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Abstract

Sensor networks are important for monitoring several physical phenomena. In this paper, we consider the monitoring
of diffusion fields and design simple, yet robust, sensing, data processing and communication strategies for estimating
the sources of diffusion fields under communication constraints. Specifically, based on our previous work in the area,
we firstly show how sources of the field can be recovered analytically through the use of well-chosen sensing functions.
Then, by properly extending this scheme to our sensor network setting, we design and propose an effective diffusion
field sensing strategy. Next, we introduce a physics-driven quantized gossip scheme, as a joint information processing
and communication strategy for handling the network communication constraints: i.e. when a sensor can only
communicate with a small subset of nodes over links with a finite capacity. Combining the proposed strategies allows
us to develop a fully distributed algorithm for recovering sources of diffusion fields using sensor networks. Numerical
simulation results are presented in order to evaluate the effectiveness and robustness of our algorithm.

Keywords: Diffusion fields, Average consensus, Quantized gossip, Prony’s method, Sensor networks,
Analogue/Digital communications

1 Introduction
Due to several significant advances over the last few
decades in the fields of (wireless) networking, commu-
nications and in the fabrication of microprocessors, the
use of sensor networks (SNs) for sensing and monitoring
physical phenomena has become a fast-growing area of
research. During this period, many aspects of SNs have
been explored and developed [1–4]; a myriad of interest-
ing applications in localization, tracking and parameter
estimation have also been considered [5–7]. Typically,
these SNs comprise of many cheap and low-powered
nodes—capable of performing both sensing, communi-
cation and inference tasks—deployed over a region of
interest.
In this paper, we consider the use of sensor networks

for the monitoring of diffusion fields. Diffusion is the
movement of a collection of particles from regions of
high concentration to regions of low concentration. At
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the microscopic level, each particle undergoes Brownian
motion, leading to a diffusion field governed by (1) when a
large number of these particles are considered. For exam-
ple, the thermal variation of a heated solid is accurately
described by a diffusion field.
Our motivation for considering diffusion fields is based

on the fact that diffusion fields provide a suitable model
for numerous natural phenomena in biology, physics and
engineering: from the release of pollutants [8], to the
modeling of biochemical leakages and nuclear wastes[9].
Our main focus is on the problem of estimating the
sources of diffusion fields using spatiotemporal sensor
measurements of the field. Such fields are spatially non-
bandlimited, thus require an extremely dense set of
samples in order to achieve any useful reconstruction
of the field using classical linear reconstruction tech-
niques. Consequently, considerable research efforts, from
the signal processing community, have gone towards
devising robust sensor data fusion schemes for diffusion
field/source estimation. Many centralized solutions to this
field/source estimation problem, such as [10–20], have
been recently proposed. It is well known however that
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centralized estimation strategies over sensor networks can
be vulnerable to single point failures, for instance, the net-
work becomes inoperational if the fusion center (FC) fails.
In addition, communicating with the FC typically involves
long-range transmission from the sensor nodes which can
result in bottlenecks due to contention. To this end, some
decentralized and fully distributed algorithms have been
proposed in the literature, where the aim has been to
improve the network’s robustness to node failures whilst
also reducing transmission costs by relying only on local
communication between nodes. Lu and Vetterli, for exam-
ple, propose a distributed adaptive sampling scheme [21],
and van Waterschoot and Leus [22] develop a distributed
scheme based on finite element method. A distributed
field reconstruction method using hybrid shift-invariant
spaces is proposed in [23], whilst a distributed extension
of standard compressed sensing techniques is developed
in [24].
In this SN setting, the nodes are often battery pow-

ered and, as such, must adhere to strict communication
and processing constraints for practical viability. However,
most of the current approaches violate these constraints
due to high computational complexity; they also implic-
itly assume that the communication links between nodes
are noiseless and, thus, of infinite capacity. Although a dis-
tributed sequential Bayesian estimation method which is
suitable under strict power and computational constraints
is proposed in [25], it also assumes that messages can
be exchanged with infinite precision, i.e. over a noise-
less channel. The main task of this paper, therefore, is to
derive a noise robust fully distributed sensor data fusion
scheme for recoveringmultiple localized diffusion sources
over sensor networks with communication constraints.
We begin by arguing that the field estimation problem is
equivalent to estimating the sources of the field. Then,
we extend the sensing functions approach of [26, 27] used
for simultaneously recovering all unknown source param-
eters (intensities, locations and activation times) of the
field, to the case of distributed estimation. In contrast to
[26, 27] which demands a fusion center, we show that
this computation can be distributed using a modification
of the distributed gossip algorithms for average consen-
sus, such that each sensor in the network only needs to
exchange some properly modified versions of its sensor
measurements to its neighboring nodes. This modifica-
tion is based on the physics of the problem and thus allows
each sensor to converge, through these localized interac-
tions with its neighbors, to the true values of a specific
family of integrals. Finally, we demonstrate how the val-
ues of this family of integrals can allow each sensor in the
network to successfully recover the unknown sources.
The remainder of this article is organized as follows.

In Section 2, the distributed sampling and source recon-
struction problem is formulated, providing also an outline

of the assumptions made on the model of the sensor
network. Section 3 presents a brief overview of gossip
algorithms for distributed consensus under unquantized
and quantized communications. Section 4 overviews the
sensing function approach for the centralized recovery
of multiple sources of diffusion fields. We then present
a derivation of the physics-based consensus scheme for
distributed and simultaneous recovery of multiple instan-
taneous and localized diffusion sources in Section 5, along
with robust approaches for handling sensor noise, under
unquantized and quantized sensor interactions. Numeri-
cal simulations are given in Section 6 to corroborate the
performance of the proposed physics-driven consensus
scheme. We finally conclude the article in Section 7.

2 Problem formulation and sensor network
model

This paper considers the problem of reconstructing two-
dimensional diffusion fields from their spatiotemporal
samples, obtained using a network of randomly deployed
sensors with communication constraints.
Let u(x, t) denote the diffusion field, at some spatial

location x ∈ R
2 and time instant t, induced by an

unknown source distribution f (x, t). Then, the field u(x, t)
will evolve through space and time according to the diffu-
sion equation,

∂

∂t
u(x, t) = μ∇2u(x, t) + f (x, t), (1)

where μ is the diffusivity of the spatial medium through
which the field propagates. Furthermore, using the
method of Green’s functions the solution to this PDE is
given by

u(x, t) = (g ∗ f )(x, t), (2)

where g(x, t) = 1
4πμt e

− ‖x‖2
4μt H(t) is known as the Green’s

function of the diffusion field, and H(t) is the unit step
function. In this paper, we will consider diffusion fields
induced by spatially localized and temporally instanta-
neous sources, with the following distribution:

f (x, t) =
M∑

m=1
cmδ

(
x − ξm, t − τm

)
, (3)

where cm, τm ∈ R are the intensity and activation time
of the mth source, respectively, and ξm = (

ξ1,m, ξ2,m
)
is

its spatial location. The result (2) implies that if f (x, t)
is known precisely, then it is possible to reconstruct the
entire field u(x, t) ∀x, t. Hence, in this contribution, we will
concentrate on estimating the source distribution f using
sensor networks with underlying communication con-
straints. Specifically, each sensor can only communicate
with a subset of neighboring sensors and the communi-
cation link is assumed to have finite bandwidth. The first



Murray-Bruce and Dragotti EURASIP Journal on Advances in Signal Processing  (2016) 2016:14 Page 3 of 22

constraint means only local exchange of data can occur,
whilst the second implies that the exchanged messages
must be quantized.
We seek a distributed estimation strategy for solving

this estimation problem, so that each sensor performs
local data acquisition (senses the diffusion field) and then
through localized data processing and communications
(i.e. exchanging properlymodified versions of itsmeasure-
ments with its neighbors) estimates the unknown source
parameters {cm, ξm, τm : m = 1, . . . ,M} of the field.
This distributed sampling and reconstruction problem is
summarized as follows for clarity:

Problem 1. Let S = {1, . . . ,N} denote a network of N
sensors with each sensor n located arbitrarily at xn having
access to local samples ϕn(tl) = u(xn, tl) of the field u, at
times tl for l = 0, 1, . . . , L. Given only these local temporal
samples, we intend to estimate {cm, ξm, τm : m = 1, . . . ,M}
by performing local exchange of messages with neighboring
nodes.

