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Abstract

In this paper, a new adaptive robustified filter algorithm of recursive weighted least squares with combined scale
and variable forgetting factors for time-varying parameters estimation in non-stationary and impulsive noise
environments has been proposed. To reduce the effect of impulsive noise, whether this situation is stationary or
not, the proposed adaptive robustified approach extends the concept of approximate maximum likelihood robust
estimation, the so-called M robust estimation, to the estimation of both filter parameters and noise variance
simultaneously. The application of variable forgetting factor, calculated adaptively with respect to the robustified
prediction error criterion, provides the estimation of time-varying filter parameters under a stochastic environment
with possible impulsive noise. The feasibility of the proposed approach is analysed in a system identification
scenario using finite impulse response (FIR) filter applications.

Keywords: Adaptive filtering, FIR filtering, M robust parameter estimation, Recursive weighted least squares,
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1 Introduction
Adaptive filtering represents a common tool in signal
processing and control applications [1–6]. An overview of
methods for recursive parameter estimation in adaptive
filtering is given in the literature [5–7]. There is, unfortu-
nately, no recursive parameter estimation that is uniformly
best. Recursive least squares (RLS) algorithm has been
applied commonly in adaptive filtering and system identi-
fication, since it has good convergence and provides for
small estimation error in stationary situations and under
assumption that the underlying noise is normal [5–7]. In
this context, however, two problems arise.
First, in the case of time varying parameters, forgetting

factor (FF) can be used to generate only a finite memory,
in order to track parameter changes [7, 8]. For a value of
FF smaller than one, one can estimate the trend of non-
stationarity very fast but with higher estimate variance,
owing to smaller memory length. On the other hand,
with a FF close to unity, the algorithm has wider
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memory length and needs rather a relatively long time
to estimate the unknown coefficients. However, these
coefficients are estimated accurately in stationary situa-
tions. Moreover, RLS with fixed value of FF (FFF) is not
effective for tracking time-varying parameters with large
variations. This makes it necessary to incorporate an
adaptive mechanism in the estimator, resulting in the
concept of variable FF (VFF). Several adaptation proce-
dures have been discussed by changing the memory
length of signal [7–13]. In particular, the methods re-
ferred as the parallel adaptation RLS algorithm (PA-RLS)
and extended prediction error RLS-based algorithm
(EPE-RLS) have a good adaptability in non-stationary sit-
uations [9–13]. In addition, both methods assume that
the variance of interfering noise is known in advance.
The second problem arises in an application where the

required filter output is contaminated by heavy tailed
distributed disturbance, generating outliers [14–20].
Namely, the classical estimation algorithms optimise the
sum of squared prediction errors (residuals) and, as a
consequence, give the same weights to error signals,
yielding a RLS type procedure. However, an adequate in-
formation about the statistics of additive noise is not
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Fig. 1 System identification configuration
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included in RLS computation. Possible approaches to ro-
bust system identification introduce a non-linear map-
ping of prediction errors. Although in the statistical
literature, there are few approaches to robust parameter
estimation, M robust approach (the symbol M means
approximate maximum-likelihood) is emphasised, due to
its simplicity for practical workers [15–23]. Robustified
RLS algorithm, based on M robust principle, the so-
called robustified recursive least square method (RRLS),
uses the sum of weighted prediction errors as the per-
formance index, where the weights are functions of pre-
diction residuals [24–26]. However, M estimators
provide for the solutions of the location parameters esti-
mation problem [21–23]. As a consequence, in a situ-
ation of non-stationary noise signal with the time-
varying variance, their efficiency should be bad [7, 24].
Therefore, a significant part of RRLS algorithm is the es-
timation of unknown noise variance or the so-called
scale factor [15, 16, 24, 26]. A suitable practical robust
solution is the median estimator based on absolute me-
dian deviations, named median of absolute median devi-
ations (MAD) estimator [21–23]. However, RRLS
algorithm of M robust type using MAD scale factor esti-
mation is also found to be non-effective for tracking of
time-varying parameters [7, 11, 24, 26]. For these rea-
sons, neither of the stated algorithms alone can solve the
both mentioned problems.
In this article, we design a new robust adaptive finite

impulse response (FIR) system for dealing with these
problems simultaneously. To alleviate the effects of non-
stationary and impulsive noise, this algorithm extends
the concept of M robust estimation to adaptive M ro-
bust algorithm with the estimation of both filter parame-
ters and unknown noise variance simultaneously. The
estimated noise variance, together with the robustified
extended prediction error criterion, calculated on the
sliding data frame of proper length, is used to define a
suitable robust discrimination function, as a normalised
measure of signal non-stationarity. In addition, the VFF
is introduced by the linear mapping of robust discrimin-
ation function. This, in turn, enables the tacking of
time-varying filter parameter under the impulsive noise.
Simulation results demonstrate the effectiveness of the
proposed algorithm, by the comparison with the conven-
tional recursive least squares (RLS) using VFF based on
the standard EPE criterion, and the adaptive M robust-
based algorithm with only scale factor (RRLS).

2 Problem formulation
A commonly used adaptive FIR filtering scenario,
expressed as a system identification problem, is pre-
sented in Fig. 1. Here, x(k) is the random input signal,
d(k) is the required filter output, n(k) is the noise or dis-
turbance and e(k) is the prediction error or residual. The
filter parameter vector, W(k), can be estimated recur-
sively by optimising the prespecified criterion. The RLS
algorithm with FF approaches the problem of estimation
of non-stationary (time-varying) signal model parame-
ters by minimising the sum of exponentially weighted
squared residuals [5–7, 25, 26]. On the other hand, ro-
bust estimates are insensitive to outliers, but are inher-
ently non-linear. Moreover, most robust regression
procedures are minimization problems [15–26]. Specific-
ally, M robust estimates are derived as minimization of
the sum of weighted residuals, instead of the quadratic
performance criterion in the classical RLS computation
[21–23]. To combine these two approaches, let us define
a new criterion as the sum of weighted residuals

Jk W; sð Þ ¼ 1
k

Xk
i¼1

ρk−iφ
e i;Wð Þ

s

� �
ð1Þ

where the prediction error (residual) signal is given by

e i;Wð Þ ¼ d ið Þ−XT ið ÞW ð2Þ
with the regression vector, X(i), and the parameter vec-
tor, W, being defined by

X kð Þ ¼ x kð Þ; x k−1ð Þ; … ; x k−nþ 1ð Þ½ �T ; W
¼ w1;w2;⋯;wn½ �T ð3Þ

Here, the quantities s and ρ represent the scale and
forgetting factors, respectively. Moreover, W is the un-
known filter parameter vector that has to be estimated.
In addition, φ(⋅) is a robust score, or loss, function,
which has to suppress the influence of impulsive noise,
generating outliers. Having in mind the importance of
reducing the influence of outliers contaminating the
Gaussian noise samples, φ(⋅) should be similar to a
quadratic function in the middle, but it has to increase
more slowly in the tails than the quadratic one. In
addition, its first derivative, ψ(⋅) = φ′(⋅), the so-called
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influence function in the statistical literatures, has to be
bounded and continuous [21–23, 25, 26]. The first prop-
erty provides that single outlier will not have a signifi-
cant influence, while the second one provides that
patchy or grouped outliers will not have a big impact. A
possible choice, for example, is the Huber's robust loss
function, with the corresponding influence function [21].

ψ xð Þ ¼ min
xj j
σ2

;
Δ

σ

� �
sgn xð Þ ð4Þ

Here, sgn(⋅) is the signum function, σ is the noise
standard deviation and Δ is a free parameter. This par-
ameter can be adopted in such a way to provide for re-
quired efficiency robustness under the zero-mean white
normal noise model [21–23]. The non-linear transform-
ation of data based on (4) is known in the statistical lit-
erature as winsorization [21–23].
Taking the first partial derivate of (1) with respect to

the elements of W in (3), say Wj, j = 1, 2,…, n, being
equal to zero, we see that the minimization of (1) re-
duces to finding the solution of n non-linear algebraic
relations:

Xk
i¼1

ρk−iXijψ
e i;Wð Þ

s

� �
¼ 0; j ¼ 1; 2;…; n ð5Þ

where Xij is the element in the jth column of the row
vector XT(i) in (3), while ψ(⋅) is the first derivative of
φ(⋅), ψ(⋅) = φ'(⋅). Of course, for non-linear ψ(⋅), (5) must
be solved by iterative numerical methods, and two
suitable procedures are Newton-Raphson’s and Ditter’s
algorithms, respectively, [27, 28]. Here, a slightly differ-
ent approach is proposed using a weighted least-squares
(WLS) approximation of (5). In this approach, the rela-
tion (5) is replaced by the following approximation

