
RESEARCH Open Access

Robust adaptive algorithm for active
control of impulsive noise
Alina Mirza*, Ayesha Zeb and Shahzad Amin Sheikh

Abstract

Active noise control (ANC) systems employing adaptive filters suffer from stability issues in the presence of
impulsive noise. To overcome this limitation, new methods must be investigated. In this paper, we propose the
filtered-x state-space recursive least square (FxSSRLS), an SSRLS-based practical and adaptive algorithm for ANC.
Computer simulations are executed to verify the enhanced performance of the FxSSRLS algorithm. Symmetric
α-stable (SαS) distributions are used to model impulsive noise. The results show that the proposed FxSSRLS algorithm is
more robust in eliminating high-peaked impulses than the recently reported algorithms for ANC applications. Moreover,
the suggested solution exhibits better stability and faster convergence, without jeopardizing the performance of the
proposed solution in terms of residual noise suppression in the presence of impulses.
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1 Introduction
Active noise control (ANC) has been extensively used by
researchers over the last two decades, due to its superior
performance in canceling low-frequency noise as com-
pared to passive methods such as enclosures, barriers, and
silencers [1]. Impulsive noise is non-Gaussian in nature,
which means that it involves the frequent occurrence of
amplitudes that are larger than those found in Gaussian
noise. Hence, the information contained within the signal
is altered significantly. Power line communication inter-
ference, underwater acoustic signals, low-frequency at-
mospheric noise, noise generated by punching machines,
infusion pump sounds in hospitals, and all types of man-
made noise can be classified as impulsive noise [2–4].
Figure 1 shows the basic block diagram of a single-

channel feed-forward ANC system using an adaptive al-
gorithm. The system consists of two microphones and a
control system. The two microphones are used to obtain
reference noise x(n) and residual noise error signal e(n)
while the control system is used to generate an anti-
noise signal d(n). The output y(n) of the adaptive control
system drives the cancelation loudspeaker.

The biggest challenges incurred in the ANC of impulsive
noise are convergence and stability of the noise reduction
algorithms. Due to its simplicity and low computational
complexity, the most widely used algorithm for ANC is
filtered-x least mean square (FxLMS), which is designed to
minimize the variance of error signal [5]. However, since
the second-order moment does not exist in case of impul-
sive noise [6], it cannot be used for impulsive noise reduc-
tion. Sun et al. [7] proposed a modification in the FxLMS
algorithm which ensures stability of the system. They
applied fixed thresholds on the reference signal in order to
eliminate the effect of large amplitudes of impulses.
Instead of ignoring the samples as in [7], Akhtar and
Mitsuhashi [8] improved the Sun algorithm by replacing
impulses with new threshold values of error and reference
signals to achieve faster convergence along with enhanced
stability. The algorithms [5, 7, 8] are bound to update their
threshold parameters during runtime operation which
increases computational complexity. To reduce the
complexity, another normalized step-size FxLMS
(NSS-FxLMS) algorithm is reported in [9], which does
not need modified reference or error signal. And in conse-
quence to that, no selection of the threshold parameters
are required. Wu et al. in [10] suggested a new technique
(FxlogLMS) based on fair M-estimator that minimizes the
squared logarithmic transformations of error signal to
achieve robustness. However, the algorithm has the
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drawback of reaching a dead zone in the process of updat-
ing the filter coefficients. Bergamasco et al. [11] provided a
solution based on online estimation of the secondary path
for ANC applications. A modified Filtered x Least Mean
M-estimator (FxLMM) algorithm [12], established on a
two-part skewed triangular M-estimate, is presented to
achieve stability in FxLMM when exposed to high-peaked
impulses. Data reusing-based normalized step-size FxLMS
(DR-NSSFxLMS) algorithm, recommended in [13] for ac-
tive control of impulsive noise sources, improved the per-
formance but at the expense of increased computational
complexity. Similarly, the Filtered x Recursive Least Square
(FxRLS) algorithm [14] is used for impulsive noise control,
which gives faster convergence but at the cost of increased
computational complexity. The Gauss-Siedel algorithm [15]
and dichotomous coordinate descent (DCD) algorithm [16]
are used for recursive least square adaptive filtering that
gives reduced computational complexity. However, the
main problem with recursive least square (RLS) family algo-
rithms is the lack of robustness. To enhance the robustness