We first address the case where sensors collect noise-
less samples of the field and defer our treatment of noisy
measurements to Section 5.2.
In our sensor network setup, it is assumed that the sen-

sors and sources lie in the same plane, and that the num-
ber of sourcesM to be estimated is known to the sensors.
Furthermore, we assume that the sensors in the network
are randomly deployed over some region of interest, with
each node able to communicate only with sensors within
some radius. As such, we can model the sensor network
as a connected random geometric graph (RGG), denoted
G(N , rcon), with N sensor nodes and connectivity radius
rcon. This system may be realized by placing N nodes uni-
formly at random over a square region and then placing an
edge between a pair of nodes if their Euclidean distance is
at most rcon, as shown in Fig. 1.
These communication links are assumed initially to be

ideal; we then relax this assumption and consider the
case when the link has finite capacity, so that the data
exchanged between sensors need to be quantized. In this
case, it is assumed that a capacity-achieving communica-
tion scheme is used and the receiver is therefore able to
recover the original message with zero error. Sensors are
synchronized; as such, the field samples obtained by the
nth sensor are {ϕn(tl)}Ll=0. Finally, we assume that upon
deployment of the sensors, a process is initiated whence:

a) the sensors learn the topology of the network; and
b) they each perform the Delaunay triangulation, as

shown in Fig. 2, such that we obtain a graph
Gdel = (V , E), with the vertex set V , corresponding to
the locations of the sensors and E are the edges of the
triangulation. Hence, every sensor n knows if it lies

Fig. 1 A sensor network example. Links between sensors as modelled
by a random geometric graph

on the convex hull boundary of the triangulation or
in the interior of the convex hull; and also knows the
total number Jn of triangles for which it is a vertex, as
well as their areas |�n,j| for j = 1, . . . , Jn. �n,j is used
to refer to the j th triangle of the nth sensor.

The assumption (a) above means that each sensor
knows its position relative to other sensors in the net-
work, this is important when recovering the location

Fig. 2 A sensor network and its Delaunay triangulation. Themonitored
domain 	 partitioned into triangular meshes and the straight line
segments making up the domain boundary ∂	 (black solid lines)
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information of the unknown diffusion sources. Whilst the
assumption (b), as will be seen in Section 5, is required in
order for the nth sensor to be able to compute the weights
with which to adjust its field measurements, before com-
municating them to neighboring sensors.

3 Gossip schemes for distributed average
consensus

Gossiping [28, 29] is a distributed strategy for achieving
consensus amongst agents in a network through a local
exchange of data. Following the early works of [28] in the
area, it has gained considerable interest for in-network
processing in sensor networks as it mitigates the need for
specialized routing protocols. In addition, gossip-based
algorithms are robust to bottlenecks and link failuresmak-
ing it suitable for our distributed estimation problem. The
results derived in this paper can be immediately extended
to other gossiping schemes, such as those introduced in
[30, 31]. An in-depth survey of gossiping algorithms in
sensor networks is given in [29], and analysis of general
averaging sum-weight-like algorithms in WSNs can be
found in [32].
For the purpose of demonstration, in our simulation

results, the archetypal pairwise randomized gossip algo-
rithm [33] will be used. In this scheme, each node pre-
serves an estimate of the sum and hence average of the
node values. Let the value of node n after the ith pairwise
gossip round be yn, i, hence, yn, 0 is its initial value. In an
iteration, a node n selected uniformly at random wakes
up and contacts a randomly selected neighbor n′ within
its connectivity radius, and they both update their esti-
mates by setting yn, i+1 = yn′, i+1 = (

yn, i+yn′, i
)
/2. Let

y(i) = [
y1, i, y2, i, . . . , yN , i

]T be the vector of the values of
the N agents in the network at the ith gossip round, then
this pairwise gossiping operation can be summarized in
the following way

y(i + 1) = P(i)y(i) (4)

where P(i) are doubly stochastic matrices selected at ran-
dom at the ith iteration. In the case of the pairwise
gossip algorithm, P(i) has entries such that elements
(n, n), (n, n′), (n′, n) and (n′, n′) are equal to 1/2 and is a
diagonal identity elsewhere. Under this scheme, it can be
shown that, if a network (of N nodes) is connected and
each pair of nodes communicate often enough, the esti-
mate at each node is guaranteed to converge to the global
network average ȳ = 1

N
∑N

n=1 yn, 0, i.e. limi→∞ y(i) =
1ȳ. Performance guarantees and convergence results have
also been studied (see [33] and the references therein).
The localized interactions in our field estimation setting

will be based on the use of gossip algorithms for the dis-
tributed computation of a family of integrals whose final
values can be used to reveal the unknown source param-
eters. In Section 5, we present our strategy for estimating

these family of integrals and, hence, recover the unknown
source parameters, through the use of gossip.

3.1 Quantized gossip
When the interactions between the agents are over a chan-
nel with finite capacity, the messages exchanged needs to
be quantized. It is then natural to wonder if the values
of the agents can still achieve consensus and converge to
ȳ using the pairwise gossip scheme discussed previously.
In what follows, we briefly investigate this question and
briefly overview some proposed solutions in the litera-
ture. The inter-agent communication is through a channel
employing a uniform quantizer with quantization step δQ.
This communication can be modelled by introducing the
quantization map Qq : R 
→ Q such that

Qq(y) = kδQ,
(
k − 1

2

)
δQ ≤ y <

(
k + 1

2

)
δQ, (5)

where k ∈ Z and Q is the set of permissible quantization
levels, i.e.Q = {Qq(y) : k ∈ Z}.
3.1.1 Average consensus via naive quantized gossip
This is a straightforward extension of the standard gos-
sip consensus scheme, whereby after each (pairwise)
exchange of messages, the agents requantize their values
and exchange this quantized value at the next iteration. It
is summarized as follows,

y(i + 1) = P(i)Qq(y(i)), (6)

where i denotes the ith iteration, Qq denotes the mapping
due to a uniform q-bit quantizer and P(i) is the transition
matrix.
Under such a scheme, the agents in the network reach

a consensus. However, convergence results are poor in
the sense that the consensus value can be far away from
the true average as is shown in Fig. 3a. The poor con-
vergence result observed is known to be due to the loss
of symmetry between neighbors in the use of received
information. Consequently, there has been considerable
research efforts put towards devising average consensus
strategies for networks with finite communication capac-
ity, where it becomes impossible for sensors to exchange
real numbers and hence arrive at the real-valued network
average ȳ.
We consider in what follows some common quantized

consensus strategies which are well suited to our field
estimation task.

3.1.2 Kashyap’s quantized consensus gossip
In [34], Kashyap et al. propose a quantized consensus
algorithm that aims to preserve the network average at
every iteration. They prove that the collection of values
at each agent in the network will converge to a quantized
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Fig. 3 State evolution of quantized gossip schemes. Shows at each gossip iteration the state evolution of the agents in the network assuming a
5-bit uniform quantizer is used; the desired average is denoted by the dashed grey line. We use in a naive quantized gossip (NQG), b Kashyap’s
quantized gossip (KQG) and c symmetric quantized gossip (SQG)

consensus distribution. Specifically, each node will con-
verge to either Ȳ or Ȳ + 1, where Ȳ = ∑N

n=1 yn,0 modN ,
if the pair of communicating agents (n, n′) use an update
such as

yn,i+1 =
⌈
yn,i + yn′,i

2

⌉
,

yn′,i+1 =
⌊
yn,i + yn′,i

2

⌋
,

(7)

where yn,i ≤ yn′, i, and �·
, �·� is used to denote rounding
up and down to the next quantizer level. We validate this
approach through the simulation results shown in Fig. 3b.
We refer to [34] for a theoretical analysis of convergence.

3.1.3 Average consensus via symmetric quantized gossip
Frasca et al. [35] propose a scheme which aims to restore
the symmetry lost by using an update scheme such as (6).
This algorithm can be summarized as follows,

y(i + 1) = y(i) + (P(i) − I)Qq(y(i)) (8)

where i denotes the ith iteration,Qq is the mapping due to
a uniform q-bit quantizer, P(i) is the diffusion (transition)
matrix and I is the identity matrix.
Under such a scheme, the agents in the network achieve

quantized consensus in the sense that the value at each
node is at most one quantizer level away from the true
average. Specifically, as well as the total sum of the states
being preserved, the states of the agents in the network
converge but to different values which are close to the true
average, and in fact only differ from this true average by
at most one bin. This can be seen in Fig. 3c which shows
the state evolution of the agents in the network assuming
a 5-bit (32-level) uniform quantizer.

4 Centralized recovery of multiple sources
In what follows, we provide an overview for the cen-
tralized recovery of diffusion fields as proposed in [36],
wherein we demonstrate through the use of Green’s sec-
ond theorem that given access to some generalized mea-
surements of the form

R(k)= 〈
k(x)�(t), f
〉=∫

	

∫
t

k(x)�(t)f (x, t)dtdV ,

(9)

for k = 0, 1, . . . ,K , it is possible to uniquely determine the
unknown source parameters in f (x, t), provided
k(x) and
�(t) are spatial and temporal sensing functions, respec-
tively, chosen to satisfy certain conditions. In (9), V is the
variable of integration performed over a surface 	. We
will see that if 
k(x) and �(t) are properly chosen, the
integrals in (9) reduce to a power-sum series which can
be efficiently solved using Prony’s method to recover the
unknown source parameters.