Xk
i¼1

Xij β k; ið Þe i;Wð Þ≈0; j ¼ 1; 2;…; n ð6Þ

where the exponentially weighted robust term is given
by

β k; ið Þ ¼ ρk−iω i;W0ð Þ ð7Þ

while its robust part is defined by

ω i;W0ð Þ ¼
ψ

e i;W0ð Þ
s

� �
e i;W0ð Þ

s

if d ið Þ≠XT ið ÞW0 and s≠0

1 if d ið Þ ¼ XT ið ÞW0 and=or s ¼ 0

8>>>><
>>>>:

ð8Þ

Here, W0 is an initial estimate of the parameter vector,
W, which can be obtained, for example, by using the
conventional non-recursive LS estimator [5, 25, 26]. The
solution of (6), say Ŵ(k), represents a one-step non-
recursive suboptimal M robust estimate of W in (3).
Application of the non-recursive M robust scheme

(6)–(8) requires the non-linear residual transformation,
ψ(⋅), and scaling factor, s, to be defined in advance. But,
in general, the standard deviation, σ, in (4) is not known
beforehand and has to be estimated somehow. A com-
monly used robust estimate of σ in the statistical litera-
ture is the median scheme, based on the absolute
median deviations [21–23]

s ¼ median ei−median eið Þj j
0:6745

; i ¼ 1; 2;…; L ð9Þ

where L denotes the length of sliding data frame. The
divisor 0.6745 in (8) is used because the MAD scale fac-
tor estimate, s, is approximately equal to the noise
standard deviation, σ, if the sample size, L, is large and if
samples actually arise from a normal distribution [21].
Moreover, because s ≈ σ, Δ is usually taken to be 1.5
[21–23]. This choice will produce much better results,
in comparison to the RLS method, when the corre-
sponding noise probability density function (pdf ) has
heavier tails than the Gaussian one. Furthermore, it will
remain good efficiency of RLS when the pdf is exactly
normal [21–23].
The weighting term, ω, in (8) is not strictly related to

the popular robust MAD estimation of the scale factor,
s. This estimate guarantees that s ≠ 0, but in the general
case, a scale factor estimator may not guarantee that the
estimate, s, should become equal to zero. This is the rea-
son why the condition s = 0 is included in (8). Particu-
larly, the application of a recursive robustified scale
factor estimation requires the initial guess, s(0), to be
given beforehand. A common choice is s(0) = 0, but in
the first few steps, the obtained estimate of scale factor
can be equal to zero, so that the unit value of ω in (8)
has to be chosen.
The proposed suboptimal M robust estimator (6)–(8) is

numerically simpler than the ones oriented towards solv-
ing the non-linear optimization problem in (5), but it still
remains complex computation. Namely, this method does
not have an attractive recursive form and, therefore, is not
computationally feasible as the RLS type estimators.
Moreover, M robust approach is conservative and may de-
grade without further adaptation [15–20]. Starting from
the proposed non-recursive M robust estimator (6)–(8), a
simple and practically applicable recursive M robust par-
ameter estimation procedure with both adaptive robusti-
fied scale and variable forgetting factors is derived in the
next paragraph. Some alternative approaches for the scale
factor adaptation can be found in the literature [15, 16,
24]. Moreover, the application of the EPE-based VFF for
solving different practical problems is also discussed in
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the literature [12, 17–20, 29, 30]. However, similarly to
sample mean and sample variance, the standard EPE ap-
proach is non-robust towards outliers [21–23]. Therefore,
in the next chapter, an alternative M robust approach for
generating VFF adaptively is proposed.

3 A new recursive robust parameter estimation
algorithm with combined scale and forgetting
factors
The solution of (6) can be also represented in the com-
putationally more feasible recursive form, using the well-
known algebraic manipulations (for more details, see
Appendix 1), [25, 26]. This results in the parameter esti-
mation algorithm

Ŵ kð Þ ¼ Ŵ k−1ð Þ þ K kð Þe k; Ŵ k−1ð Þ� � ð10Þ

e k; Ŵ k−1ð Þ� � ¼ d kð Þ−XT kð ÞŴ k−1ð Þ ð11Þ

K kð Þ ¼ M kð ÞX kð Þω kð Þ
1þ XT kð ÞM kð ÞX kð Þω kð Þ ; M kð Þ

¼ 1
ρ
P k−1ð Þ ð12Þ

P kð Þ ¼ I−K kð ÞXT kð Þ� �
M kð Þ ð13Þ

Here, the term ω(k) is defined by (8), when the initial
estimate, W0, is replaced by the preceding estimate,
Ŵ(k − 1), while the prediction error (residual) in (11) is
given by (2), when the unknown parameter vector, W, is
substituted by Ŵ(k − 1).
Application of recursive M robust estimation algo-

rithm (10)–(13) assumes the non-linear transformation,
ψ(⋅) in (4), as well as the scale factor, s in (8), and the
forgetting factor, ρ in (12), to be known. Since the scale
factor, s, represents an estimate of the unknown noise
standard deviation, σ, and the argument of non-linearity
ψ(⋅) in (8) is the normalised residual, the non-linear
transformation ψ(⋅) in (8) is defined by (4) with the unit
variance, i.e. σ = 1. Particularly, if one choses the linear
transformation in (8), ψ(x) = x, this results in the unit
weight, ω(k) = 1 in (8), and algorithm (10)–(13) reduce
to the standard RLS algorithm with FF defined by (10)
and (11), where the corresponding matrices, instead of
(12) and (13), are given by [5, 25, 26]

K kð Þ ¼ P k−1ð ÞX kð Þ ρþ XT kð ÞP k−1ð ÞX kð Þ� 	−1 ð14Þ

P kð Þ ¼ 1
ρ

P k−1ð Þ−P k−1ð ÞX kð ÞXT kð ÞP k−1ð Þ
ρþ XT kð ÞP k−1ð ÞX kð Þ

� �
ð15Þ

In addition, if one defines the Huber’s non-linearity in
(4) by using the non-normalised argument on the right-
hand side of (4), yielding
ψ xð Þ ¼ min xj j;Δσð Þsign xð Þ ð16Þ
and approximate the first derivate, ψ′(⋅), by the weighted
term ω(x) = ψ(x)/x in (8), together with the application
of the winsorised residual, ψ(e), instead of original one,
e, in the parameter update equation (10), algorithm
(10)–(13) can be rewritten as

Ŵ kð Þ ¼ Ŵ k−1ð Þ þ P kð ÞX kð Þψ e kð Þ½ � ð17Þ

P kð Þ ¼ P k−1ð Þ−P k−1ð ÞX kð ÞXT kð ÞP k−1ð Þψ′ e kð Þ½ �
1þ ψ′ e kð Þ½ �XT kð ÞP k−1ð ÞX k−1ð Þ

ð18Þ
where the prediction error (residual), e,is given by (11).
The obtained algorithm in (3), (11), (16)–(18), repre-

sents the standard M robust RLS (RRLS), where the
common approach is to estimate the unknown noise
standard deviation, σ, by the MAD based scale factor in
(9). This algorithm can be exactly derived by applying
the Newton-Raphson iterative method for solving the
non-linear optimization problem in (1), with the unit pa-
rameters s and ρ, respectively. Here, the non-linearity, ψ,
in (16) represents the first derivative of the loss function,
φ, in (1) [24–26]. It should be noted that the parameter
update equation in (17) is non-linear, in contrast to the
linear parameter update equation in (10). However, both
procedures for generating the weighting matrix se-
quences, P(k), in (12), (13), and (18), respectively, are
non-linear. Later, it will be shown that the scheme for
generating the weighting matrix is very important for
achieving the practical robustness.
The proposed parameter estimation algorithm

(10)–(13) are derived from the M robust concept that is
conservative, so the quality of parameter estimates may
degrade without further adaptations of s and ρ variables.

3.1 Adaptive robustified estimation of scale factor
As an adaptive robust alternative to the non-recursive
robust MAD estimate in (9), the scale factor, s, can be
estimated simultaneously with the filter parameter vec-
tor, W. Namely, if �p nð Þ is the pdf of zero-mean Gaussian
white noise, n(k), in Fig. 1, with the unit variance, then
the pdf of noise with some variance, σ2, is given by p nð Þ
¼ �p n=σð Þ=σ . Thus, one can define an auxiliary perform-
ance index, in the form of the conditional maximum-
likelihood (ML) criterion, [25, 26].

