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Abstract

A new two-dimensional direction-of-arrival estimation algorithm called 2D-l1-singular value decomposition (SVD) and
its improved version called enhanced-2D-l1-SVD are proposed in this paper. They are designed for rectangular arrays
and can also be extended to rectangular arrays with faulty or missing elements. The key idea is to represent
direction-of-arrival with two decoupled angles and then successively estimate them. Therefore, two-dimensional
direction finding can be achieved by applying several times of one-dimensional sparse reconstruction-based direction
finding methods instead of directly extending them to two-dimensional situation. Performance analysis and
simulation results reveal that the proposed method has a much lower computational complexity and a similar
statistical performance compared with the well-known l1-SVD algorithm, which has several advantages over
conventional direction finding techniques due to the application of sparse signal reconstruction. Moreover, 2D-l1-SVD
has better robustness to the assumed number of sources over l1-SVD.
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1 Introduction
Direction-of-arrival (DOA) estimation has been playing
a significant role in many applications such as radar and
wireless communication, and it has been well studied in
literature [1,2]. Conventional DOA estimation algorithms
can be classified into three broad categories: beamforming
[3], subspace-based methods [4,5], and maximum likeli-
hood methods [6]. In the last decade, DOA estimation
algorithms based on sparse signal reconstruction (SSR)
were proposed. They enforce sparsity on the spatial spec-
trum and pose source localization as an over-complete
basis representation problem. Many of them such as l1-
singular value decomposition (SVD) [7] and JLZA-DOA
[8] work directly on the input data while others such
as SPICE [9] and SpSF [10] work on the covariance
matrix. DOA estimation algorithms based on SSR have
several advantages over conventional methods, including
increased resolution, better robustness to noise, limita-
tions in data quantity, and correlated sources, as well as
not requiring an accurate initialization [7]. Improvements
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like [11] which are based on weighted l1 minimization can
get a better performance.
Although one-dimensional (1D) DOA estimation has

been widely investigated, two-dimensional (2D) DOA
estimation is of greater practical importance. How-
ever, most existing 2D DOA estimation methods have
met problems of high arithmetic complexity and pair-
matching due to a more complicated array manifold [12].
What is more, 2D methods extended from 1D conven-
tional algorithms may still have shortcomings such as
requirement of sufficient samples and performance degra-
dation in the presence of correlated sources. In [13],
the authors proposed a 2D algorithm whose key idea is
to successively apply several times of 1D multiple sig-
nal classification (MUSIC) [4] in tree structure. It has a
much lower complexity than 2D MUSIC but is limited
to uniform rectangular arrays (URAs) and needs extra
processes to deal with coherent sources. Sparse methods
can also be directly extended to 2D situation, but they
will significantly increase the dimension of over-complete
basis or the dictionary [14]. A fast orthogonal match-
ing pursuit (OMP) method for 2D angle estimation in
multiple-input multiple-output (MIMO) radar has been
proposed in [15], which decomposes the 2D dictionary
into two sub-dictionaries. However, the bistatic MIMO
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radar considered in [15] consists of a transmit array and
a receive array, and the signal at the receiver is analyzed
to estimate the transmit angle and the receive angle. So
its model differs from 2D DOA estimation. Some 2D
DOA estimation algorithms using L-shaped array have
also been proposed [16,17]. They may have a low compu-
tational complexity and need less antenna elements than
those algorithms using rectangular arrays. However, these
methods are based on the second-order statistics or the
cross-correlation matrix of the received data, so their per-
formances may deteriorate in the presence of correlated
sources or insufficient snapshots.
In this paper, a 2D DOA estimation method based on

SSR for rectangular arrays called 2D-l1-SVD is proposed.
The key idea is that 2D DOA estimation, which is usu-
ally implemented by estimating azimuth and elevation
angles jointly, can be accomplished by successively solv-
ing several 1D direction finding problems. It is illustrated
in this paper that 2D-l1-SVD reduces the computational
load due to the successive parameter estimation and has
a similar performance with the direct extension of l1-SVD
[7] to 2D situation. What is more, the other SSR based
DOA estimation methods that work directly on the input
data, including the weighted version of l1-SVD [11] or
JLZA-DOA [8], can also be extended to 2D situations
similar with a much lower complexity than direct exten-
sions. Moreover, it is possible that the array is conformal
to follow some prescribed shape or a few elements fail to
work in practical applications, and 2D-l1-SVD also works
properly for these nonrectangular applications. Therefore,
2D-l1-SVD keeps robustness to non-uniform array man-
ifolds. It is illustrated in both theoretical analysis and
simulation results that the proposed algorithm performs
properly and effectively.
The rest of this paper is organized as follows. Section 2

addresses the problem formulation. Section 3 presents
the proposed algorithm. Section 4 investigates the per-
formance of the proposed method and Section 5 demon-
strates the simulation results. Section 6 concludes the
paper.
In this paper, we use a bold small letter to represent a

vector and a bold capital letter to represent a matrix.

2 Problem formulation
2.1 Array configuration
Firstly, consider a rectangular planar array that consists of
M × N omnidirectional and well-calibrated antenna ele-
ments. The coordinates (xmn, ymn) of the antenna element
at the mth row and nth column (1 ≤ n ≤ M, 1 ≤ n ≤ N)

satisfy:

{
xm1 = . . . = xmn = . . . = xmN

y1n = . . . = ymn = . . . = yMn
, (1)

so they are denoted as (xm, yn) and the element at themth
row and nth column is indexed as (m, n). The rectangular
array may be non-uniform.
Although rectangular arrays, including uniform rectan-

gular arrays (URA), are quite common in practical appli-
cations, it is possible that the array is conformal to follow
some prescribed shape or some of the elements fail to
work, as illustrated in Figure 1, where the valid elements
are denoted as circles in the area rounded up by the deep
blue line while the blue ‘X’ denotes missing or faulty ele-
ments (similarly hereinafter). So the array manifold is no
longer rectangular, and it turns out to be a sub-array of the
rectangular array.
In order to deal with irregular arrays mentioned above,

consider the rectangular array that consists of M × N
antenna elements in Equation 1. And it is assumed that
there are D invalid (missing or faulty) sensors indexed as
(md, nd), d = 1, · · · ,D, where md and nd are the row
and column number of the dth invalid sensor, correspond-
ingly. The location of all invalid sensors is supposed to be
known a priori in this paper.