4.1 Closed-form inversion
Let us commence by relating the field u(x, t) diffusing in
	 to the unknown sources inducing the field, through the
use of Green’s second theorem. Denote by 
k an arbitrary
twice differentiable function in 	, then Green’s second
identity relates the boundary and the surface integrals
over the bounded region as follows,∮

∂	

(
k∇u−u∇
k)·n̂∂	dS=
∫

	

(

k∇2u−u∇2
k

)
dV ,

(10)

where n̂∂	 is the outward pointing unit normal vector
to the boundary ∂	 of 	, and S denotes the variable of
integration along the boundary ∂	 of 	.
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Furthermore, if 
k is chosen to satisfy
∂
k
∂t

+ μ∇2
k = 0, (11)

then by substituting (1) and ∇2
k = − 1
μ

∂
k
∂t into (10), we

obtain∫
	

∂

∂t
(u
k)dV−μ

∮
∂	

(
k∇u − u∇
k)·n̂∂	dS=
∫
	


k f dV .

(12)

This is the basis of the reciprocity gap (RG) method [37]
used in non-destructive testing of solids [37, 38]. Essen-
tially, if u(x, t) is known and since we choose and therefore
also know 
k(x), the left hand side (lhs) of (12) can be
computed. We show in what follows how it is possible
to recover f (x, t) algebraically from this, under certain
conditions.

Remark 1. Equation (11) is the so-called adjoint of the
diffusion equation, and in this work, we will refer to any
family of functions that satisfy this equation as a spatial
sensing function.

Firstly, we extend the reciprocity gap method by mul-
tiplying both sides of the so-called reciprocity gap func-
tional, (12), by a time-varying sensing function �(t) and
then integrating the resulting expression over t ∈ [0,T], to
obtain∫ T

t=0
�(t)

(∫
	

∂

∂t
(u
k)dV−μ

∮
∂	

(
k∇u − u∇
k)·n̂∂	dS
)
dt︸ ︷︷ ︸

def=R(k)

=
∫ T

t=0
�(t)

∫
	


kf dVdt.

(13)

Notice that (13) now depends only on k and coincides
with (9) if we denote its lhs withR(k). Specifically,

R(k)= 〈
k(x)�(t), f
〉=∫

	

∫
t

k(x)�(t)f (x, t)dtdV .

(14)

Moreover, for a time-independent choice of 
k(x), we
have that

R(k) =
∫

	

(
kU̇)(x,T)dV− μ

∮
∂	

(
k∇U − U∇
k) · n̂∂	dS,

(15)

where

U(x,T) =
∫ T

0
�(t)u(x, t)dt and, (16a)

U̇(x,T) = �(T)u(x,T) −
∫ T

0

∂�

∂t
u(x, t)dt. (16b)

Hence, R(k) can be computed exactly if u(x, t), 
k(x)
and �(t) are known over 	×[0,T]. We now demonstrate
how to choose the spatial and temporal sensing functions
so that givenR(k), the unknown parameters of f (x, t) can
be retrieved. We first observe the following fact:

Lemma 1. 
k(x) = e−k(x1+jx2) is a valid spatial sensing
function.

Proof. A valid spatial sensing function in our context
must satisfy (11) in order to obtain (12) from (10). Notice
that 
k(x) = e−k(x1+jx2) is time independent; and also
analytic (i.e. ∇2
k = 0), which follows by summing its
second derivatives with respect to x1 and x2. Combining
these two properties allows us to conclude that ∂
k

∂t +
μ∇2
k = 0.

Therefore, (15) is satisfied when we choose �(t) to
be the time-varying function �(t) = e−jt/T , and

k(x) = e−k(x1+jx2) which by Lemma 1 is a valid sens-
ing function. Furthermore, for the source parameteriza-
tion (3), the right hand side of (14) becomes, R(k) =∑M

m=1 cm�(τm)
k(ξm), which results in the following
power-sum series:

R(k) =
M∑

m=1
cme−jτm/Te−k(ξ1,m+jξ2,m), k = 0, 1, . . . ,K ,

(17)

when replacing �(t) with e−jt/T and 
k(x) with
e−k(x1+jx2). Equation (17) is a Prony system frequently
encountered in spectral estimation [39] and within the
finite rate of innovation framework [40] and can be solved
to obtain all M pairs

{
cme−jτm/T , ξ1,m + jξ2,m

}M
m=1, and

therefore,
{
cm, τm, ξm

}M
m=1 if K≥2M−1. A brief overview

of the essential elements of Prony’s method is given in
Appendix A; for a more in-depth treatment, we refer to
[40, 41].
In practice, the sequence {R(k)}Kk=0 cannot be com-

puted exactly using (15) since we do not have access to
the entire field u(x, t) but only to sensor measurements
{ϕn(tl) : l = 0, 1, . . . , L}Nn=1. A way to compute good
approximations of (15) using standard quadrature tech-
niques is discussed in [36]. When using these quadrature
techniques to obtain an approximation of the generalized
measurements {R(k)}k , the performance of the central-
ized algorithm is near-optimal, in that it comes very close
to achieving the Cramer-Rao bound (CRB) as shown in
Fig. 10.
In the next section, we present a novel consensus-

type method for the distributed estimation of {R(k)}k
that is able to achieve the same estimation performance
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as the centralized estimation algorithm, using only local
exchanges of the sensor measurements.

5 Towards a distributed source recovery:
physics-based consensus

As highlighted in Section 2, we assume that the sensors
know the topology of the network and that each sensor
performs the Delaunay triangulation as shown in Fig. 2.

5.1 Consensus-based estimation over sensor networks
With the assumptions above, we can now derive the
consensus-based diffusion source estimation scheme as
follows.
Firstly, consider the surface integral contribution in (15),

and the triangulation of Fig. 2, if the bounded domain 	 is
partitioned into non-overlapping triangular subdivisions{
�j
}J
j=1 such that

⋃I
i=1 �i = 	 and �i

⋂
�j = ∅ for i �= j,

then this integral can be approximated by the sum [42]:

∫
	

(

kU̇

)
(x,T) dV ≈1

3

J∑
j=1

3∑
j′=1


k
(
vj,j′
)
�̇j,j′(tL)|�j|,

(18)

where vj, j′ is the j′th vertex of triangle j and �̇j, j′(tL) =
U̇(vj, j′ , tL) is the measurement of the sensor situated at
this vertex at time t = tL = T . Moreover, the double sum,
in (18), can be re-written in the following way:

∫
	

(

kU̇

)
(x,T) dV ≈ 1

3

J∑
j=1

3∑
j′=1


k
(
vj,j′
)
�̇j,j′(tL)|�j|

= 1
3

J∑
j=1

|�j|
(

k
(
vj, 1
)
�̇j,1(tL)

+
k
(
vj, 2
)
�̇j, 2(tL)+
k

(
vj, 3
)
�̇j, 3(tL)

)
=

N∑
n=1

⎛⎝1
3

k(xn)

Jn∑
j=1

|�n,j|
⎞⎠

︸ ︷︷ ︸
:=An(k)

�̇n(tL)

(19)

where �n, j and |�n, j| are used to denote the jth tri-
angle and its area, respectively, for which node n is a
vertex. The last equality follows by noticing that �̇j, j′(tL)
is always weighted by the product of the area of tri-
angle j and 1/3
k(vj, j′). Hence, denoting the set of all
triangles that share a common vertex n located at xn by
Tn = {�n,1,�n,2, . . . ,�n,Jn}, the measurement �̇n(tL) is
always weighted by the sum of the areas of its correspond-
ing triangles and 1/3
k(xn). We denote this weight that
directly depends on the sensing function and Delaunay
triangulation (equivalently, the topology of the network)
by An(k).

For the boundary integral, the time-integrated field
U(x) and its spatial derivative ∇U(x)=

[
∂U
∂x1 ,

∂U
∂x2

]T =[
Ux1 ,Ux2

]T are required. Let S∂	 = {1, . . . , n, . . . , I}
denote the cyclically ordered set of the bound-
ary sensors; these coincide with the vertices of
the convex hull. Furthermore, assume the ele-
ments of S∂	 are in counterclockwise order, then,
n̂∂	dS ≈ [

x2,n−x2,n−1, x1,n−1−x1,n
]T. Hence, the

boundary integral can be approximated as follows,∮
∂	

(
k∇U − U∇
k) · n̂∂	 dS

≈
I∑

n=1

k(xn)

[(
Ux1(xn) + kU(xn)

) (
x2,n − x2,n−1

)
+ (

Ux2(xn) + jkU(xn)
) (
x1,n−1 − x1,n

)]
=

I∑
n=1


k(xn)
{(
x2,n−x2,n−1

)
Ux1(xn)+

(
x1,n−1−x1,n

)
Ux2(xn)

+ U(xn)
[(
x2,n − x2,n−1

)+ j
(
x1,n−1 − x1,n

)]}
.
(20)