J σ=Wð Þ ¼ E F
e k;Wð Þ

σ

� �
=W

� �
; F nð Þ

¼ − ln p nð Þð Þ ð19Þ
where e(⋅) is the prediction error signal in (11) and E{⋅/
W} represents the conditional mathematical expectation
when the parameter vector, W, is given. Furthermore,
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one can use the Newton’s stochastic algorithm for recur-
sive minimization of the performance index in (19) [25,
26].

s kð Þ ¼ s k−1ð Þ− k
∂2J s k−1ð Þ=Ŵ k−1ð Þ� �

∂σ2

" #−1
k
∂J s k−1ð Þ=Ŵ k−1ð Þ� �

∂σ

" #

ð20Þ
where Ŵ(k) and s(k) are the corresponding estimates, at
time instant k, of W and σ, respectively. In addition, let
us introduce the empirical approximation of the criter-
ion (19) as

Jk s=Ŵ
� � ¼ 1

k

Xk
i¼1

F
e i; Ŵ
� �
s

 !
ð21Þ

Under certain conditions, with k increasing, Jk in (21)
approaches to J in (19). Moreover, since p nð Þ ¼ �p n=σð Þ=
σ , one obtains from (19)

F nð Þ ¼ ln σð Þ þ f
n
σ


 �
; f

n
σ


 �
¼ − ln �p

n
σ


 �
 �
ð22Þ

In addition, with large k and by using the optimality
conditions, yielding

∂J s=Ŵ
� �
∂σ

≈
∂Jk s=Ŵ
� �
∂s

;
∂2J s=Ŵ
� �
∂σ2

≈
∂2J k s=Ŵ

� �
∂s2

; J k−1 s=Ŵ
� �

≈0 ð23Þ

one obtains from (20)–(23) an approximate optimal so-
lution in the recursive form

ks kð Þ ¼ k−1ð Þs k−1ð Þ
þ e k; Ŵ k−1ð Þ� �

g e k; Ŵ k−1ð Þ� �
=s k−1ð Þ� �

ð24Þ
or equivalently

ks2 kð Þ ¼ k−1ð Þs2 k−1ð Þ þ e2 k; Ŵ k−1ð Þ� �
ω kð Þ ð25Þ

Here, the robust weighting term, ω(k), is defined by
(8), when ψ function is changed by g function, while W0

is substituted by Ŵ(k − 1) and s by s(k − 1), respectively.
As mentioned before, in M robust estimation, we wish
to design estimators that are not only quite efficient in
the situations when the underlying noise pdf is normal
but also remain high efficiency in situations when this
pdf possesses longer tails than the normal one, generating
the outliers [21–27]. Thus, we can define M robust esti-
mator not exactly as the ML estimator based on the stand-
ard normal pdf �p nð Þ , with zero-mean and unit variance,
but ML estimator corresponding to a pdf �p nð Þ that is
similar to the standard Gaussian pdf in the middle, but
has heavier tails than the normal one. This corresponds,
for example, to the double exponential, or the Laplace pdf.
Such choice corresponds further to the f(⋅) function in
(22) being equal to the Huber’s M robust score function,
φ(⋅), in (1), with the first derivative, ψ(⋅) = φ ' (⋅), given by
(4), [21–23]. Thus, in this case, g(⋅) = f ' (⋅) reduces to the
ψ -function in (4), for which the noise standard deviation,
σ, is equal to one. In addition, ω(k) in (25) is given by (8),
with W0 and s being equal to Ŵ(k − 1) and s(k − 1), re-
spectively. Furthermore, when the pdf, �p nð Þ, is the stand-
ard normal, the influence function g(⋅) is linear and the
weighting term ω(k) in (25) becomes equal to one [13].
Finally, the application of the recursive algorithm (24) or
(25) requires the initial guess s(0) to be given beforehand,
as it is done in Eq. (37).
The net effect is to decrease the consequence of large

errors, named outliers. The estimator is then called ro-
bust. In algorithm (24) or (25), this goal is achieved
through the weighting term in (8), where ψ is the satur-
ation type non-linearity in (4). Thus, the function ψ(⋅) is
linear for small and moderate arguments, but increases
more slowly than the liner one for large arguments. Fur-
thermore, in the normal case without outliers, one
should want most of the arguments of the ψ(⋅) function
to satisfy the inequality |e(i,W0)| ≤ Δs, because then
ψ(e(i,W0)/s) = e(i,W0)/s and ω in (8) is equal to unity.
On the other hand, for large arguments satisfying |e(i,
W0)| > Δs, the weighting term in (8) decreases monoton-
ously with the argument absolute value and, as a conse-
quence, reduces the influence of outliers.
For the scale estimation problem in question, the un-

known noise variance is assumed to be constant. There-
fore, after time increases, the derived recursive estimates
(24) or (25) converge towards the constant value. Equa-
tions (24) and (25) represent the linear combination of
the previous estimate and the robustly weighted current
estimation error. The coefficients in the linear combin-
ation, 1 − 1/k and 1/k, depend on the time step, k. Thus,
as k increases, these coefficients converge towards unity
and zero, respectively. As a consequence, after a suffi-
ciently large time step, k, the correcting term in (24) and
(25) that is multiplied by the coefficient 1/k is close to
zero, so that the proposed algorithm eliminates the ef-
fect of possible outliers.
Moreover, in many practical problems, it is of interest

to consider the situation in which the noise variance is
time-varying. However, due to the described saturation
effect, the proposed estimator cannot catch the changes.
These situations can be covered by simple extension of
Eqs. (24) and (25). A simple but efficient solution can be
obtained by resetting. The forgetting or discounting fac-
tor, 1/k, in (24) and (25) is then periodically reset to the
unit value, for example each 100 steps, and the initial
guess, s(0), has to be set to the previous estimate.

3.2 Strategy for choosing adaptive robustifying variable
forgetting factor
As mentioned before, the value of forgetting factor FF, ρ,
belongs to the set of real numbers (0,1], as it has to give
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more heavily weights to the current samples, in order to
provide for tracking of time-varying filter parameters. If
a value of FF, ρ, is close to one, it needs rather long time
to find the true coefficients. However, the parameter es-
timates should be with high quality in stationary situa-
tions. The speed of adaptation can be controlled by the
asymptotic memory length, defined by [7, 25].

N ¼ 1
1−ρ

ð26Þ

Thus, it follows from (26) that progressively smaller
values of FF, ρ, provides an estimation procedure with
smaller size of data window, what is useful in non-
stationary applications.
If a signal is synthetised of sub-signals having different

lengths of memory, changing between a minimum value,
Nmin, and a maximum one, Nmax, the time-varying signal
model coefficients can be estimated by using Eqs. (4),
(8), (10–13), and (25), assigning to each sub-signal the
corresponding FF, ρ, from (26), varying between ρmin

and ρmax. However, in practice, the memory length and
the starting points of sub-signals are unknown in ad-
vance. Thus, one has to find the degree of signal non-
stationarity, in order to generate the value of FF, ρ, in
the next step. Although many adaptation procedures
have been analysed by changing the memory length, the
method using the extended prediction error (EPE) criter-
ion is emphasised, since it involves rather easy computa-
tion, and has good adaptability in non-stationary
situations, and a low variance in the stationary one [10,
12, 13]. Particularly, the extended prediction error criter-
ion, as a local measure of signal non-stationarity, is
defined by [10]:

E kð Þ ¼ 1
L

Xk
i¼k−Lþ1

e2 i; Ŵ i−1ð Þ� � ð27Þ

Here, e(⋅) is the prediction error, or residual, in (11),
and the length of the sliding window L is a free param-
eter, which has to be set.
Thus, the quantity E(k) in (27) represents a measure of

the local variance of prediction residuals at the given
sliding data frame of size L, and it contains the informa-
tion about the degree of data non-stationarity. In
addition, L should be a small number compared to the
minimum asymptotic memory length, so that averaging
does not obscure the non-stationarity of signal. Thus,
the value of L represents the trade-off between the esti-
mation accuracy and tracking ability of time varying pa-
rameters. Unfortunately, the EPE statistics in (27), like
the sample mean and sample variance, lacks robustness
towards outliers [21–23]. Therefore, we suggest to derive
a robust alternative to the EPE criterion in (27) using
the M robust approach. Thus, if the prediction errors
e(k) in (2) are assumed to be independent and identically
distributed (i.i.d) random variables, a simple parameter
estimation problem can be constructed. Define a ran-
dom variable (r.v.), ζ, on the sample space Ω, from
which the data e(k), k = 1, 2,⋯,N, are obtained. Based
on empirical measurements, the mean, me, and variance,
σ2e , of the unknown distribution of r.v., ζ, are to be esti-
mated. As in (1), the robust M estimate m̂e Nð Þ of me is
defined by

XN
k¼1

ψ
e kð Þ−m̂e Nð Þ

s

� �
¼ 0 ð28Þ

where ψ(⋅) is the Huber’s influence function in (4). Here,
s is an estimate of the scale of the data {e(k)}. The esti-
mating Eq. (28) is non-linear, and some form of WLS
approximation, similar to (6), can be used for its solu-
tion. Moreover, a popular statistic s is the MAD estima-
tion in (9). Although s in (9) is robust, it turns out to be
less efficient than some other robust estimates of vari-
ance [21–23]. However, s is a nuisance parameter in the
computation of me, and in this context, the efficient
issue is not as crucial as in the estimation of the variance
of the data, estimates of the latter being used in robusti-
fying the EPE criterion (27) and setting the VFF. A more
efficient estimator of the data variance should be
based on the asymptotic variance formula for the
location M estimate in (28). When s = σe, this formula
is given by [21]

V ¼ lim
N→∞

E N m̂e Nð Þ−me½ �2� 


¼
σ2
eE ψ2 e kð Þ−me

σe


 �n o
E2 ψ′ e kð Þ−me

σe


 �n o ð29Þ

A natural estimate of V in (29) is

V̂N ¼ s2

1
N

XN
k¼1

ψ2 e kð Þ−m̂e Nð Þ
s

� �

1
N

XN
k¼1

ψ′ e kð Þ−m̂e Nð Þ
s

� � ð30Þ

where V̂N in (30) would appear to be a reasonable esti-
mate of σ2e , with m̂e Nð Þ being the M estimate of me in
(28). Therefore, given me = 0, producing m̂e Nð Þ ¼ 0 and
the estimate s from the recursive M robust scale esti-
mate, s(k), in (25), a possible M robust alternative of the
EPE criterion in (27) is given by
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Er kð Þ ¼ s2 kð Þ

Xk
i¼k−Lþ1

ψ2 e i; Ŵ i−1ð Þ� �
s ið Þ

 !