of the RLS algorithm, a modification, i.e., state-space RLS,
is presented in [17, 18]. State-space recursive least square
(SSRLS) exhibits excellent tracking performance due to its
model-dependent state-space formulation but has not been
tested in the ANC domain. Due to the presence of the sec-
ondary path s(z) in Fig. 2, SSRLS cannot be used in its exist-
ing form. Therefore, in this paper, we have modified the
SSRLS algorithm to track the filtered reference noise, mak-
ing it suitable for ANC applications. The SSRLS algorithm
is used in combination with filtered reference input and
hence named as the filtered-x SSRLS algorithm.
The rest of the paper is organized as follows: Section 2

presents the proposed algorithm along with its associated
schematics. Following this, the simulation results are shown
in Section 3. Finally, the conclusions are drawn in Section 4.

2 Proposed algorithm
Consider the unforced discrete time system

r nþ 1½ � ¼ Ar n½ � ð1Þ

Fig. 1 Basic principle of the feed-forward ANC system

Fig. 2 Block diagram of the ANC system for impulsive noise
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y n½ � ¼ Cr n½ � ð2Þ
where r is the process states and y is the output, while A
and C represent the system and the observation matrices,
respectively. We assume that the pair (A, C) is L-step ob-
servable and A is invertible. The state-space formulation
of SSRLS provides the designer with the freedom to
choose an appropriate model for the underlying environ-
ment. However, the reasons that SSRLS cannot be used in
its existing form for active noise control are as under:

1) SSRLS is designed for unforced system, i.e., system
without input.

2) ANC applications have a secondary path s(z)
following the adaptive filter w(z) as shown in Fig. 2.

3) Impulsive noise state-space model is unknown.

According to the required modifications in SSRLS for
the ANC domain, the block diagram of the proposed
algorithm is shown in Fig. 3.
In this figure, the reference noise signal vector is

x(n) = [x(n), x(n − 1)……. x(n − L + 1)] ′, where L is the
length of the reference noise. The desired signal d(n)
is calculated as

d nð Þ ¼ P nð Þ � x nð Þ where opeartor � represents the convolution

ð3Þ
The filtered reference noise x′(n) = [x′(n), x′(n − 1)…..

x′(n − L + 1)] ′ and the error signal E(n) measured by the
error microphone is

x′ nð Þ ¼ s
^
nð Þ � x nð Þ ð4Þ

E nð Þ ¼ d nð Þ−ys nð Þ ð5Þ
The s(n) and ŝ nð Þ are the impulse responses of the

secondary path and its estimate, respectively.

Due to the presence of the secondary path following
the adaptive filter, phase mismatch occurs between the
desired signal and output of the filter as shown in Fig. 3,
which consequently degrades the performance of the
ANC system. Thus, for incorporating the effect of the
secondary path, an identical filter is placed in the
reference signal path leading to input of the filter. The
modified output of the adaptive filter followed by the
secondary path is given by

ys nð Þ ¼ s nð Þ � �y nð Þ ð6Þ
The filtered reference noise signal x′(n) is passed to

the SSRLS adaptive filter block which computes �y� nð Þ.
The description of the parameters used for our modified
filtered-x state-space recursive least square (FxSSRLS)
algorithm are listed in Table 1.

Fig. 3 Block diagram of the proposed algorithm for the ANC system

Table 1 Detail of variables

Variables Description

P(z) Transfer function of the primary path

S(z) Transfer function of the secondary path

x(n) Reference impulsive noise

S’(z) Estimated transfer function of the secondary path

d(n) Desired signal

x’(n) Filtered reference noise

r̂ n½ � Estimated states of the adaptive filter

�r n½ � Predicted states of the adaptive filter

K[n] Gain of the adaptive filter

ε[n] Prediction error of the adaptive algorithm

δ Regularization parameter

λ Forgetting factor

�y nð Þ Predicted output of the adaptive filter

ys(n) Adaptive filter output followed by the secondary path

N Total samples
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Since the system given in (1) is for forced systems with
x ′ (n) being the input, the three special models of SSRLS
in [17, 18] are modified in Table 2.
After modification of the SSRLS models, the next object-

ive is to select the appropriate model for impulsive noise to
get the best match of the underlying environment with the
presumed model of SSRLS for achieving enhanced per-
formance of SSRLS. The exact model for impulsive noise
cannot be determined because of its random nature. As the
higher order models can better approximate the abrupt
changes in impulsive noise therefore, we have used an ac-
celeration model in our application. The choice has been
validated through extensive simulations. The proposed
algorithm is summarized below.

