track.

(40)

Here, x̃ (k|k) = x (k) − x̂ (k|k) is the state estimation
error of a confirmed track at time k and P0|0 is the
initial state covariance given in (32).

• If the probability of target existence of a track is lower
than the termination probability of target existence

Table 5 Target parameters

Parameter Value

Target1
[
1050 km; 0.15 km/s; 0.10472 rad; 8.72665 × 10−5 rad/s

]

Target2
[
1225 km;−0.14 km/s; 0.11472 rad; 7.72665 × 10−5 rad/s

]

Target3
[
1300 km; − 0.17 km/s; 0.14701 rad;−4.72665 × 10−5 rad/s

]

Target4
[
1050 km; 0.1 km/s; 0.18701 rad; 0 rad/s

]

PD 0.4

PG 0.9966
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(initial probability of target existence/5), the track is
terminated.

The simulation parameters used for MD-JITS and MD-
JIPDA are given in Table 6. For the fair comparison, the
confirmation probabilities of target existence (confirma-
tion PTE) of MD-JIPDA and MD-JITS are set to be the
same and the initial probabilities of target existence (ini-
tial PTE) of these two algorithms are adjusted so that
both of these two algorithms obtain the same number of
confirmed false tracks (CFT).
The simulation performances are given as in Fig. 3

through Fig. 5. Since the tracking performances for these
four targets are very similar, only performances for tar-
get 2 and target 3 are shown in this paper. The numbers
of the confirmed true tracks (CTTs) of both algorithms
in 250 Monte Carlo runs are shown in Fig. 3 for target
2 and target 3. The numbers of confirmed true tracks of
MD-JIPDA and MD-JITS are compared under the condi-
tion that both of the two trackers have the same number
of confirmed false tracks (= 9). These two figures indicate
that MD-JITS has a faster confirmation rate for obtain-
ing 250 confirmed true tracks (100 percent) compared to
MD-JIPDA.
Figure 4 depicts the RMSEs (root mean square errors)

in the range estimation for target 2 and target 3. In earlier
scans, there is a small difference between these two track-
ers, while both the trackers eventually maintain the same
level of estimation accuracy.
The RMSEs in the bearing of target 2 and target 3 are

shown in Fig. 5. The RMSEs in the bearing first increase
due to the bearing rate being set as 0 in the track ini-
tialization step, and so both of these two trackers need
some time to recover this parameter. Then, the estima-
tion error in the bearing estimation is reduced as the
number of scans increases. All these simulation results
demonstrate the benefits of usingMD-JITS.MD-JITS out-
performs MD-JIPDA, especially in terms of false track
discrimination, while MD-JITS maintains the same esti-
mation accuracy in terms of RMSE in both range and
bearing estimates.
This simulation is implemented on a 4.00 GHz, Intel

Core i7 PC and run with MATLAB. The CPU time per
each Monte Carlo run for MD-JIPDA and MD-JITS are
345.7360 s and 349.3160 s, respectively. The simulation

Table 6 Tracker parameters

MD-JIPDA MD-JITS

Initial PTE 0.000001 0.0017

Confirmation PTE 0.98 0.98

Termination PTE 0.000001/5 0.0017/5

Number of CFT 9 9

time is similar since most of the computational load is
assigned to the joint measurements-to-track assignment
part, which is identical for bothMD-JIPDA andMD-JITS.
Since MD-JITS needs to maintain track components, the
computational cost of MD-JITS is a little bit higher than
that of MD-JIPDA.
All the simulation results suggest that MD-JITS has bet-

ter true track confirmation performances compared to
MD-JIPDA. However, in order to achieve this benefit,
MD-JITS is more time-consuming.