Xk
i¼k−Lþ1

ψ′ e i; Ŵ i−1ð Þ� �
s ið Þ

 ! ð31Þ

where ψ(⋅) is the Huber’s influence function in (4), with
σ = 1 and Δ = 1.5. If ψ(⋅) is a linear function, ψ(x) = x,
than the criterion (31) reduces to the standard EPE cri-
terion in (27), under the assumption that the scale factor
estimate, s(i), i = k − L + 1,⋯, k, on the sliding data frame
of length L is close to the s(k) value.
On the other hand, the total noise variance robust esti-

mate in (25) is rather insensitive to the local non-
stationary effects. Therefore, in order to make the esti-
mation procedure invariant to the noise level, one can
define the normalised robust measure of non-
stationarity or the so-called robust discrimination
function

Q kð Þ ¼ Er kð Þ
s2 kð Þ ð32Þ

A strategy for choosing the VFF at current time in-
stant, k, may now be defined by using the relations (25),
(26), (31) and (32), that is

ρ kð Þ ¼ 1−
1

N kð Þ ; N kð Þ ¼ Nmax

Q kð Þ ð33Þ

Thus, the maximum asymptotic length, Nmax, will de-
termine the adaptation speed. Furthermore, for a sta-
tionary signal with possible outliers, the quantity Er(k) in
(31) will converge to the noise variance, yielding Q(k) ≈ 1
and N(k) =Nmax. Finally, since (33) does not guarantee
Table 1 Summary of adaptive robust parameter estimation algorith

Step 1 Let at stage k, k≥N, the parameter vector estimateŴ(k − 1), the scale
and the matrix P(k − 1) from the (L − 1) previous stages are known.

Step 2 Take the current input, x(k), and form the regression vector in (3) X
most recent inputs are given.

Step 3 Take the current output, d(k), and calculate the current error signal,
EL = {e(k), e(k − 1),…, e(k − L + 1)} of length L < N, assuming that the

Step 4 Calculate the normalised error e(k)/s(k − 1) and the winsorised error
by using (8) with W0 =Ŵ(k − 1) and s = s(k − 1); finally, calculate the

Step 5 Define the current data frame of normalised residuals ENL = {e(k)/s(k
calculate the robust discrimination function, Q(k), in (28), using the

Step 6 Calculate the winsorised error, ψ(e(k)/s(k)), from (4), with σ = 1 and b
ω(k), in (8) by using (4) with W0 =Ŵ(k − 1) and s = s(k).

Step 7 Calculate the matrix, M(k), in (12) with ρ = ρ(k) from step 5; then ca
step 6.

Step 8 Calculate the parameter vector update, Ŵ(k), in (10), by using d(k) a

Step 9 Calculate the weighting matrix, P(k), in (13) by using M(k) and K(k)

Step 10 Tune the time counter, that is increase the time index, k← k + 1, an
that FF, ρ, does not become negative, a reasonable limit
has to be placed on FF, ρ, yielding

ρ kð Þ ¼ max 1−
1

N kð Þ ; ρmin

� �
ð34Þ

where N(k) is given by the relations (25) and (31)–(33).
A brief description of the proposed algorithm with

both scale and forgetting factors is given in Table 1.
Since the proposed algorithm combines the three adap-
tive procedures (recursive robust parameter estimation,
recursive robustified noise variance estimation and adap-
tive robustified variable forgetting factor calculation), the
theoretical performance analysis is very difficult with the
coupled algorithms. Therefore, the figure of merit of the
proposed approach will be given by simulations in the
next section. The following algorithms are tested:

1. Recursive robust weighted least squares type
method, defined by (4), (8) and (10)–(13) together
with the both recursive robust scale estimation in
(25) and adaptive robustified VFF calculation in
(31)–(34), denoted as RRWLSV (see Table 1).

2. Recursive least squares algorithm with exponentially
weighted residuals defined by (11), (14) and (15) and
VFF given by (27) and (32)–(34), denoted as RLSVF.

3. Recursive robustified least squares algorithm defined
by (16)–(18) and MAD-based scale factor estimation
in (9), denoted as RRLSS.

4 Experimental analysis
To analyse the performances of previously discussed
methods, a linear parameter estimation scenario in
stationary and non-stationary contexts, related to the
additive noise, is applied (see Fig. 1) [10]. The required
m (10)–(13) with scale factor (25) and EPE-based VFF (27)–(30)

estimates s(k − 1),…, s(k − L + 1), the error signals e(k − 1),…, e(k − L + 1)

T(k) = {x(k), x(k − 1),…, x(k − N + 1)} of length N, assuming that the (N − 1)

e(k), from (11) using X(k) from step 2, and define the current data frame
(L − 1) most recent errors are previously stored.

ψ(e(k)/s(k − 1)) from (4) with σ = 1; then calculate the weight ω(k) in (25)
scale factor s(k) from (25).

), e(k − 1)/s(k − 1),…, e(k − L + 1)/s(k − L + 1)} from steps 1, 3 and 4; then
data set ENL; finally, calculate the VFF, ρ(k), from (29) and (30).

y using e(k) from step 3 and s(k) from step 4; then calculate the weight,

lculate the matrix, K(k), in (12) by using X(k) from step 2 and ω(k) from

nd e(k) from step 3, as well as K(k) from step 7.

from step 7, together with X(k) from step 2.

d go back to step 2.
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filter output, d(k), is generated by passing the standard
white Gaussian sequence, x(k), of the zero-mean and
unit variance, through the FIR system of the ninth order,
with the true values of parameters

W ¼ 0:1; 0:2; 0:3; 0:4; 0:5; 0:4; 0:3; 0:2; 0:1½ �T ð35Þ

In addition, a zero-mean white additive noise, n(k),
with corresponding variance is involved to its output.
The value of variance is adopted so to give the desired
signal-to-noise ratio (SNR) at the signal segment in
question, before the impulsive noise component is intro-
duced. Four situations regarding the additive noise are
considered: stationary context with fixed variance and
possible outliers and non-stationary context with chan-
ging variance and possible outliers. The variances are
chosen so to give the different values of SNR equal to
15, 20 and 25 dB, respectively. The outliers, generated
by the impulsive noise, are produced using the model
n(k) = α(k)A(k), with α(k) being an i.i.d binary sequence
defined by the corresponding probabilities P(α(k) = 0) =
0.99 and P(α(k) = 1) = 0.01, respectively, and A(k) is the
zero-mean normal random variable with the variance
var{A(k)} = 104/12 that is independent of the random
variable α(k). The random variable n(k) has zero-mean
and variance proportional to var{A(k)} (see Appendix 3).
A priory information of the impulsive noise is used to

choose the length, L = 5, of the sliding window that cap-
ture the non-stationarity. This means that no more than
one outlier, in average, is in the sliding data frame of size
L = 5 during the robustified EPE calculation in (31) and
MAD calculation in (9), respectively, when the fraction
of outliers is 1 %.
The following algorithms, described in previous section,

are tested: (1) the proposed adaptive robust filtering algo-
rithm with the both robust adaptive scale and VFF, de-
noted as RRWLSV; (2) the conventional RLS with EPE
based VFF, denoted as RLSVF; and (3) the standard M ro-
bust RLS with MAD-based scale factor, denoted as RRLS.
Fig. 2 Time varying parameter trajectory w1(k) in (3)
The analysed algorithms have been tested on both the
time-varying parameter tracking ability and the log nor-
malised estimation error norm

NEE kð Þ ¼ 10 log
⌢W kð Þ−Wk k2

Wk k2 ð36Þ

where ‖ ⋅ ‖ is the Euclidian norm, averaged on 30 inde-
pendent runs. In each experiment, the following values
are used to the initial conditions of analysed algorithms:

⌢W 0ð Þ ¼ 0; P 0ð Þ ¼ 100� I; s 0ð Þ ¼ 1 ð37Þ
with I being the identity matrix of corresponding

order.