The first term in (20) depends on U(xn) and its spatial
derivative which must be approximated from spatiotem-
poral samples of u(x, t). Note that U(xn) can be obtained
by sensor n independently using trapezium rule. However,
∇U(xn) can only be estimated reliably using neighboring
sensor measurements by a polynomial fitting approach.
Specifically, we find the regression function U(xn) =
αnx1,n + βnx2,n + γn by estimating (αn,βn, γn) for each
boundary sensor n = 1, . . . , I using measurements of the
nearest neighbors to the point xn.
Let the nth sensor located at xn, with measurement

U(xn) have the two closest sensors x′
n and x′′

n with cor-
responding measurements U(x′

n) and U(x′′
n). With these,

we can estimate the parameters (αn,βn, γn) by solving the
linear system:⎡⎣U(x′′

n)
U(xn)
U(x′

n)

⎤⎦ =
⎡⎣ x′′

1,n x′′
2,n 1

x1,n x2,n 1
x′
1,n x′

2,n 1

⎤⎦⎡⎣ αn
βn
γn

⎤⎦ , (21)

un = Xndn. (22)

The system admits a unique solution, if x′′
n, xn and

x′
n are not collinear. Therefore, the local spatial deriva-

tive ∇U(xn) can be retrieved directly from the solution
to this system by noticing that the polynomial p(x) =
αx1 + βx2 + γ has ∇p(x) = 〈α,β〉. Hence, ∇U(xn) =[
Ux1(xn),Ux2(xn)

]T ≈ [αn,βn]T, where

αn=
(
x2,n−x′

2,n
)
U(x′′

n)+
(
x′
2,n−x′′

2,n
)
U(xn)+

(
x′′
2,n−x2,n

)
U(x′

n)

det(Xn)
,

βn=
(
x′
1,n−x1,n

)
U(x′′

n)+
(
x′′
1,n−x′

1,n
)
U(xn)+

(
x1,n−x′′

1,n
)
U(x′

n)

det(Xn)
.
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Then, substituting these back into (20) gives∮
∂	

(
k∇U − U∇
k) · n̂∂	 dS

≈
I∑

n=1
b′′
n(k)U(x′′

n) + bn(k)U(xn) + b′
n(k)U(x′

n),

(23)

where

b′′
n(k)=


k(xn)
det(Xn)

[
x1,n−1−x1,n
x2,n−x2,n−1

]T[x′
1,n−x1,n
x2,n−x′

2,n

]
, (24a)

bn(k)= 
k(xn)
det(Xn)

[
x1,n−1−x1,n
x2,n−x2,n−1

]T[x′′
1,n−x′

1,n
x′
2,n−x′′

2,n

]
+k
k(xn)

[(
x2,n−x2,n−1

)+j
(
x1,n−1−x1,n

)]
,

(24b)

b′
n(k)=


k(xn)
det(Xn)

[
x1,n−1−x1,n
x2,n−x2,n−1

]T[x1,n−x′′
1,n

x′′
2,n−x2,n

]
. (24c)

The terms b′′
n(k), bn(k) and b′

n(k) in (24) are dependent
only on the topology of the network (specifically the loca-
tions of the sensors) and our choice of sensing function

k(x). Indeed given the assumptions detailed in Section 2,
these weights can be precomputed for every sensor in the
network, such that∮

∂	

(
k∇U − U∇
k) · n̂∂	 dS ≈
∑
n∈S

Bn(k)U(xn),

(25)

where Bn(k) is non-zero if n is a boundary sensor, i.e. n ∈
S∂	, or if it is one of the two nearest sensors to a boundary
sensor, n ∈ N∂	. Otherwise, Bn(k) is zero. Finally, we can
combine (19) and (25), to obtain the estimates forR(k):

R(k) ≈
∑
n∈S

An(k)�̇n(tL) − μBn(k)�n(tL) (26)

= 1
N
∑
n∈S

yn(k). (27)

where

yn(k) = N
(
An(k)�̇n(tL) − μBn(k)�n(tL)

)
. (28)

Upon deployment of the sensors, each sensor can pre-
compute its unique weights {An(k)}k and {Bn(k)}k for
k = 0, . . . ,K . This is possible as a result of the assump-
tions (a) and (b) stated in Section 2. After which they can
start to monitor the region of interest 	, by sensing the
field locally. To initiate the estimation process, the sensor
n exchanges its modified measurements {yn(k)}k with a
randomly chosen neighbor. This begins the gossip round,
as detailed in Section 3; it continues until convergence
to {R(k)}k . All sensors in the network can now indepen-
dently apply Prony’s method to its current estimate of

{R(k)}k in order to recover all M triples {cm, τm, ξm} as
described in Section 4.1. Consequently, we can now state
the following proposition:

Proposition 1. By exchanging the properly weighted
sum of sensor measurements, yn(k)=N

[
An(k)�̇n(tL)−

μBn(k)�n(tL)], it is possible for each sensor n to con-
verge to the same generalized measurements {R(k)}k as
the centralized algorithm and hence recover the unknown
diffusion source parameters with the same estimation per-
formance. Here, An(k) and Bn(k) are dependent on 
k
and the topology of the network, whilst �n(tL) and �̇n(tL)
are approximations of the time integrals (16a) and (16b),
respectively, obtained by sensor n at location x = xn, with
T = tL.

5.2 Noise robust consensus-based estimation
Proposition 1 presents a gossiping strategy for noiseless
measurements. In a noisy scenario, while the basic strat-
egy stays the same, some further processing is required to
improve noise resilience.
In the presence of measurement noise, the sensors in the

network obtain noisy spatiotemporal samples of the field:

ϕε
n(tl) = ϕn(tl) + εn,l, (29)

where we assume that {εn,l} are independent and iden-
tically distributed such that εn,l ∼ N

(
0, σ 2) for n ∈

{1, 2, . . . ,N} and l ∈ {0, 1, . . . , L}.
In Proposition 1, the sensors exchange their

local measures {yn(k)}k with neighboring nodes in
order to obtain a consensus on the desired general-
ized measurements {R(k)}k . Recall that for each k,
yn(k) = N

(
An(k)�̇n(tL) − μBn(k)�n(tL)

)
, this is simply

a weighted sum of the temporal field measurements taken
by sensor n; thus, we canwrite yn(k) = ∑L

l=0 wn,l(k)ϕn(tl),
with wn,l(k) ∈ C since An(k),Bn(k) ∈ C. Therefore, in the
noisy setting, the sensors exchange

yε
n(k) =

L∑
l=0

wn,l(k)ϕε
n(tl) =

L∑
l=0

wn,l(k)
(
ϕn(tl) + εn,l

)
= yn(k) +

L∑
l=0

wn,l(k)εn,l. (30)

We now consider the consensus value; upon
convergence, each sensor in the network holds:{
Rε(k) = 1

N
∑N

n=1 yε
n(k)

}K
k=0

from which they construct

the Toeplitz matrix, i.e. Toep
(
{Rε(k)}Kk=0

)
, in order to

apply Prony’s method. In the noisy scenario, they will
instead construct (see also Appendix A),
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Toep
({Rε (k)}k

)=Toep
({

1
N

N∑
n=1

yε
n(k)

}
k

)

=Toep({R(k)}k)+Toep

⎛⎝{ 1
N

N∑
n=1

L∑
l=0

wn,l(k)εn,l

}
k

⎞⎠
=Toep({R(k)}k) + Toep({ε(k)}k)
=Toep({R(k)}k) + Tε .

(31)

It is clear that, the noise term in Toep
(
{Rε(k)}Kk=0

)
,

given noisy spatiotemporal sensor measurements
becomes colored due to the weighted sum. However,
Prony’s method and its variations implicitly assume
that the noise in the terms {Rε(k)}k are i.i.d, hence it
must be pre-whitened before estimating the unknown
source parameters from it. To this end, each sensor can
design and apply (by post-multiplying the Toeplitz matrix
Toep ({Rε(k)}k) with) the pre-whitening filter F given by

F = C
†
2
ε (32)

where (·) †
2 is the square root of the Moore-Penrose pseu-

doinverse, and

Cε = Cov{Tε} = E
{
TεTH

ε

}
, (33)

before applying Prony’s method.
Notice that the covariance matrix, Cε , depends directly

on the variance of the sensor noise and on the weights{
wn, l(k)

}
n,l (hence, the network topology) for any k ∈

{0, 1, . . . ,K}. In what follows, we derive explicitly an
expression for Cε .
For ease of exposition, we define the matrix of coeffi-

cients W(k) ∈ C
N×(L+1), such that its entries are given

by [W(k)]n, l+1 = wn,l(k). Then, we define the vector of
coefficients w(k) = vec(W(k)) to be the vectorization
of W(k)—i.e. w(k) ∈ C

N(L+1) is formed by stacking the
columns of the matrix W(k) into a single column vec-
tor. Similarly, let ε ∈ R

N(L+1) be the vector formed from
the i.i.d noise sequence {εn,l}n, l in the same way. Thus,
ε(k) = 1

N
∑N

n=1
∑L

l=0 wn, l(k)εn,l = 1
NwT(k)ε. From this,

if Tε ∈ R
N1×N2 for instance, i.e.⎡⎢⎢⎢⎣

ε(N2−1) ε(N1−2) · · · ε(0)
ε(N2) ε(N2−1) · · · ε(1)

...
...