2.1 Performance analysis and computational complexity
For adaptive filters, when a new algorithm is developed,
it is important to carry out its performance analysis.
Although the FxLMS algorithm has been widely used for
the implementation of ANC applications, its conver-
gence analysis is still an active area of research [19–21].
The inclusion of the secondary path in FxLMS makes its
convergence analysis complex as compared to the
standard LMS algorithm. Various attempts on derivation
of theoretical convergence analysis for the FxLMS
algorithm have been made with different simplified
assumptions on inputs being single or multitonal, sta-
tionary or purely white, and secondary path being pure
delay or moving average model, etc. [22, 23].
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The analysis of the SSRLS algorithm for the standard
adaptive filter has been presented in [17, 18], which may
be extended to perform theoretical analysis of the Fx
version of the SSRLS algorithm for the ANC systems.
This paper develops a modified SSRLS (FxSSRLS)
algorithm for ANC of impulsive sources being modeled
as symmetric α-stable (SαS) distributions. For stable
distributions, the moments only exist for the order lesser
than the characteristic exponent [6], i.e., for impulsive
noise, second-order moments do not exist. The lower
order moments are more difficult to compute than the
second-order moments [24], which makes the theo-
retical analysis difficult, if not impossible. The non-
Gaussian signal processing is in general much more
complicated in terms of finding statistics than the
Gaussian signal processing. This may be the reason that
recent work on ANC of impulsive sources (being mod-
eled as stable process) does not include the theoretical
analysis, and in fact, the simulations have been used as a
major tool to demonstrate the effectiveness of the pro-
posal (see, for example, [7, 8, 11]). The interested reader
may also look into the recent works on ANC [25–31].
Though simulations do not prove, they do demonstrate
the effectiveness. In this paper, we have also used com-
puter simulations as the evaluation tool and it is
observed that the proposed algorithm outperforms the
existing algorithms.
Moreover, computational complexity of an algorithm is

usually of significant importance particularly in real-time
applications. The complexity of individual equations of

the proposed FxSSRLS algorithm is given in Table 3,
followed by the complexity analysis of other investigated
algorithms in Tables 4, 5, 6, and 7.
Here, L represents the total number of states in the

FxSSRLS algorithm while in other investigated algo-
rithms, it represents the number of filter coefficients
[17, 18]. M represents the secondary path, and N rep-
resents the data reuse order for the DR-NSSFxLMS
algorithm. The computational complexities along with
the memory requirements of the investigated algo-
rithms are summarized in Table 8. The memory of
the investigated algorithms is calculated using the
method given in [32].
Figure 4 shows the plots for the computational

complexities of the investigated algorithms. The pro-
posed FxSSRLS algorithm has high computational
complexity as compared to the FxLMS and FxRLS al-
gorithm family, which makes it costly for few applica-
tions. Nevertheless, in the practical applications where
stability and fast convergence is a matter of concern,
the implementation of FxSSRLS in the ANC system
can be easily handled by the latest DSPs.

3 Comparison with existing techniques and
simulation results
The ANC system for impulsive noise is implemented
using the MATLAB platform. The performance of the
proposed algorithm is compared with that of the already
reported adaptive algorithms in literature [5, 7–9, 13, 14].
The parameters used in simulating the ANC system are
tabularized below.
In our simulation setup, the SαS distributions are

used to model the statistical parameters of impulsive
noise [6]. The analytical form for probability density
functions (PDFs) of stable distributions does not
exist, so they are normally expressed by their charac-
teristic equations which is actually fourier transform
of its PDF.