4.1 Time-varying parameter tracking in a stationary
zero-mean white normal noise with possible outliers
In this experiment, the first filter parameter w1 in (3) is
changed using the trajectory depicted in Fig. 2. The vari-
ance of noise, n(k), is taken so that the SNR of 25 dB is
achieved before the impulsive noise component is added.
Figure 3 gives a realisation of the zero-mean white
Gaussian sequence without (Fig. 3a) and with impulsive
component (Fig. 3b), respectively. In Figs. 4, 5 and 6, the
true and the estimated trajectories of changing param-
eter, under the pure zero-mean white Gaussian noise,
are shown. Moreover, the estimated scale and variable
forgetting factors are also depicted in these figures. Fig-
ures 7, 8 and 9 give the simulation results in the case of
zero-mean and white and Gaussian noise with outliers.
Figures 10 and 11 depicted the normalised estimation
error in (36) obtained in the two discussed stationary
noise environments, for the three analysed algorithms.
The obtained results have shown that the algorithms

RRWLSV and RLSVF provide good and comparable re-
sults, due to the application of VFF in the weighted
matrix update equation (see Eqs. 10, 12, 14 and 15),
while the algorithm RRLSS gives bad parameter tracking
performance, since it uses the fixed unit value of FF in



a

b

Fig. 3 Realisation of additive zero-mean white noise n(k). a Pure zero-mean Gaussian samples (SNR = 25 dB). b Gaussian samples contaminated with
outliers
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(18), (see Figs. 4, 5, 6 and 10). Moreover, the results of
simulations have indicated that the conventional RLS
with VFF (RLSVF) is highly sensitive to outliers, since it
does not use a robust influence function, ψ, in the par-
ameter and weighted matrix update equations (see
Eqs. 14 and 15). On the other hand, the RRLSS
algorithm using scale factor estimation in (9), or com-
bined the adaptive robustified scale and VFF factors
(RRWLSV), are rather insensitive to outliers, due to the
effect of robust influence function, ψ, in the parameter
and weighted matrix update equations (Eqs. 17 and 18
or Eqs. 12 and 13). In addition, the algorithm RRWLSV
has much better parameter tracking ability in the case of
both time-varying parameters and impulsive noise envir-
onment than the algorithm RRLSS (see Figs. 7, 8, 9 and
11), due to the combined effects of scale factor and VFF
(see Eqs. 12 and 13).

4.2 Time-invariant parameter tracking in a non-stationary
zero-mean normal noise with possible outliers
In this experiment, the filter parameters are taken to be
time invariant, but the noise variance is changed during
the simulation, producing a non-stationary signal. The
variance of additive noise, n(k), is taken so that for the
three sequential signal segments, the SNRs of 25, 15 and
20 dB, respectively, are produced, before the impulsive
noise component is added. In order to obtain better cap-
ture of long-term non-stationarity, in the sense of
achieving good estimates of noise level changes, the
scale factor, s, is averaged on the data frame of 400 sam-
ples. On the other hand, this will not affect the ability of
VFF algorithm to track the filter parameter changes.
Figure 12 shows a realisation of noise, without (Fig. 12a)
and with (Fig. 12b) impulsive noise component.
Figures 13 and 14 depict the obtained values of nor-

malised estimation error (NEE) criterion in (36), without
(Fig. 13) and with (Fig. 14) the presence of impulsive
noise component.
In a pure zero-mean normal white noise environ-

ment (see, Fig. 12a), at the beginning of parameter esti-
mation trajectory, all three discussed methods have
similar behaviour (Fig. 13). Moreover, all three algo-
rithms are rather insensitive to the changes of noise
variance, due to the effects of scale factor estimations
in (9) or (25), or VFF in (27)–(34) or (31)–(34), re-
spectively, and give similar results at the whole param-
eter estimation trajectory, since there are no outliers
(Fig. 13). The presented results in Fig. 14 indicated
that the conventional RLS method with VFF (RLSVF)
is highly sensitive to outliers, due to the lack of non-



Fig. 5 Experimental results for RLSVF algorithm in zero-mean Gaussian noise (Fig. 3a). a Estimated (solid line) and true parameter (dashed line)
trajectories (see Fig. 2). b VFF calculation, ρ(k). c Discrimination function calculation, Q(k)

Fig. 4 Experimental results for RRWLSV algorithm in zero-mean white Gaussian noise (see Fig. 3a). a Estimated (solid line) and true parameter
(dashed line) trajectories (see Fig. 2). b Scale factor estimation, s(k). c VFF calculation, ρ(k). d Discrimination function calculation, Q(k)
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Fig. 6 Experimental results for RRLSS algorithm in zero-mean Gaussian noise (Fig. 3a). a Estimated (solid line) and true parameter (dashed line)
trajectories (Fig. 2). b Scale factor estimation, s(k)

Fig. 7 Experimental results for RRWLSV algorithm in zero-mean Gaussian noise contaminated by outliers (Fig. 3b). a Estimated (solid line) and true
parameter (dashed line) trajectories (Fig. 2). b Scale factor estimation, s(k). c VFF calculation, ρ(k). d Discrimination function calculation, Q(k)
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Fig. 8 Experimental results for RLSVF algorithm in zero-mean Gaussian noise contaminated by outliers (Fig. 3b). a Estimated (solid line) and true
parameter (dashed line) trajectories (Fig. 2). b VFF calculation, ρ(k). c Discrimination function calculation, Q(k)

Fig. 9 Experimental results for RRLSS algorithm in zero-mean Gaussian noise contaminated by outliers (depicted in Fig. 3b). a Estimated (solid line)
and true parameter (dashed line) trajectories (Fig. 2). b Scale factor calculation, s(k)
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Fig. 10 Normalised estimation errors NEE in (36), for different algorithms, in stationary zero-mean white normal Gaussian noise (SNR = 25dB);
Experimental conditions are given in Figs. 2 and Fig 3a
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linear residual transformation, ψ (see Eqs. 14 and 15).
On the other hand, the robust algorithms RRLSS and
RRWLSV are rather insensitive to impulsive noise
component, and give also comparable results, due to
the effect of robust influence function, ψ, in the par-
ameter and matrix update equations (see Eqs. 17 and
18 or Eqs. 12 and 13).
Fig. 11 Normalised estimation errors NEE in (36 for different algorithms in
by outliers; experimental conditions are given in Figs. 2 and Fig 3b
4.3 Time-varying parameter tracking in a non-stationary
zero-mean normal noise with possible outliers
In this experiment, the simulation scenario is the com-
bination of the previous two examples, with the excep-
tion that the first filter parameter, w1, is adopted to be
time-varying, using the parameters trajectory presented
in Figs. 15, 16 and 17 depict the obtained NEE criterion
stationary zero-mean white normal noise (SNR = 25 dB) contaminated



Fig. 12 Realisation of additive noise, n(k). a Non-stationary zero-mean white normal noise samples with changing variances (SNR = 25, 15 and 20 dB).
b Non-stationary zero-mean white normal noise samples, with changing variances, contaminated by outliers
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(36), for different algorithms, without (Fig. 16) and with
(Fig. 17) outliers, added to the non-stationary zero-mean
normal noise with changing variance (see Fig. 12). The
obtained results are in accordance to the conclusions
derived from the previous two experiments.
In summary, the obtained results from the all three ex-

periments have shown that, in order to properly estimate
the time-varying parameters under the non-stationary and
impulsive noise environment, both robustified VFF and
adaptive M robust estimator with simultaneous estimation
Fig. 13 Normalised estimation error norm (NEE), for different algorithm
parameters in (35)
of parameters and scale factor (RRWLSV) are required.
Moreover, an adequate non-linear residual transformation
in the parameter update equation (Eq. 17 in RRLSS algo-
rithm) is not sufficient for protecting well against the in-
fluence of outliers. Additionally, an important problem is
also related to the way of recursive generation of the
weighted matrix, P. It is found that the introduction of the
Huber’s saturation type non-linearity, ψ, coupled with the
proper decrease of the weighted matrix, P, depending on
the non-linearly transformed residuals and VFF (Eqs. 12
s in non-stationary Gaussian noise environment (Fig. 12a), and fixed



Fig. 14 Normalised estimation error norm NEE, for different algorithms in non-stationary and impulsive noise environment (Fig. 12b), and fixed
parameters in (35)
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and 13) provides low sensitivity to outliers and good par-
ameter tracking performance (Figs. 4 and 7). The conven-
tional M robust estimator (RRLSS) may converge very
slowly, due to the introduction of the non-linearity first
derivate, ψ′, and the unit FF in the recursive generation of
the weighted matrix (Eq. 18). Namely, large residual rea-
lisations, e, make the decrease of the weighted matrix, P,
very slow, since ψ′(e) = 0 in the saturation range (Eq. 18).
This, in turn, results in an effect producing a slow conver-
gence of parameter estimates (Figs. 6 and 9). The conven-
tional RLS is also sensitive to outliers, but in a different
way. In this algorithm, the weighted matrix, P, is not influ-
enced by the residuals (Eq. 15). As a consequence, the fast
decrease of P, independent of residuals, leads to the biased
parameter estimates in the presence of outliers (see Fig. 8).
Fig. 15 Time varying parameter trajectory, w1(k)
In addition, the estimation of unknown noise variance
(Eqs. 9 or 25) is essential to residual normalisation, in
order to achieve a low sensitivity to the parameters defin-
ing the non-linear transformation of the prediction resid-
uals in (4).