2.2 Representation of 2D DOA
Most existing 2D DOA algorithms try to estimate
the azimuth and elevation angle (θ ,ϕ), which is
(∠BOC,∠AOB) in Figure 2a. However, we consider
another definition of 2D DOA [16] in this paper, as given
in Figure 2b or (∠AOC,∠AOD) in Figure 2a, where the
purpose of direction finding is to estimate the two angles
(α,β) between the incoming signal and x-axis or y-axis,
respectively. It is assumed that the signals come from
above the antenna, as shown in Figure 2. Since OC⊥BC
and OC⊥AB, then we have OC⊥AC. As a result, OC =
OA · cosα = OB · cos θ = OA · cosϕ cos θ . Similarly,
OD = OA·cosβ = OB·sin θ = OA·cosϕ sin θ . Therefore,
there exists a correspondence between (θ ,ϕ) and (α,β):{

cosα = cosϕ cos θ

cosβ = cosϕ sin θ
. (2)

Figure 1 An example of a conformal array (a) and a faulty
array (b).
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Figure 2 Joint (a) and independent (b) 2D DOA estimation.

In this paper, we focus on the narrowband DOA
estimation problem and the noise signals are assumed
to be Gaussian additive noises. The incoming signals
can be correlated or even coherent with each other.
Using the narrowband model, we get the digital vector
y (k) = [

y1 (k) , · · · , yMN−D (k)
]T ∈ C(MN−D)×1 of com-

plex amplitudes of the sensors at time instant k bellow (the
superscript T denotes the transpose operation):

y (k) = As (k) + n (k) , (3)

where it is assumed that there are P narrowband far-
field signals s (k) = [s1 (k) , · · · , sP (k)]T ∈ C

P×1.
n (k) = [n1 (k) , · · · , nMN−D (k)]T ∈ C(MN−D)×1 is the
noise vector and A = [a (α1,β1) , · · · ,a (αP ,βP)] =
[a (θ1,ϕ1) , · · · ,a (θP ,ϕP)] ∈ C(MN−D)×P is the array man-
ifold matrix whose columns are comprised of P manifold
vectors. According to Equation 2, the element corre-
sponding to a valid sensor at themth row and nth column
in the manifold vector a

(
αp,βp

)
is:

am,n
(
αp,βp

) = am,n
(
θp,ϕp

)
= e−j2π(xm cos θp+yn sin θp) cosϕp/λ

= e−j2πxm cosα/λe−j2πyn cosβ/λ, (4)

where the exponential term is written as the sum of factors
related to α and β , respectively, hence the two parameters
to be estimated can be decoupled from each other.
If there are no invalid elements, the complex

amplitudes of sensors are y(k) �=[ y1,1(k), · · · , yM,1
(k), · · · , y1,N (k), · · · , yM,N (k) ]T ∈ C

MN×1 and we have

y (k) = [a (α1,β1) , · · · ,a (αP ,βP)] s (k) + n (k) , (5)

where n (k) =[n1,1 (k) , · · · , nM,1 (k) , · · · , n1,N (k) , · · · ,
nM,N (k) ]T ∈ C

MN×1, and a
(
αp,βp

) = [
a1,1

(
αp,βp

)
,· · ·,

aM, 1
(
αp,βp

)
, · · · , a1,N

(
αp,βp

)
, · · · , aM,N

(
αp,βp

)]T ∈
C
MN×1 is the manifold vector.

According to (4), the manifold vector can be rewritten
as the Kronecker product of two vectors:

a
(
αp,βp

) = bL
(
βp

) ⊗ aL
(
αp

)
, (6)

where aL
(
αp

) �= [
e−j2πx1 cosαp/λ, · · · , e−j2πxM cosαp/λ

]T ∈
C
M×1 and bL

(
βp

) �= [
e−j2πy1 cosβp/λ, · · · , e−j2πyN cosβp/λ

]T
∈ N×1 denote the steering vectors of the linear sub-arrays
that lie on the x-axis and y-axis, respectively. The super-
script L denotes ‘linear’. Thus, we can rewrite the signals
received at the array in a decoupled form:

Y (k) = ALX (k) + N (k) , (7)

where Y (k) �=
⎡
⎢⎣

y1,1 (k) · · · y1,N (k)
...

. . .
...

yM,1 (k) · · · yM,N (k)

⎤
⎥⎦ ∈ C

M×N is the

matrix form of y (k),AL �= [
aL (α1) , · · · ,aL (αP)

] ∈ C
M×P

denotes manifold matrix whose columns are comprised of
P manifold vectors of the linear sub-array on the x-axis,

X (k) �=

⎡
⎢⎢⎣
s1 (k)

(
bL (β1)

)T
...

sP (k)
(
bL (βP)

)T

⎤
⎥⎥⎦ ∈ C

P×N denotes the sig-

nal matrix in the decoupled signal model, and N (k) �=⎡
⎢⎣

n1,1 (k) · · · n1,N (k)
...

. . .
...

nM,1 (k) · · · nM,N (k)

⎤
⎥⎦ ∈ C

M×N is the matrix form of

n (k).
Although the 2D DOA

(
αp,βp

)
of multiple sources are

different from each other, it is possible that some of
the incoming sources have the same α and there exist
multiple identical columns in the manifold matrix AL.
Therefore, in order to make sure that all columns in
the manifold matrix AL are different from each other,
the 2D DOA of incoming sources can be denoted as(
α1,β1,1

)
, · · · ,

(
α1,β1,f1

)
, · · · ,

(
αP,βP,1

)
, · · · ,

(
αP ,βP,fP

)
,

where f1, · · · , fP are positive integers. So the total num-

ber of incoming sources is P0
�=

P∑
p=1

fp. Correspond-

ingly, the incoming signals are denoted as s (k) =[
s1,1 (k) , · · · , s1,f1 (k) , · · · , sP,1 (k) , · · · , sP,fP (k)

]T ∈ C
P0×1.

Therefore, the signal matrix X (k) in Equation 7 becomes

X (k) �=

⎡
⎢⎢⎢⎢⎢⎢⎣

f1∑
i=1

s1,i (k)
(
bL

(
β1,i

))T
...

fP∑
i=1

sP,i (k)
(
bL

(
βP,i

))T

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ C
P×N .
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From Equation 7, it can be observed that the informa-
tion of α and β is in the column and row spaces of Y (k),
respectively. The manifold matrix AL is decided by α and
is not related to β , while the signal matrix X (k) is deter-
mined by β . Equation 7 can also be explained in terms
of the rectangular manifold. Alpha can be estimated by
analyzing the samples of the sub-array that lies on the x-
axis and consists of sensors at

{
(xm, y1)

}
,m = 1, · · · ,M.

The linear sub-arrays that are parallel to x-axis in the
rectangular array share the same manifold when only the
estimation of α is taken into account. Therefore, in order
to estimate α, each snapshot received by the rectangular
array can be regarded asN correlated snapshots of the lin-
ear sub-array that lies on the x-axis. Then, 2D DOA can
be estimated by solving two 1DDOA estimation problems
successively instead of directly estimating 2D DOA. Since
α is decoupled from β , we can also estimate β firstly and
then estimate α. What is more, we will show in Section 3
that integrating the results of these two problems helps to
improve the performance.
Now we still consider the rectangular array whose ele-

ments are all valid and concentrate on the elements
indexed (md, nd) , d = 1, · · · ,D. Obviously, we have:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1,1 (k) · · · · · · · · · y1,N (k)
...