Table 2 Modified state-space models of SSRLS

Sinusoidal model Velocity model Acceleration model

A ¼ cos wTð Þsin wTð Þ
−sin wTð Þcos wTð Þ

� �
A ¼ 1 T

0 1

� �
A ¼

1 T
T
2

2

0 1 T
0 0 1

2
6664

3
7775

C ¼ x′ nð Þ 0½ � C ¼ x′ nð Þ 0½ �

C ¼ x′ nð Þ 0 0½ �

Table 3 Complexity analysis of the proposed algorithm

Equations Operations * +/− ÷

1 x ′ðnÞ1�1 ¼ s ðnÞ1�M � xðnÞM�1 M M−1 –

2 r ½n�L�1 ¼ �r ½n�L�1 þ K ½n�L�1ε½n�1�1 L L –

3 Φ[n]LxL = λ(A− TLxLΦ[n − 1]LxL)A
− 1

LxL + CTLx1C1xL 2L3 + 2L2 2L3 − 2L2 1

4 K[n]Lx1 =Φ− 1(n)LxLCTLx1 L2 L2 − L –

5 �r ½n�L�1 ¼ AL�L r ½n�L�1 L2 L2 − L –

6 �y ½n�1�1 ¼ C1�L�r ½n�L�1 L L − 1 –

7 ysðnÞM�1 ¼ sðnÞM�1 � �yðnÞ1�1 M – –

8 ε[n]1x1 = y[n]1x1 − ys[n]1x1 – 1 –

Total 2L3 + 4L2 + 2L + 2M 2L3 +M 1
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Table 4 Complexity analysis of the FxLMS algorithm

Equations Operations * +/− ÷

1 x ′ðnÞ1�1 ¼ s ðnÞ1�M � xðnÞM�1 * x(n)Mx1 M M − 1 –

2 y(n)1x1 =wT(n)1xL * x(n)Lx1 L L − 1 –

3 w(n + 1)Lx1 = w(n)Lx1 − μ1x1 * e(n)1x1 * x′(n)1xL L + 1 L –

4 e(n)1x1 = d(n)1x1 − ys(n)1x1 – 1 –

5 ys(n)1x1 = s(n)1xM * y(n)Mx1 M M − 1 –

Total 2L + 2M + 1 2L + 2M − 2 –

Table 5 Complexity analysis of the NSS-FxLMS algorithm

Equations Operations * +/− ÷

1 x ′ðnÞ1�1 ¼ s ðnÞ1�M � xðnÞM�1 * x(n)Mx1 M M − 1 –

2 y(n)1x1 =wT(n)1xL * x(n)Lx1 L L − 1 –

3 w(n + 1)Lx1 = w(n)Lx1 − μ(n)1x1 * e(n)1x1 * x′(n)1xL L + 1 L –

4 μðnÞ1�1 ¼ μðnÞ1�1

―――――

δþxT ðnÞ1�L�xðnÞL�1þEðnÞ L L + 1 1

5 e(n)1x1 = d(n)1x1 − ys(n)1x1 – 1 –

6 ys(n)1x1 = s(n)1xM * y(n)Mx1 M M − 1 –

7 E(n)1x1 = λE(n − 1)1x1 + (1 − λ)E2(n)1x1 3 2

Total 3L + 2M + 4 3L + 2M + 1 1

Table 6 Complexity analysis of the FxRLS algorithm

Equations Operations * +/− ÷

1 x ′ðnÞ1�1 ¼ s ðnÞ1�M � xðnÞM�1 * x(n)Mx1 M M − 1 –

2 y(n)1x1 =wT(n)1xL * x(n)Lx1 L L − 1 –

3 w(n + 1)Lx1 = w(n)Lx1 + K(n)LxL * e(n)1x1 L L –

4 K nð ÞLx1 ¼ π nð ÞLx1
λþx′ nð ÞLx1�π nð ÞLx1

2L L 1

5 π(n)Lx1 = p(n − 1)LxL * x ′ (n)Lx1 L2 L2 − L

6 p(n)LxL = λ− 1 * p(n − 1)LxL − λ− 1 * K(n)Lx1 * x ' (n)1xL * p(n − 1)LxL 3L2 2L2 − L 1

7 e(n)1x1 = d(n)1x1 − ys(n)1x1 – 1 –

8 ys(n)1x1 = s(n)1xM * y(n)Mx1 M M − 1 –

Total 4L2 + 4L + 2M 3L2 + L + 2M − 2 2

Table 7 Complexity analysis of the DR-NSSFxLMS algorithm

Equations Operations * +/− ÷

1 x ′ðnÞ1�1 ¼ s ðnÞ1�M � xðnÞM�1 * x(n)Mx1 M M − 1 –

2 y(n)1x1 =wT(n)1xL * x(n)Lx1 L L − 1 –

3 d1(n)1x1 = e(n)1x1 + s(n)1xM * y(n)Mx1 M M –

4 e1ðnÞ1�1 ¼ d1ðnÞ1�1−w
T
1ðnÞ1�L � x ′ðnÞL�1 * x ′(n)Lx1 L L –

5 Compute w1(n + 1)Lx1 using the DR algorithm in Table 2 from [25] N(3L + 4) N(3L + 2) –

Total 2L + 2M + N(3L + 4) 2L + 2M − 2 + N(3L + 2) –
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φ tð Þ ¼ e− tj jα ð7Þ
Some PDFs for SαS distributions are shown in