. . .
...

ε(N1+N2−2) ε(N1+N2−3) · · · ε(N1−1)

⎤⎥⎥⎥⎦ ,

we may write

Cε = E
{
TεTHε

}

= E

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N2−1∑
i=0

ε(i)εH(i)
N2−1∑
i=0

ε(i)εH(i+1) · · ·
N2−1∑
i=0

ε(i)εH(i+N1−1)

N2−1∑
i=0

ε(i+1)εH(i)
N2−1∑
i=0

ε(i+1)εH(i+1) · · ·
N2−1∑
i=0

ε(i+1)εH(i+N1−1)

...
...

. . .
...

N2−1∑
i=0

ε(i+N1−1)εH(i)
N2−1∑
i=0

ε(i+N1−1)εH(i+1) · · ·
N2−1∑
i=0

ε(i+N1−1)εH(i+N1−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Taking the expectation operator inside the matrix and
noting that

E

{N2−1∑
i=0

ε(i+j)εH(i)
}

= E

{N2−1∑
i=0

ε(i)εH(i+j)
}

= 1
N2

N2−1∑
i=0

E
{
wT(i)εεHw∗(i+j)

}
= 1

N2

N2−1∑
i=0

wT(i)
(
σ 2I

)
w∗(i+j)

= σ 2

N2

N2−1∑
i=0

wT(i)w∗(i+j),

allows us to write the covariance matrix (33) in the form

Cε= σ 2

N2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N2−1∑
i=0

‖w(i)‖2
N2−1∑
i=0

wT(i)w∗(i+1) · · ·
N2−1∑
i=0

wT(i)w∗(i+N1−1)
N2−1∑
i=0

wT(i+1)w∗(i)
N2−1∑
i=0

‖w(i+1)‖2 · · ·
N2−1∑
i=0

wT(i+1)w∗(i+N1−1)

...
...

. . .
...

N2−1∑
i=0

wT(i+N1−1)w∗(i)
N2−1∑
i=0

wT(i+N1−1)w∗(i+1) · · ·
N2−1∑
i=0

‖w(i+N1−1)‖2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(34)

To further improve the noise robustness of our source
estimation approach, we adapt the sequential local line
search technique introduced [36]. This modification is
based on searching for a time interval over where only a
single diffusion source is active. When such an interval
is found, the active source parameters are estimated and
its contribution to the spatiotemporal field measurements
is removed before the next source can be estimated. In
summary, this is achieved by considering an initial time
interval [0,T] and doing the following:

1. Assume there areM′ ≥ 2 unknown sources.
Approximate {Rε(k)}2M′−1

k=0 using the gossiping
approach as described in Section 5.1.

2. Estimate theM′ source intensities
{
σ ′
m′
}M′
m′=1 and

locations
{
ξ ′
m′
}M′
m′=1 using Prony’s method.

3. Each sensor can then check if their estimated sources
are valid, i.e. the pair

(
σ ′
m′ , ξ ′

m′
)
is valid if both

conditions:

(a) cm greater than some predefined threshold,
and

(b) ξ ′
m′ is inside the monitored region 	,

are simultaneously satisfied. LetMvs be the number
of valid sources.

4. There are now three cases:

(a) Mvs > 1: The time window [0,T] is reduced
and steps (1)–(3) are repeated.
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(b) Mvs < 1: The time window [0,T] is increased
and steps (1)–(3) are repeated.

(c) Mvs = 1: Sensors estimate all unknowns, say
(c1, ξ1, τ1), for this active source as described
in Section 5.1 and then perform a local line
search around their estimates of τ1 to refine
this estimate.

5. Output the estimates (c1, ξ1, τ1).

The resulting algorithm that combines pre-whitening
and line search with the gossiping strategy of Proposi-
tion 1 is described in the inset Algorithm 1. Under the
assumptions outlined in Section 2, Algorithm 1 guaran-
tees that the unknown source parameters can be recov-
ered in a distributed way (by performing local exchanges
of the measurements {yn(k)}n using gossiping and then
applying Prony’s method on convergence) with the same
estimation performance as the centralized estimation
algorithm. This can be seen in the mean squared error

Algorithm 1 Robust distributed estimation ofM sources
Require: {ϕn(tl)}l, sampling interval �t, μ, {An(k)} and

{Bn(k)}.
1: The sensor n starts the process at some time T.
2: Sensors compute their {yn(k)} over window t ∈ [0,T].
3: Then the gossip round begins, to compute {R(k)}

with K ≥ 2M′ − 1 andM′ ≥ 2 using consensus.
4: Compute and apply the Pre-whitening filter F.
5: Each sensor applies Prony’s to its estimate of {R(k)}

to recoverM′ pairs of
{
σ ′
m′ , ξ ′

m′
}M′
m′=1.

6: Each sensor sets Mvs(n) as the number of pairs{
σ ′
m′ , ξ ′

m′
}
having both σ ′

m′ greater than some thresh-
old and ξ ′

m′ ∈ 	.
7: They can now gossip Mvs(n) to get M̂vs, or a sensor

is elected at random to decide M̂vs. There now arises
three cases:

8: case M̂vs > 1
9: Decrease window size [0,T] and Go to 2.

10: case M̂vs < 1
11: Increase window size [0,T] and Go to 2.
12: case M̂vs == 1
13: Sensors apply Prony’s to its estimate of {R(k)} to

recover {cm, ξm, τm}.
14: Sensors perform a Local Line Search around τm,

to refine this estimate.
15: Sensors reconstruct local field and adjusts

{ϕn(tl)}l.
16: m ← m + 1.
17: Increase size of window [0,T] and Go to 2, ifm <

M, else go to 18.
18: return {cm}Mm=1, {αm}Mm=1, {ξm}Mm=1 and {τm}Mm=1.

(MSE) (performance) plots shown in Fig. 10 and the nor-
malized mean absolute errors (MAE) given in Table 1.

5.3 Source estimation over networks with finite
communication capacity

A limited communication bandwidth is a common
constraint on many sensor networks built for esti-
mation/inference tasks. This limitation necessitates the
quantization of data transmitted over such networks. In
this section, we consider the distributed estimation of the
sources of a diffusion field using a bandwidth-constrained
network of sensors. In particular, we propose an adapta-
tion of the distributed diffusion source estimation algo-
rithm outlined in Section 5.1, which implicitly assumes
that the measurement sequence {yn(k)}k of the nth sensor
can be transmitted with infinite precision to its neighbors.
Our adaptation is based on the use of quantized gos-
sip strategies. Although there exist a myriad of quantized
gossip strategies, some are much more suited to our esti-
mation task. To this end, the simulation results presented
herein are used to guide our choice of which quantized
gossip strategy to employ when the sequence {yn(k)}k is
quantized using a uniform q-bit quantizer.

5.3.1 Quantization noise
Communicating over a quantized channel leads, in gen-
eral, to a distortion in the transmitted signals. Therefore,
we will study through simulations the extent (and severity)
of the distortion introduced in the estimates of {R(k)}k
obtained, at each node, upon convergence to quantized
consensus from localized exchanges of quantized versions
of {yn(k)}k , ∀n ∈ {1, . . . ,N}. We will use the signal-to-
discretization and -quantization noise ratio (SDQNR) as a
measure of the level of distortion obtained upon conver-
gence. The SDQNR at each sensor is defined as follows,

SDQNR(n)=10 log10

⎛⎜⎜⎜⎝
∑K

k=0

∣∣∣∑M
m=0 cme−k(ξ1,m+jξ2,m)

∣∣∣2
∑K

k=0

∣∣∣∣ limi→∞ yn,i(k)−
M∑

m=0
cme−k(ξ1,m+jξ2,m)

∣∣∣∣2
⎞⎟⎟⎟⎠.