. . .
. . .

. . .
...

...
. . . ymd ,nd (k)

. . .
...

...
. . .

. . .
. . .

...
yM,1 (k) · · · · · · · · · yM,N (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0

0 0
. . . 0 0

...
. . . ymd ,nd (k)

. . .
...

0 0
. . . 0 0

0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ALX (k)+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n1,1 (k) · · · · · · · · · n1,N (k)
...

. . .
. . .

. . .
...

...
. . . nmd ,nd (k) − ymd ,nd (k)

. . .
...

...
. . .

. . .
. . .

...
nM,1 (k) · · · · · · · · · nM,N (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(8)

which can be rewritten as:

Y f =ALX (k) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

n1,1 (k) · · · · · · · · · n1,N (k)
...

. . . . . . . . .
...

...
. . . nfmd ,nd (k)

. . .
...

...
. . . . . . . . .

...
nM,1 (k) · · · · · · · · · nM,N (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(9)

where Y f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y1,1 (k) · · · · · · · · · y1,N (k)
...

. . . . . . . . .
...

...
. . . 0

. . .
...

...
. . . . . . . . .

...
yM,1 (k) · · · · · · · · · yM,N (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

In Equation 9, the received signals at the elements
indexed (md, nd) , d = 1, · · · ,D are disregarded and set
to zeros while the noise signals at these sensors change
into nfmd ,nd (k) = nmd ,nd (k) − ymd ,nd (k). The super-
script f denotes ‘faulty.’ The case of faulty sensors can
be processed in the above form. If there are D invalid
elements, then no restriction is placed on the range of
ymd ,nd (k) , d = 1, · · · ,D since there are no valid samples at
these invalid sensors. As a result, nfmd ,nd (k) , d = 1, · · · ,D
in Equation 9 is unconstrained. In this way, the complex
amplitudes of the sensors at a faulty rectangular array can
still be written in the form of the decoupled signal model
(Equation 9). However, it should be taken into account
that the noise signals at the faulty sensors are uncon-
strained and no longer distribute as noise signals at valid
sensors. As a result, when the decoupled signal model is
exploited, it should be noticed that the received signals at
the faulty elements are set to be zero and the noise signals
at these faulty elements are totally unknown and do not
provide any additional information.

3 Proposed algorithm
Based on the above decoupledmodel, 2DDOA estimation
can be achieved by two steps. Firstly, solve a 1D direction
finding problem to estimate the first parameter α and get
the information about the second parameter β . This pro-
cess can be accomplished by 1D DOA estimator directly
working on the input data instead of using the covariance
estimator, and information about the second parameter
(signal matrix in Equation 7) can be obtained as well. Sec-
ondly, solve another several 1D direction finding problems
to estimate β based on the rows extracted from the signal
matrix and the corresponding α can be obtained from the
row number.
DOA estimation methods based on SSR have been

found to have several advantages over conventional direc-
tion finding methods and many of them work directly on
the input data. Here, we pick l1-SVD [7] as our 1D DOA
estimation algorithm and propose a new 2D DOA estima-
tion method called 2D-l1-SVD. Exploiting the decoupled
signal model, 2D-l1-SVD has a much lower computational
load than l1-SVD due to the successive estimation of 2D
DOA parameters. Moreover, an improved version called
enhanced-2D-l1-SVD is also proposed in this section to
deal with multiple sources that are close to each other in
α or β domain but well separated in the other domain.
Obviously, l1-SVD does not need specific array shape.

However, rectangular arrays are more suitable to exploit
the decoupled signal model. As a result, although tech-
niques such as manifold separation [18] can be used for
modeling the steering vector of antenna arrays with prac-
tical interest with arbitrary geometry, we only consider
rectangular arrays and faulty rectangular arrays in this
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paper. On the other hand, it is obvious that JLZA-DOA [8]
and the other sparse reconstruction based methods that
work directly on the input data can also be extended to
2D situation using the aforementioned decoupled signal
model similarly.

3.1 2D-l1-SVD algorithm
The steps of the 2D-l1-SVD algorithm are illustrated in
Figure 3.
The notations that are used in this section are given in

Table 1. For each notation, the superscript denotes the
description of the variable and the subscript denotes the
index of the variable.
Step 1: Exploiting the decoupled signal model
The multiple snapshots received at the antenna

array can be denoted as a MN × T data matrix
Y ant �= [

yant (1) , · · · , yant (T)
] ∈ C

MN×T where T
is the number of the snapshots. Here, yant (k) �=[
yant1,1 (k) , · · · , yant1,N (k) , · · · , yantM,1 (k) , · · · , yantM,N (k)

]T ∈
C
MN×1 denotes the signal sampled at time instant k

(1 ≤ k ≤ T). The superscript ant denotes ‘antenna.’
According to the narrowband signal model, we have:

Y ant = AS + Nant, (10)

whereA = [
a

(
α1,β1,1

)
, · · · ,a (

α1,β1,f1
)
, · · · ,a (

αP,βP,1
)
,

· · · ,a (
αP ,βP,fP

)] ∈ C
MN×P0 is the manifold matrix of

P0 incoming signals, S = [s (1) , · · · , s (T)] ∈ C
P0×T

is the signal matrix of the incoming signals and
Nant = [

n ant (1) , · · · ,n ant (T)
] ∈ C

MN×T is the noise-
signal matrix at the sensor array. Here, s (k) = [s1,1 (k) ,· · ·,
s1,f1 (k) , · · · , sP,1 (k) , · · · , sP,fP (k) ]T ∈ C

P0×1 and n ant

(k) =[ n ant
1,1 (k) , · · · , n ant

1,N (k), · · · , nantM,1(k), · · · , n ant
M,N (k)]T ∈

C
MN×1 denote the incoming signals and the noise signals

sampled at time instant k (1 ≤ k ≤ T), respectively. As

mentioned before, faulty arrays can be treated in a sim-
ilar way as a complete rectangular array. For rectangular
arrays with faulty or missing elements, the manifold vec-
tor a(αp,βp,i) (1 ≤ i ≤ fp) refers to the manifold vector of
the complete rectangular array and the data matrix Y ant

satisfies ymd ,nd (k) = 0, d = 1, · · · ,D, k = 1, · · · ,T . Also,
it should be noticed that noise signals at the faulty sensors
nmd ,nd (k) are unconstrained.
For practical direction finding problems, we use the

SVD of the data matrix to reduce both the computa-
tional complexity and the sensitivity to noise, just like
l1-SVD [7]. The SVD of the data matrix is Y ant = U�VH,
where the superscript H denotes the conjugate transpose
operation. Therefore, the data matrix is decomposed
into the signal and noise subspaces. Then, the signal
subspace that contains most of the signal power is kept
to reduce the dimension. Let DK = [

IK , 0K×(T−K)