4.4 Influence of outlier statistics
A real outlier statistics is not exactly known in practice,
so a low sensitivity to outliers is very important for
achieving the practical robustness. The effect of desensi-
tising the parameter estimates related to the influence of
outliers is illustrated in Tables 2 and 3, depicting the
evaluation of sample mean and sample variance of the
NEE statistics (36), for different outlier probability and
intensity. It can be observed that the proposed algorithm



Fig. 16 Normalised estimation error norm (NEE), for different algorithms, in non-stationary zero-mean Gaussian noise environment (Fig. 12a) and
the time-varying parameter trajectory (Fig. 15)
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automatically damp out the effects of outliers, and it is
rather insensitive to various fractions of outliers (see
Table 2), up to 15 %, as well as to high level outliers
(see Table 3). For higher percentage of outliers, more
than 20 %, the normal noise model contaminated by
outliers is not adequate. Furthermore, s(k) is a nuis-
ance parameter in the estimation of filter coefficients,
as well as in the VFF computation. Its proper estimate
is crucial for good performance of overall estimator,
consisting of three coupled adaptive schemes. Since
Fig. 17 Normalised estimation error norm (NEE), for different algorithms, in
time-varying parameter trajectory (Fig. 15)
the complete algorithm performs quite well, this
means that the estimation of scale factor also performs
properly.

4.5 Influence of initial conditions
The proposed RRWLSV algorithm, exposed in Table 1,
is non-linear and, consequently, may be highly influ-
enced by the initial conditions, W(0) and P(0) in (33),
respectively. However, from the practical point of view,
a low sensitivity to the initial conditions represents the
non-stationary noise contaminated by outliers (Fig. 12b), and the



Table 2 The evaluation of the mean value and variance of NEE, for different outlier density, ε = P(α(k) = 1)

ε 0.01 0.05 0.10 0.15 0.20 0.25 0.3

NEE

Mean value −30.2529 −30.6593 −30.1427 −30.3464 −24.4299 −18.6086 −14.2801

Variance 92.9838 95.1626 111.2679 112.4948 226.8080 322.398 410.0782
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desirable performance measure. Table 4 illustrates the
influence of the initial condition P(0) to the estimation
error.
In general, large residual realisations in the initial

steps, caused by large ‖P(0)‖, can make the decrease of
‖P(i)‖ very slow. This, in turn, may result in an unde-
sirable effect producing a slow convergence of filter par-
ameter estimates. However, the proposed RRWLSV
algorithm is found to be relatively insensitive to the ini-
tial conditions, due to the proper way of generating of
the weighting matrix, P(i), in (12) and (13), where the
weighted term, ω(i) in (8), is used. This factor keeps the
norm ‖P(i)‖ at values enough high for obtaining good
convergence and, at the same time, enough small for
preventing the described undesirable convergence effect.
Similarly as in the experiment 4.1, it is observed that for
higher values of ‖P(0)‖, the RRLSS algorithm converges
very slowly. The reason lies in the introduction of the
first derivative, ψ′, instead of the weighted term ω in (8),
in the weighted matrix update equation, P(i), in (18),
which is equal to zero in the saturation range. Thus,
large residuals in the initial steps, caused by large ‖P(0)‖,
make the decrease of ‖P(i)‖ very slow. This, in turn, re-
sults in the described cumulative effect, producing a
slow convergence of parameter estimates (see Table 4).

4.6 Influence of model order
The selection of model structure depends on the
intended model application [31]. With the adopted FIR
model structure, one has to select the order, n, of the
parameter vector, W in (3). The model order should not
be selected too low, since then, all system dynamics can-
not be described properly. However, it should not be se-
lected too high either, since the higher the model order,
the most parameters need to be estimated and the
higher the variance of the parameter estimates is. Thus,
increasing the model order beyond the true order of the
system will not add to the quality of the model. Hence,
Table 3 The evaluation of the mean value and variance of NEE,
for different outlier intensity, σ2e ¼ varA kð Þ, where the nominal
value is σ20 ¼ 104=12

σ2e 10−2σ20 10−1σ20 σ20 10σ20 102σ20
NEE

mean value −30.8406 −30.3820 −30.4177 −30.4417 −30.3870

variance 94.2645 92.8128 94.9259 95.1020 94.6418
the model order is some sort of compromise between
fitting the data and model complexity [32, 33]. Figure 18
illustrates the discussion through the obtained NEE cri-
terion in (36), for the experimental conditions described
in 4.1, in the cases of lower (n = 7), higher (n = 12) and
exact (n = 9) model order of the FIR system.

4.7 Influence of additive noise correlations
The FIR model structure does not take into account the
coloured additive noise. However, in general, additive
noise, n(k), may represent any kind of noise, with arbitrary
colour. Such noise can be simulated by filtering a zero-
mean white noise through a linear time-invariant (LTI)
system [34, 35]. In this way, one can shape the fit of a
time-invariant model under a stationary noise environ-
ment to the frequency domain. It can be shown that, in
general case, the resulting estimate is a compromise be-
tween fitting the estimated constant model parameters to
the true one and fitting the noise model spectrum to the
prediction error spectrum [35]. In addition, the estimates
can be improved by using prefilters. The analysis is based
on the limit parameter value to which the parameter esti-
mates converge asymptotically and corresponding limit
criterion [35]. However, such an analysis is not possible on
the short data sequences, whether the situation is station-
ary or not. Therefore, the answer to the question concern-
ing the insensitivity to noise statistics, as well as the other
questions related to the practical robustness, can be
obtained only by simulations. Figure 19 depicts the
obtained NEE criterion in (36), with the experimen-
tal conditions exposed in 4.1, but using the coloured
noise with the given autocorrelation function in
Fig. 20, [36]. The experimental results indicate that
the proposed RRWLSV filtering algorithm copes sat-
isfactorily with the coloured noise.
It should be noted that in a FIR model structure, the

noise model is fixed and equal to the unit constant.
Table 4 The evaluation of the mean square error norm, ‖P(i)‖,
for different initial conditions (experimental conditions are the
same as in the experiment 4.1)

P(0) 102I 10I I 0.1I

Iterations

50 366.9852 36.6985 0.3670 0.3530

100 0.9492 0.4582 1.1870 1.3091

1000 0.0100 0.0092 0.0085 0.0119



Fig. 18 Normalised estimation error norm (NEE) in (36), for the experimental conditions described in 4.1 (Figs. 2 and 3b) and the algorithm
RRWLSV, in the cases of lower (n = 7), higher (n = 12) and exact (n = 9) model order
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5 Conclusions
The estimation problem of time-varying adaptive FIR
filter parameters in the situations characterised by non-
stationary and impulsive noise environments has been
discussed in the article. The posed problem is solved ef-
ficiently by application of a new adaptive robust algo-
rithm, including a combination of the M robust concept,
extended to the estimation of both filter parameters and
unknown noise variance simultaneously, and adaptive
robustified variable forgetting factor. The variable forget-
ting factor is determined by linear mapping of a suitably
defined robust discrimination function, representing the
ratio of robustified extended prediction error criterion,
using M robust approach, and M robust type recursive
estimate of noise variance. Since the robustified version
Fig. 19 Normalised estimation error norm (NEE) in (36), for the experiment
of extended prediction error criterion is calculated on
sliding data frame of proper length, it represents a ro-
bust measure of local data non-stationarity. On the other
hand, the total noise variance robust recursive estimate
is rather insensitive to the local non-stationarity effects,
so that the adopted robust discrimination function
represents a suitable normalised robust measure of the
degree of signal non-stationarity. In addition, since the
total noise variance, or the so-called scale factor, and
variable forgetting factor are adaptively calculated with
respect to the prediction errors, the proposed algorithm
works properly in stationary and non-stationary situations
with possible outliers. Simulation results have shown that
the new method gives higher accuracies of parameter esti-
mates, and ensures better parameter tracking ability, in
al conditions in the case of white and coloured noise (see Fig. 20)