(35)

Both quantized gossip schemes [34, 35] considered in
Sections 3.1.2 and 3.1.3, respectively, are known to achieve
quantized consensus, such that all sensors in the net-
work converge to values which are within one bin of
the true average. Both schemes lead to a distribution
of values upon convergence; these values are such that
the initial network average is preserved. Figure 4 shows
the SDQNR for both schemes; this simulation is for two
sources with intensities (c1 = c2 = 1), locations ξ1 =
(0.113, 0.221), ξ2 = (0.234, 0.085) and activation times
τ1 = 1.213, τ2 = 5.126. For statistical significance, we
perform 100 trials, where each new trial uses a differ-
ent realization of the random graph (i.e. a new RGG).
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Table 1 Normalized mean absolute errors (MAE) of centralized and distributed estimation algorithms. A single source field (M = 1)
with c1 = 1, τ1 = 1.213, ξ1 = (0.1130, 0.2210) is considered and the source parameters estimated from the spatiotemporal samples
taken at 1

�t = 1 Hz over T = 10 s using N = 45 sensors, with spatial sensing function families K = 1 and K = 3. The normalized MAE
statistic has been computed with results from 1000 independent trials at different noise levels

Centralized Distributed (Unquantized) Distributed (Quantized)

K = 1 K = 3 K = 1 K = 3 K = 1 K = 3

No noise cm 0.0811 0.0683 0.0811 0.0684 0.1017 0.0740

τm 0.1375 0.1277 0.1231 0.1128 0.4127 0.1883

ξ1,m 0.0439 0.0306 0.0439 0.0306 0.1151 0.0644

ξ2,m 0.0285 0.0219 0.0285 0.0219 0.0571 0.0313

20 dB cm 0.4385 0.1025 0.4385 0.1026 0.5939 0.1030

τm 0.2794 0.2565 0.2583 0.2267 0.4928 0.2887

ξ1,m 0.0861 0.0611 0.0861 0.0620 0.1893 0.0767

ξ2,m 0.0600 0.0415 0.0600 0.0415 0.1040 0.0451

10 dB cm 0.2417 0.2027 0.2417 0.2031 0.2785 0.2171

τm 0.7132 0.7310 0.6952 0.7102 0.8321 0.7240

ξ1,m 0.2081 0.1808 0.2081 0.1874 0.2627 0.1951

ξ2,m 0.1135 0.0990 0.1135 0.0995 0.1310 0.1037

In so doing, we obtain a SDQNR for each sensor and
each independent trial and so Fig. 4 shows the distribu-
tion of SDQNRs of the quantized consensus states for
a range of q-bit uniform quantizers using a box plot. It
can be seen that the scheme proposed by Frasca et al.
results in consistently higher SNR compared to that of
Kashyap et al.
Consequently, we propose the use of the quantized pair-

wise gossip scheme summarized by (8) during the gossip
stage as this results in a sequence that is closer to the
ground truth sequence of {R(k)}k .

5.4 An extension: estimating time varying sources
A brief discussion is provided here, on how to extend
the physics-driven consensus schemes developed in this
contribution, for estimating a particular class of non-
instantaneous diffusion sources from the spatiotempo-
ral samples of their induced field. We consider sources
described by the model,

f (x, t) =
M∑

m=1
cmeαm(t−τm)δ(x − ξm)H(t − τm), (36)

Fig. 4 SDQNR of quantized gossip schemes. The realized SDQNR vs number of quantization bits (q-bits for q = 2, . . . , 10) using a Frasca’s symmetric
quantized gossip scheme and b Kashyap’s quantized gossip scheme. This simulation usesM = 2, K = 5, N = 90; the network is a RGG, G(N, 0.6).
The solid line in both plots shows the signal-to-noise ratio of the quantized version of ground truth Prony’s sequence, i.e. {Qq(R(k))}k for each q
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where αm < 0 is the decay coefficient and cm, ξm and
τm retain their usual meanings. Such a parameterization
model closely situations where the release rate of the
source decays exponentially, leakages in biochemical facil-
ities being a typical example.
In Proposition 2 of [36], it is shown that the generalized

measurements of the field induced by (36) is given by

R(k) =
M∑

m=1
c′me−k(ξ1,m+jξ2,m), k = 0, 1, . . . ,K (37)

where R(k) is still the family of integrals in (15) for any
k ∈ Z, and c′m = cm

αm

(
eαm(T−τm) − 1

)
.

5.4.1 Recovery of source locations
It is clear from (37) that applying Prony’s method directly
on {R(k)}Kk=0 where K ≥ 2M − 1, reveals the unknowns{(
c′m, e−(ξ1,m+jξ2,m)

)}
m, thus the locations of theM sources

can be immediately recovered.

5.4.2 Recovery of intensities, decay coefficients and
activation times

However to recover the remaining source parameter, we
notice that c′m and thus {R(k)} depend on T, i.e. the win-
dow over which the time-integrals are computed, hence
we will write c′m(T) and {R(k,T)} respectively to empha-
size this dependence (this is not true for instantaneous
sources). By considering three sequences {R(k,T1)},
{R(k,T2)} and {R(k,T3)} obtained when we take the time
integrals in (15) over three intervals [ 0,T1], [ 0,T2] and
[ 0,T3], where T2 = T1 + �T and T3 = T1 + 2�T , and
applying Prony’s method to the three sequence {R(k,T1)},
{R(k,T2)} and {R(k,T3)} leads to {c′m(T1)}, {c′m(T2)}m
and {c′m(T3)}m. From these, it can be shown that (see [36])

αm = 1
T1 − T2

ln
(
c′m(T2) − c′m(T1)

c′m(T3) − c′m(T2)

)
, (38)

τm = 1
αm

ln
(
c′m(T1)eαmT2 − c′m(T2)eαmT1

c′m(T1) − c′m(T2)

)
, (39)

and

cm = αmc′m(Ti)

eαm(Ti−τm) − 1
, i = 1, 2, 3. (40)

Therefore, (cm,αm, τm) can be obtained from {c′m(Ti) :
i=1, 2, 3}.
5.4.3 Recovery from spatiotemporal field samples
Given only spatiotemporal samples of the field, the
sequences {R(k,T1)}, {R(k,T2)} and {R(k,T3)} will
need to be approximated directly from the field sam-
ples. In this situation, sensor n can compute locally
y(i)
n (k)=N

(
An(k)�̇n(Ti)−μBn(k)�n(Ti)

)
for i = 1, 2, 3

and k = 0, 1, . . . ,K . Gossiping can then begin: they all

exchange locally and update their
{
y(i)
n (k)

}
k
i = 1, 2, 3,

until convergence, to obtain the desired approximation
for {R(k,Ti)}k i = 1, 2, 3. Where upon convergence each
node will have the desired information to recover all
unknown source parameters as described in Sections 5.4.1
and 5.4.2, providing K ≥ 2M−1.

6 Numerical simulations and results
This section presents numerical simulation results aimed
at evaluating the proposed distributed source estimation
algorithm, as well as its variation when the measurements
exchanged between the sensor nodes are quantized. For
the synthetic data simulations, presented in Sections 6.1
and 6.2, the 2D diffusion field used is simulated numer-
ically with MATLAB using (2); in addition, for noisy
simulations, zero mean additive white Gaussian noise
(AWGN), εn,l, is directly introduced to the spatiotemporal
samples as follows,

ϕε
n(tl) = ϕn(tl) + εn,l, (41)

such that the noise power σ 2 is the same for all sen-
sors, hence, those sensors closest to the source will have a
higher SNR compared to sensors placed further away. The
spatiotemporal sensor measurements are then assumed to
have a signal-to-noise ratio, SNR, of

SNR def= 10 log10

(∑N
n=1

∑L
l=0 |ϕn(tl)|2

N(L + 1)σ 2

)
. (42)

Moreover, the sensor distribution is modelled by a ran-
dom geometric graph with G(N , rcon), where N and rcon
are stated for each simulation.

6.1 Distributed estimation over noiseless channels:
synthetic data

6.1.1 Single source estimation
Figure 5 shows the distributed estimation algorithm in
the single source setting given noiseless spatiotemporal
measurements. Specifically, M = 1 and the true param-
eters of the source inducing the field are c1 = 1, ξ1 =
(0.113, 0.221) and τ1 = 1.213 s. The field induced is then
sampled, assuming no measurement noise, using N = 45
randomly placed sensors at a rate 1

�t = 1 Hz for Tend =
10 s. Furthermore, the SN and associated communica-
tion links are modelled as G(N , 0.4). The communication
between the sensors is assumed to be unquantized as
such a plain pairwise gossip algorithm is employed. In
particular, Fig. 5a shows the evolution of the location esti-
mates for three randomly chosen sensors as the number
of pairwise (in-network) messages exchanged increases.
We observe that the location estimates progressively tend
towards the true source location as expected. Figure 5b
shows similarly the evolution of the intensity (top) and
activation time (bottom) estimates with each pairwise



Murray-Bruce and Dragotti EURASIP Journal on Advances in Signal Processing  (2016) 2016:14 Page 13 of 22

Fig. 5 Distributed single source estimation using SNs with noiseless links. The evolution of the estimated source parameters with increasing number
of pairwise messages exchanged over the ideal unquantized channels of the SN is shown. The spatiotemporal sensor measurements are assumed
to be noiseless and K = 1 for the spatial sensing function family

exchange. The three curves show the evolution of the
estimates due to three randomly chosen sensors in the
network. We can again clearly notice, as expected, that
the estimates converge to the desired values after several
pairwise message exchanges.