]T
where IK is a K × K identity matrix. Here, K denotes
the assumed number of sources and does not need
to be equal to the actual number of sources P0. And
it is indicated in [7] that l1-SVD maintains robust-
ness to the assumed number of sources. Then, let
Y sg = Y antVDK

�= [
ysg (1) , · · · , ysg (K)

] ∈ C
MN×K ,

Ssg = SVDK = [ssg (1) , · · · , ssg (K)] ∈ C
P0×K and

N sg = NantVDK
�=[nsg (1) , · · · ,nsg (K)]∈ C

MN×K where
the superscript sg denotes ‘signal’. More specifically,
ysg (k) �= [

ysg1,1(k),· · ·, ysg1,N (k) , · · · , ysgM,1 (k) , · · · , ysgM,N (k)
]T

∈ C
MN×1, ssg (k)=

[
ssg1,1 (k) , · · · , ssg1,f1 (k) , · · · , ssgP,1 (k), · · · ,

ssgP,fP (k)
]T ∈ C

P0×1 and nsg (k) �= [
nsg1,1 (k) , · · · , nsg1,N

(k) , · · · , nsgM,1 (k) , · · · , nsgM,N (k)
]T ∈ C

MN×1. Therefore:

Y sg = ASsg + N sg. (11)

The manifold vector of the rectangular array can be
rewritten as Kronecker product of two manifold vectors

Figure 3 Block diagram of steps for 2D-l1-SVD.



Wang et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:7 Page 6 of 16

Table 1 Notations used in section 3.1

Notation Size Definition

MN 1 × 1 The number of all the elements in the
rectangular array

D 1 × 1 The number of faulty elements in the
rectangular array

P0 1 × 1 The number of incoming sources

P 1 × 1 The number of different α

T 1 × 1 The number of snapshots

K 1 × 1 The assumed number of incoming
sources

Y ant MN × T The data matrix received at the array

A MN × P0 The manifold matrix of the rectangular
array

S P0 × T The signal matrix of incoming sources

Nant MN × T The noise-signal matrix at the array

Y sg MN × K The reduced matrix containing most of
the signal power

Ssg P0 × K The reduced signal matrix

N sg MN × K The reduced noise signal matrix

Y M × NK The rearrangement of Y sg

AL M × P The manifold matrix of the linear sub-
array on x-axis

X P × NK The signal matrix in the decoupled
model

N M × NK The rearrangement ofN sg

ÃL
M × Kα The dictionary of manifold vector of the

linear sub-array on x-axis

X̃ Kα × NK The sparse signal matrix in the SSR in the
α domain

B̃L
N × Kβ The dictionary of manifold vector of the

linear sub-array on y-axis

S̃i Kβ × K The sparse signal matrix in the SSR in the
β domain

corresponding to the linear subarrays, i.e., a
(
αp,βp,i

) =
bL

(
βp,i

) ⊗ aL
(
αp

)
(see Equation 6). Then, expressing the

equation above in a matrix form similarly as Equation 7,
we have:

Y = ALX + N , (12)

where Y �= [Y 1, · · · ,YK ] ∈ C
M×NK , N �= [N1, · · · ,NK ] ∈

C
M×NK and:

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

f1∑
i=1

ssg1,i (1)
(
bL

(
β1,i

))T · · ·
f1∑
i=1

ssg1,i (K)
(
bL

(
β1,i

))T
...

. . .
...

fP∑
i=1

ssgP,i (1)
(
bL

(
βP,i

))T · · ·
fP∑
i=1

ssgP,i (K)
(
bL

(
βP,i

))T

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ C
P×NK . (13)

AL = [
aL (α1) , · · · ,aL (αP)

] ∈ C
M×P is the manifold

matrix of the linear sub-array on the x-axis and no longer
depends on β-DOA while the information of β-DOA is
now contained in the signal matrix X. And:

Y k =
⎡
⎢⎣

ysg1,1 (k) · · · ysg1,N (k)
...

. . .
...

ysgM,1 (k) · · · ysgM,N (k)

⎤
⎥⎦ ∈ C

M×N ,

Nk =
⎡
⎢⎣

nsg1,1 (k) · · · nsg1,N (k)
...

. . .
...

nsgM,1 (k) · · · nsgM,N (k)

⎤
⎥⎦ ∈ C

M×N .

It is easy to see that ysgmd ,nd (k) = 0 and nsgmd ,nd (k) is
unconstrained for d = 1, · · · ,D, k = 1, · · · ,T .
Step 2: Estimate α from multiple measurement vectors
(MMV)
An overcomplete representation of AL in terms of all

possible α, which is denoted as ÃL, is introduced here. Let{
α̃1, · · · , α̃Kα

}
be a sampling grid of all directions of inter-

est in the α domain. The number of potential directions in
the α domain Kα is typically much greater than the num-
ber of different α, i.e., Kα � P. Then, ÃL is composed of
steering vectors corresponding to each potential α as its
columns. Here, the steering vectors in ÃL correspond to
the linear sub-array on the x-axis. Therefore, Equation 12
can be rewritten in a sparse reconstruction form:

Y = ÃLX̃ + N , (14)

where ÃL �= [
aL (α̃1) , · · · ,aL

(
α̃Kα

)] ∈ C
M×Kα and X̃ �=⎡

⎢⎣
x̃T1
...

x̃TKα

⎤
⎥⎦ ∈ C

Kα×NK . The kαth row of the signal matrix X̃

is:

x̃Tkα

�=
⎡
⎢⎣

f̃kα∑
i=1

s̃sgkα ,i(1)
(
bL

(
β̃kα ,i

))T
,· · ·,

f̃kα∑
i=1

s̃sgkα ,i(K)
(
bL

(
β̃kα ,i

))T⎤⎥⎦,

(15)

where f̃kα
, kα = 1, · · · ,Kα are positive integers and f̃kα

= fp
if α̃kα

= αp. The source signal s̃
sg
kα ,i (k) is nonzero and equal

to ssgp,i(k) if α̃kα
= αp and zero otherwise. So each column

in X̃ is sparse.
As a result, the overcomplete representation in Equation

14 allows us to exchange the estimation of α for the prob-
lem of sparse spectrum of each column in X̃, which can be
solved via regularizing it to favor sparse signal fields using
the l1 methodology. In the case that there are no invalid
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elements, estimation of α can be accomplished by solving
a MMV problem based on l1-norm minimization:

min
X̃

∥∥∥x̃l2∥∥∥
1
, s.t.

∥∥∥Y − ÃLX̃
∥∥∥2
F

< σ 2
1 , (16)

where the l1-term enforces sparsity of the representation.
x̃l2 �= (∥∥x̃1∥∥2, · · · , ∥∥x̃Kα

∥∥
2
) ∈ C

1×Kα and ‖·‖F denotes

the Frobenius norm which is defined as
∥∥∥Y − ÃLX̃

∥∥∥2
F

=∥∥∥vec (
Y − ÃLX̃

)∥∥∥2
2
. Let X̂ ∈ C

Kα×NK denote the result of
the above MMV problem. Then, the pseudo spectrum of
α is obtained by calculating the l2-norm of each row in the
signal matrix X̂, i.e., the amplitude of the pseudo spectrum
at α̃kα

is
∥∥x̂kα

∥∥
2.