Fig. 20 Normalised autocorrelation function of coloured noise
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comparison to the conventional least-squares algorithm
with variable forgetting factor, and the standard M robust
algorithm with scale factor estimation. Moreover, the
standard least-squares algorithm with variable forgetting
factor is very sensitive to outliers, while the new adaptive
robust method with combined scale and variable forget-
ting factor, and the conventional M robust-based method,
with scale factor, are rather insensitive to such a disturb-
ance. However, the proposed adaptive M robust algorithm
with combined scale and forgetting factors has much
better parameter tracking performance than the conven-
tional M robust algorithm with only scale factor. The
experimental analysis has shown that the real practical ro-
bustness and good tracking performances are connected
with both the non-linear transformation of prediction-
residuals and an adequate recursive generation of the
weighted matrix, depending on the non-linearity form and
variable forgetting factor. Moreover, a recursive estimation
of the unknown noise variance is essential for defining
properly the non-linearity form. In summary, in order to
properly estimate the time-varying parameters under the
non-stationary and impulsive noise, both robustified vari-
able forgetting factor and simultaneous adaptive M robust
estimation of system parameters and unknown noise vari-
ance are required.
The proposed adaptive M robust estimators for gener-

ating scale factor and variable forgetting factor are gen-
eral, while the adaptive M robust parameter estimation
procedure depends on assumed signal, or system, model
structure. Moreover, it can be easily applied to the other
commonly used signal, or system models, including AR,
ARX, ARMA and ARMAX models, respectively, or even
non-linear models. Furthermore, the proposed adaptive
robustified algorithm is the one that, with proper adapta-
tion, can be used as a robust alternative to the conven-
tional recursive least squares or Kalman filter, respectively.
These applications arise in various fields, including speech
processing, biomedical signal processing, image analysis,
and failure detection in measurement and control.

6 Appendix 1
6.1 Derivation of relations (10)–(13).
The solution of (6) is given by

Ŵ kð Þ ¼ R−1 kð Þ
Xk
i¼1

β k; ið ÞX ið Þd ið Þ ð38Þ

where

β k; ið Þ ¼ ρk−iω ið Þ ð39Þ

with ω(i) being defined by (8) when W0 is replaced by
Ŵ(k − 1). Moreover, e(i,W) in (2) is defined by (11) with
W =Ŵ(k − 1), while the matrix R in (38) is given by

R kð Þ ¼
Xk
i¼1

β k; ið ÞX ið ÞXT ið Þ

¼ ρ
Xk−1
i¼1

β k−1; ið ÞX ið ÞXT ið Þ
þ ω kð ÞX kð ÞXT kð Þ ð40Þ

from which it follows
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R kð Þ ¼ ρR k−1ð Þ þ ω kð ÞX kð ÞXT kð Þ ð41Þ

Furthermore, one can also write

Xk
i¼1

β k; ið ÞX ið Þd ið Þ ¼ ρ
Xk−1
i¼1

β k−1; ið ÞX ið Þd ið Þ
þ ω kð ÞX kð Þd kð Þ ð42Þ

Taking into account (38), one concludes from (42)

Xk
i¼1

β k; ið ÞX ið Þd ið Þ ¼ ρR k−1ð ÞŴ k−1ð Þ
þ ω kð ÞX kð Þd kð Þ ð43Þ

Furthermore, by calculating ρR(k − 1) from (41), and
replacing it into (43), one obtains

Xk
i¼1

β k; ið ÞX ið Þd ið Þ ¼ R kð Þ−ω kð ÞX kð ÞXT kð Þ� 	
Ŵ k−1ð Þ

þ ω kð ÞX kð Þd kð Þ
ð44Þ

Finally, by replacing (44) into (38), one obtains the re-
lations (10) and (11) with the gain matrix

K kð Þ ¼ R−1 kð Þω kð ÞX kð Þ ð45Þ

In addition, by introducing the weighting matrix P(k)
=R− 1(k), it follows from (41)

P kð Þ ¼ ρP−1 k−1ð Þ þ ω kð ÞX kð ÞXT kð Þ� 	−1 ð46Þ

After applying the well-known matrix inversion lemma
[25, 26]

Aþ BCDð Þ−1 ¼ A−1−A−1B C−1 þDA−1B
� �−1

DA−1

ð47Þ
on (46) with A = ρP− 1(k − 1), B =X(k), C = ω(k) and D =
XT(k), one concludes from (47)

P kð Þ ¼ 1
ρ

P k−1ð Þ− P k−1ð ÞX kð ÞXT kð ÞP k−1ð Þ
ρω−1 kð ÞXT kð ÞP k−1ð ÞX kð Þ

� �
ð48Þ

By substituting R− 1(k) = P(k) from (48) into (45), one
can write further

K kð Þ ¼ P k−1ð ÞX kð Þω kð Þ
ρþ XT kð ÞP k−1ð ÞX kð Þω kð Þ ð49Þ

Finally, by introducing M(k) from (12), and substitut-
ing (49) into (48), one obtains the relations (12) and
(13), which completes the proof.
7 Appendix 2
7.1 Derivation of relations (24)–(25).
Starting from (21)–(23), one can write

kJk s=Ŵ
� � ¼ ln sð Þ þ k−1ð ÞJ k−1 s=Ŵ

� �þ f
e k; Ŵ
� �

s

 !

≈ ln sð Þ þ f
e k; Ŵ
� �

s

 !

ð50Þ
and

k
∂Jk s=Ŵ
� �
∂s

¼ 1
s
−
e k; Ŵ
� �
s2

g
e k; Ŵ
� �

s

 !
ð51Þ

where g(⋅) = f ' (⋅). Furthermore, one can also write
from (19)

∂J σ=Ŵ
� �
∂σ

¼ 1
σ
−E

e k; Ŵ
� �
σ2

g
e k; Ŵ
� �
σ

 !( )
ð52Þ

and

∂2J σ=Ŵ
� �
∂σ2

¼ −
1
σ2

þ E g 0
e k; Ŵ
� �
σ

 !
e2 k; Ŵ
� �
σ4

( )

þ 2
σ
E

e k; Ŵ
� �
σ2

g
e k; Ŵ
� �
σ

 !( )
ð53Þ

In the vicinity of the optimal solution, one concludes
∂J(σ/Ŵ)/∂σ = 0 in (52), from which it follows

E
e k; Ŵ
� �
σ2

g
e k; Ŵ
� �
σ

 !( )
¼ 1

σ
ð54Þ

Furthermore, by substituting (54) in (53), one obtains

∂2Jk s=Ŵ
� �
∂s2

≈
∂2J s=Ŵ
� �
∂σ2

¼ a
s2

ð55Þ

where the constant

a ¼ 1þ E g 0
e k; Ŵ
� �

s

 !
e2 k; Ŵ
� �
s2

( )
≈1 ð56Þ

Finally, if one substitutes (51), (55) and (56) into (20),
one obtains an approximate optimal solution for the
scale factor estimation in the recursive form (24). In
addition, if we assume for the moment that s(k − 1) is
close to s(k), and take into account the relation (8), the
expression (24) can be rewritten in the alternative form
(25), which completes the proof.
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8 Appendix 3
8.1 The derivation of mean value and variance of the
random variable generating the outliers
The outliers n(k) for each time step k are generated by
the random variable (r.v.) n = αA, representing the func-
tion of two variables, where α is the discrete binary r.v.
taking the values α1 = 0 with the probability p1 = P{α
= α1}, and α2 = 1 with the probability p2 = P{α = α2}, p1 +
p2 = 1. Moreover, A is the continuous zero-mean r.v.
with variance σ2A , and it is supposed that α and A are in-
dependent. The mean E{n} can be determined directly in
terms of the joint p.d.f. fα,A(α, A) without the need for
evaluating p.d.f. of n, that is [35]

E nf g ¼ E αAf g ¼
Z∞
−∞

Z∞
−∞

αAf αA α;Að ÞdαdA

¼ E αf gE Af g ¼ mαmA ð57Þ
since α and A are independent, yielding fαA(α, A) = fα(α)-
fA(A). However, due to the fact that mA = E{A} = 0,
one concludes mn = E{n} = 0. The variance of r.v. n is
given by

σ2n ¼ E n2
� 


−E2 nf g ¼ m2;n−m2
n ð58Þ

where m2,n and mn are non-centralized moments of the
second and the first order, respectively. Similarly as be-
fore, the variance can be determined as

σ2n ¼ σ2αA ¼ E αAð Þ2� 

−E2 αAf g ð59Þ

that is, since E{αA} = 0

σ2αA ¼ E α2A2
� 
 ¼

Z∞
−∞

Z∞
−∞

α2A2f αA α;Að ÞdαdA

¼ m2;αm2;A ð60Þ
Here, m2;α ¼ σ2

A, since mA = 0, while

m2;α ¼ α21p1 þ α22p2 ¼ 0p1 þ 1p2 ¼ p2 ð61Þ
from which it follows

σ2n ¼ p2σ
2
A; p2 ¼ P α ¼ 1f g ¼ ε ð62Þ

where ε is the density or fraction of outliers.