6.1.2 Multiple source estimation
Next, we evaluate the proposed distributed estimation
algorithm in the case of multiple sources given noisy sen-
sor measurements. Specifically, the field induced by M =
3 sources with parameters c1 = c2 = c3 = 1, ξ1 =
(0.113, 0.221), ξ2 = (0.250, 0.170), ξ3 = (0.070, 0.135) and
τ1 = 3.2 s, τ2 = 8.1 s, τ3 = 15.4 s, is sampled at a rate
1
�t = 2 Hz for Tend = 25, in the presence of measurement
noise (SNR = 20 dB) using N = 63 randomly deployed
sensors. The sensor network and the communication links
between sensors are againmodelled as the RGG G(N , 0.4).
In Fig. 6, we show results of 10 independent trials for
this multiple source setting. Each independent trial uses
a new realization of a random geometric graph (RGG)
and a new sensor noise process. Specifically, the scatter-
plot in Fig. 6a shows estimates of the source locations,
whilst Fig. 6b indicates the estimated activation times at
convergence.
As expected, we observe that the unknown source

parameters are recovered reliably even when the sensor
measurements are noisy. In the next section, we con-
sider the scenario where the communication links have
a finite capacity and assess the feasibility of estimat-
ing the unknown source parameters using the quantized
consensus-based algorithm.

6.2 Distributed estimation over noisy channels: synthetic
data

The results presented in this section examine the
algorithm proposed for the distributed estimation of dif-
fusion sources under the quantized inter-sensor commu-
nication constraint.

6.2.1 Single source estimation
The single source case, i.e. M = 1, with source param-
eters c1 = 1, ξ1 = (0.113, 0.221) and τ1 = 1.213 s, is
considered. The field induced by this source is sampled
(assuming no measurement noise) using N = 45 ran-
domly placed sensors at a rate 1

�t = 1 Hz for Tend = 10 s.
Furthermore, the SN and associated communication links
are modelled as G(N , 0.4), and a 10-bit uniform quantizer
with dynamic range [−20, 20] has been assumed. In Fig. 7,
the number of moments used for the Prony sequence
{R(k)}Kk=0 is 2 (i.e.K = 1), whereasK = 5 is used in Fig. 8.
Recall that under pairwise symmetric quantized gossip,

as discussed in Section 3.1.3, the sensors in the network
converge to a distribution of values. Hence, we expect
that the sensor n obtains, in general, a (slightly) differ-
ent estimate—from the other sensors in the network—
for each estimated source parameter. In the scatterplots
of Figs. 7a and 8a, we have shown the source loca-
tion as estimated by each of the 45 sensors in the net-
work, upon convergence, for K = 1 and K = 5,
respectively. Observe that the variance of these loca-
tion estimates is smaller when K = 5; this is due
to the fact that Prony’s method and its variations are
more robust to noise when K is large. Furthermore, we
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Fig. 6 Distributed multiple diffusion source estimation using SNs with noiseless links. The estimates achieved by each sensor at convergence of the
unknown source parameters are shown for 10 independent trials of the experiment. The sensors are assumed to communicate over ideal links, so
that the exchanged messages are unquantized. Furthermore, the spatiotemporal sensor measurements are assumed to be noisy, such that
SNR = 20 dB and K = 10 for the family of spatial sensing functions. The scatterplot in a shows the true source locations (blue plus signs), the
estimated locations (red cross) and one realization of the sensor distribution (green circles)

also show the evolution of the diffusion source loca-
tion as estimated by three randomly chosen sensors
for K = 1 in Fig. 7b and for K = 5 in Fig. 8b,
where each trajectory corresponds to evolution of esti-
mates due to one of the three chosen sensors. Simi-
larly, Figs. 7c and 8c show the evolution of the intensity
(top) and activation time (bottom) estimates with increas-
ing number of pairwise message exchanges, for K =
1 and K = 5, respectively. The curves in each plot
are due to one of the three randomly chosen sensors.
We observe that in both cases, K = 1 and K = 5,
the estimates converge with the variance of the latter
case being smaller, again due to the increase in esti-
mation accuracy in Prony’s method for higher values
of K.

6.2.2 Multiple source estimation
In the following results, we aim to evaluate the robustness
of the proposed distributed source estimation algorithm
for quantized inter-sensor communication. Specifically,
we consider the effectiveness of the algorithm at esti-
mating multiple sources in the presence of measurement
noise. The field induced byM = 3 sources, such that c1 =
c2 = c3 = 1, ξ1 = (0.113, 0.221), ξ2 = (0.250, 0.170), ξ3 =

(0.070, 0.135) and τ1 = 3.2 s, τ2 = 8.1 s, τ3 = 15.4 s,
is sampled at a rate 1

�t = 2 Hz for Tend = 25 s, in
the presence of measurement noise (SNR = 20 dB) using
N = 63 randomly deployed sensors. The sensor net-
work and the communication links between sensors are
again modelled as the RGG G = 0.4. We assume a 15-
bit uniform quantizer with dynamic range [−20, 20] in the
results presented herein.
Figure 9 shows results of 10 independent trials for this

multiple source scenario. Each independent trial utilizes a
new realization of a random geometric graph (RGG) and
a new sensor noise process. Specifically, the scatterplot
in Fig. 9a shows the distribution of the estimates of the
source locations, whilst Fig. 9b indicates the distribution
of the estimated activation times upon convergence. It is
clear that the estimated source parameters are close to the
desired as expected.

6.2.3 Comparing estimation performance
We now present some statistical results in order to com-
pare quantitatively the distributed algorithm developed in
this paper to its centralized counterpart in [36].
Specifically in Table 1, we show the mean abso-

lute errors (MAE) of the estimated diffusion source
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Fig. 7 Distributed single source estimation using SNs with noisy links (quantized gossip) for K = 1. The evolution of the estimated source
parameters with increasing number of pairwise messages exchanged over the noisy quantized channels of the SN is shown. The spatiotemporal
sensor measurements are assumed to be noiseless and K = 1 for the spatial sensing function family

parameters obtained using the centralized and both
distributed (unquantized and quantized communication
links) algorithms. To obtain the reported statistics, we
simulate the field induced by a single source (M = 1), with
c1 = 1, τ1 = 1.23s and ξ1 = (0.1130, 0.2210), for T = 10 s
and sample it with N = 45 randomly placed sensors at
a frequency 1

�t = 1 Hz. Next, for the noisy scenarios,

we first corrupt the spatiotemporal samples with AWGN
before applying the centralized, unquantized distributed
and quantized distributed algorithms on the samples to
recover the unknown source parameters. We perform the
experiment for different sensor noise levels (i.e. noiseless
and SNR = {10, 20} dB). We repeat this experiment 1000
times (for statistical significance) with each experiment
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Fig. 8 Distributed single source estimation using SNs with noisy links (quantized gossip) for K = 5. The evolution of the estimated source
parameters with increasing number of pairwise messages exchanged over the noisy quantized channels of the SN is shown. The spatiotemporal
sensor measurements are assumed to be noiseless and K = 5 for the spatial sensing function family

using a new arbitrary sensor placement and a new sen-
sor noise realization in the noisy case; the MAE of each
parameter is now computed using the estimates from each
trial. We repeat this for K = 1 and K = 3 (spatial
sensing function family); as expected, the average error
decreases gracefully with increasingK. Moreover, the cen-
tralized and unquantized distributed estimation schemes
both perform similarly in all scenarios. In the noiseless

case, for instance, when K = 1, the average percent-
age errors in the intensity, activation time and location
estimates are around 8.1 %, 12.3 % and (4.4 %, 2.8 %),
respectively. The MAEs for all estimates are greater under
quantized communications (q = 10 bits and dynamic
range of quantizer is [−20, 20]) than the unquantized
counterpart. This observation is unsurprising and is a
result of the quantization (i.e. quantization errors and also
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Fig. 9 Distributed multiple diffusion source estimation using SNs with noisy links (quantized gossip). The estimates achieved by each sensor at
convergence of the unknown source parameters are shown for 10 independent trials of the experiment. The sensors are assumed to communicate
over noisy links, so that the exchanged messages are uniformly quantized. Furthermore, the spatiotemporal sensor measurements are assumed to
be noisy with SNR = 20 dB and K = 10 for the family of spatial sensing functions. The scatterplot in a shows the true source locations (blue plus
signs), the estimated locations (red cross) and one realization of the sensor distribution (green circles)

in the quantized gossip scheme implemented, the sensors
converge to a distribution of values rather than a single
value). In this case given noiseless sensor measurements,
when K = 1, we observe average percentage errors of
10.1 %, 41.3 % and (11.5 %, 5.7 %) in the estimates of c1, τ1
and (ξ1,1, ξ1,2), respectively, and a lot of improvement can
be gained by increasing K. Going from K = 1 to K = 3,
the errors are roughly halved for all parameters to about
7.4 %, 18.5 % and (6.5 %, 3.1 %), respectively. Given noisy
spatiotemporal samples, the MAE, and thus percentage
errors, for all algorithms increases but this increase can be
largely compensated by increasing K ; as an example, the
average percentage error at 20 dB for the activation time
estimate using the quantized distributed estimation drops
from around 48 % (at K = 1) to around 28 % (at K = 3).
Furthermore, we now compare more closely the perfor-

mance of the unquantized distributed and the centralized
schemes. Particularly, we use the MSE of the estimates
resulting from each algorithm as a metric for evalu-
ating performance and, through numerical simulations,
demonstrate that the performance of the unquantized dis-
tributed and centralized schemes coincide (as claimed in
Proposition 1). To obtain the MSE, a single source field

is simulated with the same setup as the MAE simula-
tions above. The field samples are then corrupted with
AWGN, and the desired source parameters are estimated
using both algorithms (centralized and unquantized dis-
tributed) with K = 1. We repeat the experiment 5000
times, with each new trial using a new sensor noise real-
ization (but fix the topology). The experiment is repeated
for several SNRs and the MSEs of the estimate are com-
puted and displayed in Fig. 10 along with the CRB, see
Appendix B for an analytic expression of the CRB for this
particular single source estimation problem. The location
plots for each dimension are shown in Fig. 10a, b, respec-
tively, whilst the MSE for the activation time with its CRB
is shown in Fig. 10c. We can observe that we achieve
approximately the CRB using both schemes and more
importantly the performance (MSEs) of both schemes
exactly coincide for the range of SNRs of interest.