In the MMV problems based on l1-norm minimization
mentioned above, l1-term enforces sparsity while l2-term
forces the residual to be small. The residual specifies how
much noise we wish to allow. For rectangular arrays with
invalid elements, the noise signals or residuals of invalid
elements are unknown while the residuals of valid ele-
ments are forced to be small. Hence, the constrained
condition of the l2-term should be revised, taking into
consideration of invalid elements. On the other hand, the
spatial sparsity still exists, so l1-term remains unchanged.
When there are invalid elements, the columns of Y in

the above MMV problem can be regarded as multiple
snapshots of a linear subarray, in which there exists invalid
data. Residual at these invalid elements should be uncon-
strained since no information of these elements is known
a priori. Let N res �= Y − ÃLX̃ ∈ C

M×NK . Therefore, esti-
mation of α can be accomplished by solving a modified
MMV problem based on l1-norm minimization:

min
X̃

∥∥∥x̃l2∥∥∥
1
, s.t.

∑
1≤m≤M,1≤n≤N ,1≤k≤K ,
(m,n)�=(md ,nd),d=1,··· ,D

∣∣∣N res
m,n+(k−1)∗K

∣∣∣2<σ 2
1 ,

(17)

where the l1-term enforces sparsity of the representation.
We will specify the sufficient condition of correct recov-
ery of the signal matrix X̂ in Section 4. Then, the pseudo
spectrum of α is obtained by calculating the l2 norm of
each row in the signal matrix X̂ similarly.
Just like [7], with the knowledge of the distribution of

noise, we can find a confidence interval for ‖N‖2F , then use
its upper value for σ 2

1 .
Step 3: Estimate β based on the signal matrix
Let P denote the number of different α of the

sources. Then, the pseudo spectrum of α may have
P local maxima which are denoted as

{
α̂1, · · · , α̂P

}
.

The row number in the signal matrix X̂ that corre-
sponds to these local maxima is denoted as {i1, · · · , iP}.
The rows of X̂ corresponding to possible α con-
tain information about β . Let the ith row of X̂ be

(
x̂1,1 (i) , · · · , x̂N ,1 (i) , · · · , x̂1,K (i) , · · · , x̂N ,K (i)

) ∈ C
1×NK ,

and X̂ i
�=

⎡
⎢⎣

x̂1,1 (i) · · · x̂1,K (i)
...

. . .
...

x̂N ,1 (i) · · · x̂N ,K (i)

⎤
⎥⎦ ∈ C

N×K . According to

Equation 15, we have:

X̂ ip = BL
pSp, (18)

where BL
p =

[
bL(βp,1), · · · , bL(βp,fp)

]
∈ C

N×fp and Sp =[
ssgp (1), · · · , ssgp (K)

] ∈ C
fp×K . Here, ssgp (k) =

[
ssgp,1(k), · · · ,

ssgp,fp(k)
]T

. Similarly, an overcomplete representation of BL
p

is introduced. Let B̃L =
[
bL(β̃1), · · · , bL(β̃Kβ

)
]

∈ C
N×Kβ

where {β̃1, · · · , β̃Kβ
} are all potential β . And Kβ � fp

(1 ≤ p ≤ P). Taking into consideration of the noises intro-
duced in the above MMV problems, we can solve another
P MMV problems to estimate β :

min
S̃p

∥∥∥s̃l2p ∥∥∥
1
, s.t.

∥∥∥X̂ ip − B̃LS̃p
∥∥∥2
F

< σ 2
2 , p = 1, · · · ,P,

(19)

where S̃p =

⎡
⎢⎢⎣

s̃Tp,1
...

s̃Tp,Kβ

⎤
⎥⎥⎦ ∈ C

Kβ×K and s̃l2p denotes the vec-

tor whose kβ th element is the l2-norm of the kβ th row
in S̃p. Then, the pseudo spectrum of β is ‖s̃l2p ‖ and the
estimation of β is accomplished.
Although the distribution of the elements in X̂ i is diffi-

cult to estimate, σ 2
2 can be determined by the upper value

of K
∥∥(
nsgm1 (k) , · · · , nsgmN (k)

)∥∥2
2 empirically.

Step 4: Calculate (θ ,ϕ) based on (α,β) if needed. The
effects of invalid elements on the degree of freedom will
be studied in Section 4.

3.2 Enhanced 2D-l1-SVD algorithm
We will show in Section 5 that 2D-l1-SVD works prop-
erly when the sources are well separated in both α and
β domains. As illustrated in [14], there exists a source
of bias inherent in the nature of the sparsity enforcing
functionals. For example, consider a 1D case:

X = AS + N , (20)

where A �=
[
a(θ̃1), · · · ,a(θ̃Kθ

)
]
and

{
θ̃1, · · · , θ̃Kθ

}
are all

potential θ . a (θ) is the steering vector of a linear array. It
is assumed that there are only two sources, which are from
θ1 and θ2, impinging on the linear array. Obviously, the
sparsity condition is satisfied with proper

{
θ̃1, · · · , θ̃Kθ

}
and the sources can be well resolved if they are not too
close to each other. However, there is notable bias when
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two sources are too close to each other although the
sparsity condition is still satisfied [14].
The problem still exists when l1-SVD is extended to

2D cases. If two sources, which are from (α1,β1) and
(α2,β2), are close to each other in both α and β domains
so a (α1,β1) is quite similar to a (α2,β2), then l1-SVD will
get biased results. However, l1-SVD can work properly
and get nearly unbiased results when distinguished sig-
nals are close to each other in α domain but well separated
to each other in β domain while 2D-l1-SVD gets biased
results in the α domain. An enhanced 2D-l1-SVD is pro-
posed to solve this problem, and it still has a much lower
complexity than l1-SVD.
We demonstrate the problem of the primary 2D-l1-

SVD algorithm with an example and then illustrate the
main idea of the enhanced-2D-l1-SVD. As illustrated in
Figure 4a,b, there are five sources impinging on the array.
The true DOAs of these five sources are