Abbreviations
EPE: extended prediction error; FIR: finite impulse response; FF: forgetting
factor; FFF: fixed value of forgetting factor; LS: least squares; M: approximate
maximum-likelihood; MAD: median of absolute median deviations;
ML: maximum-likelihood; n: parameter vecor order; N: memory length;
NEE: normalised estimation error; PA: parallel adaptation; Q: discrimination
function; RLS: recursive least squares; RLSVF: recursive least squares with
variable forgetting factor; RRLS: robustified recursive least squares;
RRLSS: robustified recursive least squares with scale factor;
RRWLSV: robustified recursive weighted least squares with both scale and
variable forgetting factors; SNR: signal-to-noise ratio; VFF: variable forgetting
factor; WLS: weighted least-squares.
Competing interests
The authors declare that they have no competing interests.
Acknowledgments
This research was supported by Serbian Ministry of Education and Science
(Project TR 32038 and III 42007)

Author details
1School of Electrical Engineering, University of Belgrade, Bulevar kralja
Aleksandra 73, Belgrade, Serbia. 2School of Electrical and Computer
Engineering, 283 Vojvode Stepe St., Belgrade, Serbia. 3Faculty of Informatics
and Computing, Singidunum University, 32 Danijelova St., Belgrade, Serbia.

Received: 6 November 2015 Accepted: 23 March 2016

References
1. JV Candy, Model-based signal processing (John Wiley, New York, 2006)
2. SW Smith, Digital signal processing: a practical guide for engineers and

scientist (Elsevier, Amsterdam, 2003)
3. SX Ding, Model based fault diagnosis techniques, design schemes, algorithms,

and tools (Springer-Verlag, Berlin Heidelberg, 2008)
4. M Barkat, Signal detection and estimation (Artech House, Norwood, 2005)
5. M Verhaegen, V Verdult, Filtering and system identification, a least squares

approach (Cambridge University Press, New York, 2012)
6. S Haykin, Adaptive filter theory (Prentice Hall, Pearson, 2013)
7. B Kovačević, Z Banjac, M Milosavljević, Adaptive digital filters (Springer-

Verlag, Berlin, Heidelberg, 2013)
8. M Basseville, A Benveniste, Detection of abrupt changes in signals and

dynamical systems (Springer-Verlag, Berlin, Heidelberg, 1986)
9. S Peters, DA Antoniou, A Parallel, Adaptation algorithm for recursive least

squares adaptive filters in nonstationary environments. IEEE Trans Signal
Process 43(11), 2484–2494 (1995). doi:10.1109/78.482100

10. YS Cho, SB Kim, EJ Powers, Time-varying spectral estimation using AR
models with variable forgetting factors. IEEE Trans Signal Process
39(6), 1422–1426 (1991). doi:10.1109/78.136549

11. Z. Banjac, B. Kovačević, I. Kostić Kovačević, Variable forgetting factor
estimation in impulsive noise environment, Telecommunications Forum
(TELFOR) 22nd, Belgrade, 25–27 November 2014, pp. 449–452,
doi:10.1109/TELFOR.2014.7034443

12. B. Kovačević, M. Milosavljević, M. Veinović, Time-varying AR speech analysis
using robust RLS algorithm with variable forgetting factor, Proceedings of the
12th IAPR International Conference on Pattern Recognition, (Jerusalem, 09–13
October 1994), vol 3, pp.211-213, doi:10.1109/ICPR.1994.577162

13. G Kvaščev, Ž Đurović, B Kovačević, I Kostić Kovačević, Adaptive estimation of
time-varying parameters in AR models with variable forgetting factor,
Mediterranean Electrotechnical Conference MELECON, (Beirut, 13–16 April
2014), pp. 68–73, doi:10.1109/MELCON.2014.6820509

14. J Chambers, A Alvonitis, A Robust, Mixed norm adaptive filter algorithm.
IEEE Signal Process Lett 4(2), 46–48 (1997)

15. Y Zou, SC Chan, TS Ng, Robust M-estimate adaptive filtering. IEE
Proceedings Vis Image Signal Process 148(4), 289–294 (2001)

16. Y Zou, SC Chan, TS Ng, A recursive least M-estimate (RLM) adaptive filter for
robust filtering in impulse noise. Signal Process Lett IEEE 7(11), 975–991 (2000)

17. HS Kim, JS Lim, SJ Baek, KM Sung, Robust Kalman filtering with variable
forgetting factor against impulsive noise. IEICE Trans Fundam Electron
Commun Comput Sci E84-A(1), 363–366 (2001)

18. T Yang, JH Lee, KY Lee, KM Sung, On robust Kalman filtering with forgetting
factor for sequential speech analysis. Signal Process 63(2), 151–156 (1997)

19. Y.Zhou, S. C. Chan, K. L. Ho, A new variable forgetting factor QR based
recursive least M-estimate algorithm for robust adaptive filtering in impulsive
noise environment, 14th European Signal Processing Conference, (Florence,
4–8 September 2006), pp. 1–5 IEEE http://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=7071126&isnumber=7065146 ISSN: 2219-5491

20. ZG Zhang, SC Chan, Recursive parametric frequency/spectrum estimation
for nonstationary signals with impulsive components using variable
forgetting factor. IEEE Trans Instrum Meas 62(12), 3251–3264 (2013)

21. PJ Huber, EM Ronchetti, Robust statistics (John Wiley, New Jersey, 2009)
22. RR Wilcox, Introduction to robust estimation and hypothesis testing (Academic

Press, Boston, 2012)

http://dx.doi.org/10.1109/78.482100
http://dx.doi.org/10.1109/78.136549
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7071126&isnumber=7065146
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7071126&isnumber=7065146


Kovačević et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:37 Page 22 of 22
23. WN Venables, BD Ripley, Modern applied statistics with S (Springer, Berlin
Heidelberg New York, 2002)

24. Z Banjac, B Kovačević, Robust parameter and scale factor estimation in
nonstationary and impulsive noise environments, in Proceedings of IEEE Conf.
EUROCON, (Belgrade, 21–24. November, 2005), pp. 1546–1549. doi:10.1109/
EURCON.2005.1630261

25. L Ljung, T Soderstorm, Theory and practice of recursive identification
(MIT Press, Cambridge, 1983)

26. YZ Tsypkin, Foundations of informational theory of identification (Nauka,
Moscow, 1984)

27. M Veinović, B Kovačević, M Milosavljević, Robust nonrecursive AR speech
analysis. Signal Process 37(2), 189–201 (1994)

28. B Kovačević, M Veinović, M Milosavljević, M Marković, Robust speech
processing (Springer Verlag, Berlin, Heidelberg, 2016). in press

29. AK Kohli, A Rai, Numeric variable forgetting factor RLS algorithm for second-
order Volterra filtering. Circuits Syst Signal Process 32(1), 223–232 (2013)

30. K Ak, A Rai, M Patel, Variable forgetting factor LS algorithm for polynomial
channel model. ISRN Signal Process 2011, Article ID 915259 (2011)

31. PPJ van den Bosch, AC van der Klauw, Modeling, identification and
simulation of dynamical systems (CRC Press, Boca Raton, 1994)

32. R Stoica, R Eykhoff, R Janssen, T Soderstrorm, Model structure selection by
cross validation. Internatt J Control 43, 1841–1878 (1986)

33. H Akaike, Modern development of statistical methods, in Trends and
progress in system identification, ed. by Eykhoff (Pergamon Press, New York,
1981), pp. 169–184

34. L Ljung, System identification—theory for the user, 2nd edn. (PTR Prentice
Hall, Upper Saddle River, 1999)

35. B Kovačević, Ž Djurović, Fundamentals of stochastic signals, systems and
estimation theory: with worked examples (Springer, Verlag, Berlin, 2008)

36. M Viswanathan, Simulation of digital communication systems using Matlab,
2013. http://www.gaussianwaves.com/simulation-of-digital-communication-
systems-using-matlab-ebook. Accessed 01 march 2016
Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

http://www.gaussianwaves.com/simulation-of-digital-communication-systems-using-matlab-ebook
http://www.gaussianwaves.com/simulation-of-digital-communication-systems-using-matlab-ebook

	Abstract
	Introduction
	Problem formulation
	A new recursive robust parameter estimation algorithm with combined scale and forgetting factors
	Adaptive robustified estimation of scale factor
	Strategy for choosing adaptive robustifying variable forgetting factor

	Experimental analysis
	Time-varying parameter tracking in a stationary �zero-mean white normal noise with possible outliers
	Time-invariant parameter tracking in a non-stationary zero-mean normal noise with possible outliers
	Time-varying parameter tracking in a non-stationary zero-mean normal noise with possible outliers
	Influence of outlier statistics
	Influence of initial conditions
	Influence of model order
	Influence of additive noise correlations

	Conclusions
	Appendix 1
	Derivation of relations (10)–(13).

	Appendix 2
	Derivation of relations (24)–(25).

	Appendix 3
	The derivation of mean value and variance of the random variable generating the outliers
	Abbreviations

	Competing interests
	Acknowledgments
	Author details
	References