6.3 Distributed estimation over quantized channels: real
data

Here, we present some experimental simulation results
using real thermal data. In so doing, we can evaluate the
proposed recovery algorithm, as well as the suitability
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Fig. 10 Performance of centralized and distributed estimation algorithms. A single source field (M = 1) with c1 = 1, τ1 = 1.213,
ξ1 = (0.1130, 0.2210) is considered and its source parameters are estimated from the (noisy) spatiotemporal samples taken at 1

�t = 1 Hz over
T = 10 s using N = 45 sensors, with the spatial sensing function family chosen such that K = 1. We show the MSE of the centralized and distributed
algorithms computed using results from 5000 independent trials for varying signal-to-noise ratios in aMSE of ξ1,1, bMSE of ξ2,1 and cMSE τ1

of the models in a real-life scenario. The thermal data
used here was obtained in [36] and we refer the reader
to that paper for details on how the thermal data has
been recorded. Figures 11 and 12 both summarize the
performance of our proposed distributed source recov-
ery method over quantized communication channels. In
Fig. 11, the complete thermal distribution of the moni-
tored region is shown immediately after source activation,
where the epicenter of the hot (lighter) region indicates
the true source location. Notice that the locations recov-
ered by each sensor node upon convergence (indicated by
a cross ‘×’), as can be seen are close to the true source
location. Furthermore, Fig. 12 shows a summary of the
results when multiple independent experiments are car-
ried out on the real data. We perform 10 independent
trials on the data, where each trial uses a new random
deployment of sensors nodes. The scatterplot in Fig. 12a
shows the estimated source locations of each trial, whilst
Fig. 12b shows the estimated activation times. The esti-
mates vary marginally around the true values, suggesting
that the proposed recovery algorithm remains robust to
the sensor distribution.

7 Conclusions
In this paper, a model-based consensus distributed algo-
rithm for solving the diffusion source estimation problem
in 2D using sensor networks with communication con-
straints is proposed. In particular, we considered the esti-
mation of multiple localized and instantaneous sources
of diffusion fields and devised a recovery scheme based
on gossip algorithms for average consensus. We demon-
strated how to properly modify the sensor measurements
using the mathematical model of the field, as well as
the network topology, such that each sensor node in the
network is able to recover the unknown source parameters
by performing only localized and quantized interactions

with other nodes. In so doing, we eliminate the need for
a fusion center whilst also managing the communication
costs. Simulation results carried out on synthetic data
have shown the robustness of the proposed method even
in the presence of noise and other model mismatches.
Furthermore, we have also validated our algorithm using
real thermal data obtained experimentally and shown that
we can also successfully recover the unknown source
parameters in this scenario.

Appendix
Appendix A: Prony’s method
The system (17) is of the general form:

R(k) =
M∑

m=1
amvkm, (43)

where am, vm ∈ C are unknowns. Such a system, although
linear in the unknown parameters am, is nonlinear in the
parameters vm. Hence, there is some difficulty associated
with efficiently recovering these nonlinear parameters.
Fortunately, this problem is well studied and will be solved
here by applying Prony’s method. The method is briefly
overviewed in the sequel, however for a more in-depth
treatment, see [39].
Prony’s method is based on the observation that if the

input to a filter with its zeros at vm is exactly the sequence
R(k), the filter will have zero as its output. Such a filter is
called an annihilating filter and has the following transfer
function:

H(z) =
M∑
l=0

h(l)z−l =
M∏

m=1

(
1 − vmz−1) , (44)

where h(k) is the impulse response of the filter H(z).
Specifically,
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Fig. 11 Sensor distribution, location estimates and the field reconstructions. Source is located at (0.06058, 0.03465) and activated at τ = 6.25 s. A
15−bit uniform quantizer with dynamic range (−1, 1) is used; for K = 5
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Fig. 12 Distributed single source estimation with real thermal data. The RGG, scatterplot of the locations and activation times estimated by the
sensors are shown for each independent trial. The distributed estimation is performed by SNs with noisy communication links, such that a 15−bit
uniform quantizer with dynamic range (−1, 1) is used

(h ∗ R)(k) =
M∑
l=0

h(l)R(k − l)

=
M∑
l=0

h(l)
M∑

m=1
amvk−l

m

=
M∑
l=0

h(l)v−l
m︸ ︷︷ ︸

=H(vm)

M∑
m=1

amvkm = 0, (45)

since H(z)|z=vm = 0. Given the sequence R(k), the
convolution between (h ∗ R)(k) may be written in the
matrix/vector form as Rh = 0, such that:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
... · · · ...

R(M) R(M − 1) · · · R(0)
R(M + 1) R(M) · · · R(1)

...
...

. . .
...

R(2M) R(2M − 1) · · · R(M)
...

... · · · ...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
h(0)
h(1)
...

h(M)

⎤⎥⎥⎥⎦=0. (46)

The matrix R is rank deficient with rank M and is
therefore overdetermined. Imposing h(0) = 1 enforces a

unique solution—since there are nowM coefficients of the
filter to be found—therefore, we need at least 2M consec-
utive terms of the sequence {R(k)}Kk=0; i.e. K ≥ 2M − 1.
Once h has been found, then the values of vm are simply
the roots of the polynomial H(z). Finally, the weights am
can be determined by simply taking any M equations in
(43) and solving the resultant Vandermonde system.
In the presence of model mismatch, (46) is no longer

satisfied exactly, yet minimizing the squared Euclidean
norm ‖Rh‖2 subject to ‖h‖2 = 1 gives a good estimate
for h [41]. Hence, the total least-squares (TLS) method is
used to solve for h, where h is chosen to be the eigenvec-
tor which corresponds to the smallest eigenvalue of the
matrix RTR. More details of the TLS method can be found
in [41].

Appendix B: Cramer-Rao bound
Given noisy sensor measurements,

Rε(k) = R(k) + 1
N
∑
n,l

wn,l(k)εn,l (47)

= 1
N
∑
n,l

wn,l(k)ϕn(tl) + 1
N
∑
n,l

wn,l(k)εn,l, (48)
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for k = 0, 1, . . . ,K . Let r = (Rε(0),Rε(1), . . . ,Rε(K))T

and as defined in Section 5.2, let W(k) ∈ C
N×(L+1) be

the matrix with entries [W(k)]n,l+1 = wn,l(k) and w(k) =
vec(W(k)). Furthermore, introducing the matrix W̃ =
(w(0),w(1), . . . ,w(K))T allows us to obtain the following
matrix-vector expression for (48):

r = W̃(ϕ + ε) (49)

where ϕ and ε are formed in the same way as w(k). It can
then be shown that the Fisher information matrix (FIM) is
given by [43]:

I(θ) = 2
σ 2 Re

{
GH (W̃W̃H)−1G

}
, (50)

where θ = (
c1, τ1, ξ1,1, ξ2,1, c2, τ2, ξ1,2, ξ2,2, . . . , cM, τM, ξ1,M,

ξ2,M
)T, i.e. θ ∈ R

4M, and

G =

⎡⎢⎢⎢⎣
∇θR(0)
∇θR(1)

...
∇θR(K)

⎤⎥⎥⎥⎦. (51)

For the specific single source estimation result pre-
sented in Fig. 10,R(k) = c1e−jτ1/Te−k(ξ1,1+jξ2,1) withM =
1 and k = 0, 1, then

G =

⎡⎢⎢⎢⎣
e−jτ1/T e−jτ1/T−(ξ1,1+jξ2,1)

−j c1T e−jτ1/T −j c1T e−jτ1/T−(ξ1,1+jξ2,1)

0 −c1e−jτ1/T−(ξ1,1+jξ2,1)

0 −jc1e−jτ1/T−(ξ1,1+jξ2,1)

⎤⎥⎥⎥⎦
T

. (52)

The CRB is then obtained by inverting the FIM.
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