(
αp,βp

)
, p =

1, · · · , 5. And α1 ≈ α2, α4 ≈ α5, β1 ≈ β5, and β2 ≈ β4.
Using 2D-l1-SVD, we estimate α firstly and then estimate
β (denoted as 2D-l1-SVD-α), as shown in Figure 4a. Since
α1 is very close to α2, they cannot be identified from
each other in α domain. α4 and α5 cannot be identified
either. As a result, only three estimates, α̂1 ≈ (α1 + α2) /2,
α̂2 ≈ α3, and α̂3 ≈ (α4 + α5) /2, are obtained by solv-
ing a MMV problem due to the signals gathering in the α

domain. Then, another three MMV problems are solved
to get the estimates in the β domain. For example, we can

extract the row information that corresponds to α̂1 from
the signal matrix X̂ and get two estimates, β̂1,1 and β̂1,2.
So the estimates of DOAs of sources 1 and 2 are (α̂1, β̂1,2)
and (α̂1, β̂1,1), as illustrated in Figure 4a. Similarly, the
estimates of the DOAs of sources 3 to 5 are (α̂2, β̂2,1),
(α̂3, β̂3,1), and (α̂3, β̂3,2). Apparently, the estimation of the
DOAs of sources 1, 2, 4, and 5 in α domain is not accu-
rate. If we estimate β firstly and then estimate α(denoted
as 2D-l1-SVD-β), there is a similar problem since β1 ≈ β5
and β2 ≈ β4, as shown in Figure 4b. And the estimates
of the DOAs of sources 1 to 5 using 2D-l1-SVD-β are
denoted as (α̂3,1, β̂3), (α̂1,1, β̂1), (α̂2,1, β̂2), (α̂1,2, β̂1), and
(α̂3,2, β̂3), respectively. However, these sources can be dis-
tinguished from each other using l1-SVD since the DOAs
of the sources are well separated either in α domain or β

domain.
Although 2D-l1-SVD-α cannot accurately estimate α

when there exist multiple sources close to each other in α

domain, it can provide precise β-DOA if the sources are
not too close to each other in β domain since the informa-
tion of β is in the column of the input data matrix. Similar
results can be obtained if β is firstly estimated using 2D-l1-
SVD-β . So the enhanced algorithm is designed to combine
the estimation results in conjunction with a selection
strategy.
The selection strategy is based on the condition that any

two sources are not too close to each other in both α and β

domains. The main idea is to make pairs of the estimation

Figure 4 An illustration of enhanced 2D-l1-SVD. (a,b) Five sources impinging on the array. (c) Corrections of primary results.
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Table 2 Arithmetic complexity of 2D-l1-SVD and l1-SVD

Methods Arithmetic complexity

l1-SVD O
(
K3K3αK

3
β

)
2D-l1-SVD

α O
(
K3N3K3α

)
O

(
K3N3K3α

) + PO
(
K3K3β

)
β O

(
K3K3β

)
Enhanced-2D-l1-SVD O

(
K3N3K3α

) + PαO
(
K3K3β

)
+ O

(
K3M3K3β

)
+ PβO

(
K3K3α

)

results of 2D-l1-SVD-α and 2D-l1-SVD-β so that in each
pair, the DOA estimated by 2D-l1-SVD-α and 2D-l1-SVD-
β corresponds to the same source. In Figure 4a, sources
1 and 2 are close to each other in α domain, so α̂1 is
inaccurate while β̂1,2 and β̂1,1 are precise. In Figure 4b,
we get three different β , in which β̂3 is closest to β̂1,2
and β̂1 is closest to β̂1,1. Consider the estimation of α

corresponding to β̂3 and we find that α̂3,1 is the closest
to α̂1. Therefore, (α̂1, β̂1,2) and (α̂3,1, β̂3) are considered
to be a pair. Similarly, we have the other four pairs. For
pairs corresponding to sources 1, 2, 4, and 5, 2D-l1-SVD-
α has got more precise estimation of β and 2D-l1-SVD-β
has got more precise estimation of α. Therefore, primary
results of 2D-l1-SVD-α and 2D-l1-SVD-β are corrected,
as illustrated in Figure 4c. It should be noticed that the
pairing process in enhanced-2D-l1-SVD is quite different
from the pair-matching in [16]. Given the set of eleva-
tion angles and azimuth angles, which is {θ1, · · · , θP} and
{ϕ1, · · · ,ϕP}, respectively, the conventional pair-matching
process in [16] choose P final estimates from P2 possi-
ble pairs by making use of the statistical analysis of the
received data. In enhanced-2D-l1-SVD, final DOA esti-
mates are extracted from two existed set of 2D DOA
without using information of the received data.
Another issue that needs to be taken into account is that

spurious peaks may appear in the pseudo spectrum of l1-
SVD due to inappropriate regularization parameter but
the selection strategy in enhanced-2D-l1-SVD provides a
detection of spurious peaks. For a certain (α̂i, β̂i) got by
2D-l1-SVD-α, a corresponding (α̂j, β̂j) got by 2D-l1-SVD-
β can be found to make a pair with (α̂i, β̂i). Then, (α̂i, β̂i)
is considered to be a false peak if:√∣∣α̂i − α̂j

∣∣2 +
∣∣∣β̂i − β̂j

∣∣∣2 > δ, (21)

where δ is a threshold and the beamwidth of the array pat-
tern is a reasonable choice for δ. The overall procedure of
the enhanced 2D-l1-SVD is summarized as follows:

Step 1: Complete the 2D-l1-SVD-α.
Estimate α firstly and then estimate β . There are
P different α and the estimation results are
denoted as �α = {(α̂1, β̂1,1), · · · , (α̂1, β̂1,f1), · · · ,
(α̂P, β̂P,1), · · · , (α̂P , β̂P,fP )}. For α̂p, there are fp
different β .

Step 2: Complete the 2D-l1-SVD-β .
Estimate β firstly and then estimate α. There are
Q different β and the estimation results are
denoted as �β = {(α̂1,1, β̂1), · · · , (α̂1,g1 , β̂1), · · · ,
(α̂Q,1, β̂Q), · · · , (α̂Q,gQ , β̂Q)}. For β̂q, there are gq
different α.

Step 3: Selection strategy.
For each (α̂p, β̂pq) ∈ �α , 1 ≤ q ≤ gp, find β̂q in
{β̂1, · · · , β̂Q} that is closest to β̂p,q. The estimation
of α corresponding to β̂q is {α̂q,1, · · · , α̂q,fq}. Find
α̂qk in {α̂q,1, · · · , α̂q,fq} that is closest to α̂p. Then,
(α̂p, β̂p,q) and (α̂q,k , β̂q) are considered to be a pair.

If
√

|α̂p − α̂q,k |2 + |β̂p,q − β̂q|2 > δ, then, (α̂q,k , β̂p,q)
was considered to be a false peak. If√

|α̂p − α̂q,k|2 + |β̂p,q − β̂q|2 ≤ δ, then (α̂q,k , β̂p,q)
is the correct DOA.