Fig. 5. The SαS distributions have a characteristic ex-
ponent parameter α (0 < α < 2), which controls the
spread of the PDF, i.e., a smaller value of α indicates
that noise will be more impulsive with a heavier tail.

For the stable distributions, α ranges between 0 and
2. It is characterized as normal distribution for α = 2,
while the distribution is Cauchy for α = 1. In Fig. 6,
impulsive noise generated by the standard SαS pro-
cess with α = 1.65 is shown while the parameters used
for simulating the impulsive noise are mentioned in
Table 9.

Table 8 Performance analysis of the investigated algorithms

Algorithm Complexity Memory

Additions Multiplications

FxLMS 2L + 2M − 2 2L + 2M + 1 2(L +M)

NSS-FxLMS 3L + 2M + 1 3L + 2M + 4 2(L +M)

DR-NSSFxLMS 2L + 2M − 2 + N(3L + 2) 2L + 2M + N(3L + 4) (N + 2)L + 3M

FxRLS 3L2 + L + 2M − 2 4L2 + 4L + 2M 3L + 2M

Proposed FxSSRLS 2L3 +M 2L3 + 4L2 + 2L + 2M 4L + 2M

Fig. 4 Complexity analysis of the investigated algorithms. a Number of additions. b Number of multiplications
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The primary noise d(n) for α = 1.65 picked by the
reference microphone is depicted in Fig. 7.
For the simplicity of our simulations, we have made

an assumption that the estimated secondary path
model ŝ zð Þ is the same as s(z) [13, 25, 30, 31]. The
numeric values of the coefficients of the primary and
secondary acoustic paths are taken from the data set
given in [1]. The frequency response comprising of
magnitude and phase of both path filters are depicted
in Fig. 8.
The performance metric used in this research for com-

parison of the studied algorithms is mean noise reduc-
tion. It is calculated as

MNR nð Þ ¼ E
Ae nð Þ
Ad nð Þ

� �
ð8Þ

Ae nð Þ ¼ λAe n−1ð Þ þ 1−λð Þ e nð Þj j ð9Þ
Ad nð Þ ¼ λAd n−1ð Þ þ 1−λð Þ d nð Þj j ð10Þ

where Ae(n) and Ad(n) are the estimates of the absolute
value of the residual error and disturbance signal,
respectively.
In this section, we have validated the performance of

our proposed algorithm for ANC of impulsive noise. The
impulses for the research are generated by the symmetric
alpha-stable model by considering α = 1.85, α = 1.65, and
α = 1.45, respectively, which corresponds to a small, mild,
and heavy impulsiveness. Extensive simulations are carried
out to find the optimum values of controlling the parame-
ters of the discussed algorithms. The detailed simulation
results for the step-size parameter of the NSS-FxLMS and
DR-NSSFxLMS algorithms for α = 1.65 are illustrated in

Fig. 5 PDFs of the standard SαS process with different values of α

Fig. 6 Impulsive noise generated by the standard SαS process with α = 1.65
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Fig. 9. It can be observed from Fig. 9 a, b that the
optimum step-size value for both algorithms is 5e−2.
Similarly, the effect of the regularization parameter

delta (δ) of the FxRLS algorithm is shown in Fig. 10 for
α = 1.65. The parameter δ depends on the signal-to-
noise ratio (SNR) [5], i.e., the greater the value of the
SNR, the smaller the value of delta is selected for
better performance of algorithms and vice versa. The
optimum value selected for further simulation is
100,000 for α = 1.65.
Figure 11 depicts the convergence curves of the most

widely used adaptive algorithms in the ANC domain for
α = 1.65. The optimum step sizes for the FxLMS, Sun,
modified Sun, and Akhtar algorithms used in this
simulation are 1e−3, 5e−6, 5e−5, and 5e−5, res-
pectively. It can be seen that among the investigated
algorithms of the LMS family, the NSS-FxLMS and
DR-NSSFxLMS algorithms converge quickly after
1000 iterations and give good noise reduction by
achieving the lowest mean noise reduction (MNR) as
compared to the other investigated algorithms.