4.2 Ameasure for the multi-path track discrimination
In the OTHR system, there is a special kind of tracks
called the multi-path track [39]. The multi-path track is
generated due to an incorrect combination between the
measurements and the propagation models at each scan.
The multi-path track is different from the false track since
the multi-path track uses target measurement to update
the track state and propagate parallel to the true target tra-
jectory, while the false track is updated by using the clutter
measurement and wanders away from the true target tra-
jectory. Thus, one of the tasks when using the OTHR
tracking system is to distinguish between the multi-path
track and the true track. The mechanism analysis details
are given in [26]. Following this, we propose a method for
both MD-JIPDA and MD-JITS to distinguish the multi-
path tracks.
The maximum number of measurement paths (models)

for each target is defined as L. Here, we define a variable
vector

[
atk,1, a

t
k,2, . . . , a

t
k,L

]
(atk,i ∈ {0, 1} , i = 1, 2, . . . L)

that is used to count the active paths at scan k for track t.
atk,i = 1 means that path i is active at scan k, and atk,i = 0
means that path i is not active at scan k. In MD-JIPDA,
the state estimation is generated by a Gaussian mixture
considering all of the data association events, where each
event represents the track state pdf for the track involved
in the event. Among all the data association events of a
track, the one with the highest data association probability
is selected and the measurement path models considered
in this data association event are counted. For example, in
the event that has the highest data association probability,
it turns out that z1 (k) and z3 (k) are considered as tar-
get detections. z1 (k) comes from path 1 and z3 (k) comes
from path 2; thus, the corresponding active model vector
is
[
atk,1, a

t
k,2, a

t
k,3, a

t
k,4

]
= [1, 1, 0, 0] (path 1 and path 2 are

active). As for MD-JITS, the measurement path models
considered in the component with the highest compo-
nent probability are counted. Then, after each simulation
run, we obtain a statistic of the active paths over all the
scans

[
at1, a

t
2, . . . , a

t
L
]
, where ati =∑k atk,i. The active path

statistic
[
at1, a

t
2, . . . , a

t
L
]
is used to distinguish between the

true track and themulti-path track. The proposedmethod
is used in Section 4 to discriminate the multi-path tracks.
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Multi-path tracks exist in this surveillance scenario, and
the trajectories for two tracks (one is the true track and
another is the multi-path track) for one simulation for
MD-JITS are shown in Fig. 6. In this figure, the track
T1 represents the true track for target 2 and T2 repre-
sents the multi-path track for target 2. In Table 7, the
estimated active model calculated by the method intro-
duced in this section is listed. From the table, we can

see that the active mode values of the multi-path track
are significantly different across the models, which can
be used to distinguish the multi-path tracks from the
true tracks. Given that PD = 0.4 for target measure-
ment from each path, the accumulated path statistic of
T1 in Table 7 shows almost 16 detections in 40 scans for
each measurement path. However, T2 does not show this
tendency.
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5 Conclusions
In this paper, in order to jointly resolve the measure-
ment origin uncertainty and measurement path model
uncertainty in the OTHR system, we developed the MD-
JITS filter. The main benefit of this approach is that
it generates all possible target-oriented measurement
combinations with validated measurements considering

possible measurement propagation models. The tar-
get state information contained in measurements are
more efficiently extracted due to one-to-many, track-to-
measurement cell association for this multiple detection
problem instead of the existing one-to-one associa-
tion for single detection. Compared to the widely used
PDA framework, MD-JITS is a multi-scan tracker that
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Table 7 Active model statistic

Track Active path statistic [EE, EF, FE, FF]

T1 [16, 16, 17, 15]

T2 [19, 13, 2, 0]

maintains information on the measurement cell history
and propagates based on the components, making it more
robust in harsh tracking environments.
To demonstrate the superiority of the proposed MD-

JITS filter, we compared it with the MD-JIPDA filter in
a MTT environment using the OTHR system. The simu-
lation results indicate that the new filter outperforms the
MD-JIPDA filter for true track confirmation and mainte-
nance and shows the same state estimation accuracy as the
MD-JIPDA filter.
There are several aspects worthy for the further work:

the method which considers the time varying heights of
the ionospheric layers can be inserted into the MD-JITS
structure; the more computationally efficient structure of
the MD-JITS algorithm is expected to be developed.
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