4 Performance
Using l1-SVD as 1D DOA estimators during successive
estimation, 2D-l1-SVD has several advantages over con-
ventional 2D methods, including high resolution, robust-
ness to the number of snapshots, low SNR, and coherent
sources due to the use of sparse reconstruction [7]. In
this section, we compare the performance of 2D-l1-SVD
and l1-SVD and study about the effect of invalid elements.
Firstly, we demonstrate that the computational complex-
ity of 2D-l1-SVD is much lower than that of l1-SVD.
Secondly, we study about the degree of freedom of 2D-
l1-SVD. Then, we will show that 2D-l1-SVD keeps better
robustness over the assumed number of sources in the

Table 3 Degrees of freedom of 2D-l1-SVD and l1-SVD

Methods
Degrees of freedom

Single snapshot Multiple snapshots

l1-SVD MN/2 MN − 1

2D-l1-SVD-α

α M/2 α M − 1

β for each α N/2 β for each α N − 1

Maximum MN/4 Maximum (M − 1)(N − 1)

2D-l1-SVD-β

β N/2 β N − 1

α for each β M/2 α for each β M − 1

Maximum MN/4 Maximum (M − 1)(N − 1)
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Table 4 Time cost of different methods

Time (s)
Kαβ

46 91 181 361

2D-MUSIC 0.3315 1.2961 5.1043 20.2029

l1-SVD 2.7922 12.9736 59.9812 397.105

2D-l1-SVD 0.4381 0.4929 0.5964 0.8356

Enhanced-2D-l1-SVD 1.0704 1.4574 1.6928 2.5747

presence of multiple sources. And finally, we investigate
the number of sources that 2D-l1-SVD can process with
both rectangular arrays and faulty rectangular arrays.

4.1 Computational complexity
Sparse reconstruction methods based on l1-norm
minimization can be achieved by second-order cone

programming (SOCP). For optimizing the joint opti-
mization problem over K vectors in SOCP framework
using an interior point method, the arithmetic complex-
ity is O

(
K3K3

θ

)
, where Kθ is the number of potential

directions [7,19]. Therefore, we have the computa-
tional load of 2D-l1-SVD and l1-SVD in Table 2. Since
Kα and Kβ are always much bigger than M,N ,K , the
arithmetic cost of 2D-l1-SVD is much smaller than
l1-SVD.

4.2 Degrees of freedom
A necessary and sufficient condition [20] from the mea-
surements X = AS, |supp (S)| = k, to uniquely determine
S is (|supp (S)| denotes the union over all the individual
supports ∪isupp (si) for S = [s1, · · · , sl]):

|supp (S)| < (spark (A) − 1 + rank (X)) /2, (22)

Figure 5 Pseudo spectrum and estimates of 2D-l1-SVD. (a) Pseudo spectrum of 2D-l1-SVD in α domain (K = 3). (b) Pseudo spectrum of
2D-l1-SVD in β domain for four different α (K = 3). (c) Estimates of l1-SVD (K = 3). (d) Estimates of l1-SVD (K = 13) and 2D-l1-SVD (K = 3).
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where the spark of A is defined as the smallest number
of columns in A that are linearly dependent. For DOA
estimation problems, the measurement matrix X and
the signal matrix S stand for the sampled snapshots at the
array and the incoming source signals, respectively. The
dictionary A is a matrix composed of the steering vectors
corresponding to each potential DOA as its columns. And
the number of columns inA is much bigger than the num-
ber of rows in A. Let L0 denote the number of sensors
in the array. For linear or rectangular arrays whose mani-
fold matrix is similar to a Vandermonde matrix, spark(A)
is equal to L0 + 1 if the potential DOAs in the dictio-
nary are not too close to each other so that the mutual
coherence [20] is small. On the hand, rank(X) = 1 if the
number of snapshots is only one and rank(X) = K if the
number of singular vectors used is sufficient, e.g., equal to
the number of sources. So empirically, the l1-SVD tech-
nique can resolveM−1 sources with anM-sensors array if
they are not located too close to each other [7]. This holds
under the assumption that the number of singular vectors
used in l1-SVD is sufficient, e.g., equal to the number of
sources. When fewer singular vectors are taken than the
number of sources, the number of resolvable sources may
decrease.
For aM×N rectangular array, with no consideration of

array ambiguity and only one snapshot available, l1-SVD
can process up toMN/2 sources. For 2D-l1-SVD-α, there
exists a coherence between the samples of sub-arrays at
different columns of the array as far as the estimation of
α is concerned, so 2D-l1-SVD-α can process M/2 differ-
ent α and up to N/2 different β for each α. When there
are enough snapshots and the number of uncorrelated
columns in the data matrix X is not less than the num-
ber of sensors, l1-SVD can process up toMN − 1 sources,
while 2D-l1-SVD-α can process up toM−1 different α and
N −1 different β for each certain α. Similarly, 2D-l1-SVD-
β can process up to N/2 different β and M/2 different
α with only one snapshot. When there are enough snap-
shots, 2D-l1-SVD-β can process up to N − 1 different β

andM − 1 different α. So the number of sources that 2D-
l1-SVD or enhanced-2D-l1-SVD can process is less than
l1-SVD when the sources are well separated in both α and
β domains. However, when the sources are gathering in α

or β domains and several sources may be treated as one
group in successive parameter estimation, enhanced-2D-
l1-SVD can resolve up to (M − 1)(N − 1) sources, which
is close to l1-SVD if M and N are sufficiently large in
practical application. The degrees of freedom of different
methods are illustrated in Table 3.

4.3 The assumed number of sources
The l1-SVD technique works on the K singular vectors
where K is the assumed number of sources. It has been
illustrated in [7] that l1-SVD has a low sensitivity to K .

In [7], it is illustrated that l1-SVD can resolve
M − 1 sources using an M-sensor array. However,
when fewer singular vectors are taken than the num-
ber of sources, the condition in (22) may be not
satisfied and the number of resolvable sources may
decrease. This limitation still exists in 2D situation.
Assume that the 2D DOA of incoming sources are
{(α1,β1,1), · · · , (α1,β1,f1), · · · , (αP,βP,1), · · · , (αP,βP,fP )},
and P0

�=
P∑

p=1
fp. To resolve P0 sources that have P differ-

ent α, the assumed number of sources for l1-SVD should
be not less than P0 if P0 is sufficiently large (for example,
P0 is close to the number of sensors). The number of sin-
gular vectors should not be less than P or fp to resolve P
different α and fp different β , correspondingly. As a result,
if the assumed number of sources for 2D-l1-SVD is not
less than max{P, f1, · · · , fP}, the 2D-l1-SVD can resolve P0
sources. So 2D-l1-SVD may resolve more sources with
fewer singular vectors. Moreover, 2D-l1-SVD may have
an even smaller computational complexity by taking a
smaller number of singular vectors.

4.4 Faulty or nonrectangular arrays
When there are only a small number of elements with
failure in the array, the faulty elements have little effect
on the performance of 2D-l1-SVD. The faulty array is no
longer rectangular while it can be regarded as a rectangu-
lar array with missing elements. Under this circumstance,
the degree of freedommay be affected while 2D-l1-SVD is
still able to produce correct DOA estimates. Empirically,
2D-l1-SVD-α can resolve M0 − 1 different α and N0 − 1
different β for each α when the sources are not too close to

Figure 6 Faulty array.
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Figure 7 Pseudo spectrum. (a) α in 2D-l1-SVD-α. (b) β for two different α in 2D-l1-SVD-α. (c) β in 2D-l1-SVD-β . (d) α for two different β in
2D-l1-SVD-β .