Similarly, the DR-NSSFxLMS algorithm is compara-
tively less affected by the occurrence of impulsive
noise at different iterations and thus exhibits better
stability. Therefore, we have selected the NSS-FxLMS
and DR-NSSFxLMS algorithms for further compari-
son with our proposed FxSSRLS algorithm which can
be visualized in Fig. 12.
It can be noticed from Fig. 12 that the NSS-FxLMS

and DR-NSSFxLMS algorithms give slow convergence
as compared to the FxRLS and FxSSRLS algorithms
that achieve a steady state value at about 2000 and
500 iterations, respectively. The convergence curves
of the FxSSRLS and FxRLS algorithms almost overlap
after 3500 iterations. However, when an impulse is
encountered at about 800 iterations, the FxRLS
algorithm exhibits a sudden increase in MNR while
the FxSSRLS algorithm is robust enough to remain
unaffected.
Similarly, other simulation cases with SαS impulsive

noises of α = 1.45 and 1.85 were conducted to validate
the effectiveness of the proposed FxSSRLS algorithm.

Table 9 Parameter set for the proposed technique simulation

ANC system Impulsive noise

Parameters Symbols Values Parameters Symbols Value

Primary path tap size L 256 Total samples N 10,000

Secondary path tap size M 128 Total realizations Avg 1

Adaptive filter tap size Lw 192 Characteristic exponent α 1.65

DR-NSSFxLMS algorithm step size �μ 5e−2 Scale parameter γ 1

NSS-FxLMS algorithm step size �μ 5e−2 Location parameter C 0

RLS forgetting factor λ 0.99 Skewness parameter δ 0

SSRLS forgetting factor λ 1

Fig. 7 Primary noise signal
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Fig. 9 Effect of varying step sizes on the performance of a NSS-FxLMS and b DR-NSSFxLMS for α = 1.65

Fig. 8 Frequency response of the acoustic primary and secondary paths
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Fig. 11 Convergence curve comparison of various algorithms with α = 1.65

Fig. 12 Comparison of MNR of the FxSSRLS algorithm with various algorithms with α = 1.65

Fig. 10 Performance comparison of FxRLS with varying delta for α = 1.65
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It is noticed that the proposed FxSSRLS algorithm
demonstrates its improved performance for other
selected values of impulsive noise over the investi-
gated algorithms. As shown in Figs. 13 and 14, the
steady state performance of the FxRLS and proposed
FxSSRLS algorithms is better than that of the NSS-
FxLMS and DR-NSSFxLMS algorithms. Also, the
proposed FxSSRLS can yield improved convergence
rate and robustness even in the presence of large
impulses than that of the FxRLS, NSS-FxLMS, and
DR-NSSFxLMS algorithms, thus making our pro-
posed solution an excellent choice for mitigating the
influence of impulses in ANC applications.

4 Conclusions
In this paper, we have analyzed non-Gaussian im-
pulsive noise in the ANC domain. The adaptive
algorithms employed in ANC applications become
unstable and lack robustness in the presence of

impulsive noise. To overcome this limitation in ANC
applications, a new algorithm FxSSRLS has been
developed and presented in this paper. Due to the
recursive parameters of the proposed adaptive algo-
rithm, the reduction in impulsive noise has been
achieved, which has been further enhanced by the
state-space formulation of the SSRLS models. To
validate this improved performance of the newly sug-
gested solution, extensive numerical simulations have
been carried out. The results show that with the use
of the presented algorithm for ANC, the large ampli-
tude impulses have been significantly reduced. More-
over, the suggested algorithm for ANC applications
outperforms the existing algorithms in terms of mean
noise reduction, convergence, and stability. However,
this improved performance has been achieved at the
cost of slight increase in computational complexity.
In applications where stability and fast convergence is
a matter of concern, the little price paid in terms of
computational complexity can be ignored.

Fig. 14 Comparison of MNR of the FxSSRLS algorithm with various algorithms with α = 1.45

Fig. 13 Comparison of MNR of the FxSSRLS algorithm with various algorithms with α = 1.85
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