Figure 8 Selection strategy of enhanced-2D-l1-SVD.
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Figure 9 Bias in α and β domain of 2D-l1-SVD and l1-SVD in localizing two sources as a function of the source separation.

each other. Here,M0 andN0 denote theminimumnumber
of valid elements in each row or column of the rectangu-
lar array. On the other hand, there should not be too many
invalid elements, or the distances between valid elements
become so large that there will be grating lobes.

5 Simulation results
In this section, several simulations are conducted to val-
idate the advantages of 2D-l1-SVD. All simulations are

performed using MATLAB 2012a running on an Intel
Core i7 3770 CPU @ 3.4 GHz with 16 GB RAM, under
Windows 7.

5.1 Time cost
Firstly, we compare the computation time of 2D-MUSIC,
l1-SVD, 2D-l1-SVD, and enhanced 2D-l1-SVD. Consider
a 5 × 5 URA with sensors spaced half a wavelength
apart and there are three uncorrelated sources with 100

Figure 10 The probability of resolution as a function of SNR.
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snapshots. The DOAs of the three sources are (120°, 70°),
(80°, 50°), and (50°, 130°). And SNR = 10 dB. The time
that the four methods cost against Kαβ , which repre-
sents the density of the grids or the number of potential
source locations (the grids or potential locations are set
as

[
0,π/

(
Kαβ − 1

)
, · · · , (Kαβ − 2

)
π/

(
Kαβ − 1

)
,π

]
for

both α and β domains), is demonstrated in Table 4. Each
value in the table is an average over 50 trials. Table 4 shows
that 2D-l1-SVD and enhanced 2D-l1-SVD have a much
lower computational load than other methods. The cost
time of enhanced 2D-l1-SVD is nearly twice of that of 2D-
l1-SVD, and it is affected by the number of different α

and β .

5.2 Pseudo spectrumwith multiple sources
The pseudo spectrum of 2D-l1-SVD and l1-SVD when
there are 13 independent sources (four different α)
impinging on the 5 × 5 URA with sensors spaced half a
wavelength apart is illustrated in Figure 5. The true DOAs
are (50°, 65°), (50°, 95°), (80°, 60°), (80°, 90°), (80°, 120°),
(80°, 145°), (100°, 50°), (100°, 70°), (100°, 100°), (127°, 50°),
(127°, 80°), (127°, 110°), and (127°, 140°). SNR = 10 dB,
and there are 100 snapshots. 2D-l1-SVD is able to identify
four different α and give correct DOA estimation when
the assumed number of sources is K = 3 (Figure 5a,b,d).
l1-SVD has given correct estimation if K = 13 (Figure 5d)

while there are spurious peaks in the spectrum of l1-SVD
if K = 3 (Figure 5c). So 2D-l1-SVD may perform better
with fewer singular vectors.

5.3 Bias
Many DOA estimation methods may have difficulty
resolving closely spaced sources, and there is bias inherent
in the nature of sparsity enforcing functionals [14]. Con-
sider the faulty array in Figure 6 with sensors spaced half
a wavelength apart. There are four uncorrelated sources
with a SNR = 10 dB. And there are 100 snapshots. The
pseudo spectrum of 2D-l1-SVD-α and 2D-l1-SVD-β when
the true DOAs are (61°, 60°), (64°, 103°), (100°, 63°), and
(102°, 101°) is illustrated in Figure 7. We can see that the
peaks of the spectrum in Figure 7a,c are biased. A final
estimation of DOA is given in Figure 8 by combining the
results got by 2D-l1-SVD-α and 2D-l1-SVD-β , and the
results are correct.
The bias of the DOA estimation of two sources with

different angular separation between them is investigated
here. Consider the faulty array in Figure 6. The source 1 is
held fixed at (62.6°, 58.7°) and the source 2 is moving from
the location of source 1 linearly. And SNR = 10 dB. Bias
in the α or β domain of 2D-l1-SVD and l1-SVD as a func-
tion of the source separation δ0 (degrees) is demonstrated
in Figure 9 while source 2 is located at (62.6° + δ0, 58.7° +

Figure 11 RMSE as a function. (a) SNR with a single source. (b) The number of snapshots with a single source. (c) SNR with two sources.
(d) The number of snapshots with two sources.
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δ0). The values on each curve are an average over 50 tri-
als. Figure 9 shows the presence of bias for low separations
using both enhanced-2D-l1-SVD and l1-SVD, and the bias
disappears when δ0 > 20° for both algorithms.

5.4 Resolution capability
The resolution performance of the proposed algorithms
and the 2D-MUSIC algorithm is compared here. Con-
sider the faulty array in Figure 6. There are two incoming
sources from (80.3°, 106.4°) and (85.3°, 111.4°). There are
100 snapshots. The probability of resolution [21] as a func-
tion of SNR is illustrated in the Figure 10, and it is based
on 100 trials. We can see that both l1-SVD and 2D-l1-SVD
outperform 2D-MUSIC when the SNR is less than 8 dB.
And 2D-l1-SVD performs close to l1-SVD. Note that the
resolution probability of enhanced-2D-l1-SVD is the same
to that of 2D-l1-SVD since the results of the enhanced
algorithm are based on the estimates of 2D-l1-SVD.

5.5 RMSE
The root mean squared error (RMSE) is defined as

RMSE = 1
P

P∑
p=1

(
RMSE

(
αp

) + RMSE
(
βp

))
, (23)

where RMSE
(
αp

)=
[

L∑
l=1

(
α̂p (l)−αp

)2
/L

]1/2

, RMSE
(
βp

)=
[

L∑
l=1

(
β̂p (l) − βp

)2
/L

]1/2

and
(
α̂p (l) , β̂p (l)

)
is the lth

estimates of the DOA of pth signal
(
αp,βp

)
. L is the

number of realizations.
Consider the faulty array in Figure 6. The RMSE of dif-

ferent methods against SNR based on 100 realizations
compared with the Cramer-Rao lower bound (CRLB) [22]
when there are a single source from (80.3°, 106.4°) with 100
snapshots is given in Figure 11a. And the RMSE against
the number of snapshots when SNR of the single source
is 5 dB is given in Figure 11b. It shows that 2D-MUSIC,
2D-l1-SVD, and enhanced-2D-l1-SVD perform close to
the CRLB when there is only one source. The RMSE as a
function of SNR based on 100 realizations when there are
two uncorrelated sources from (80.3°, 106.4°) and (100.9°,
127.1°) is given in Figure 11c, and the RMSE against the
number of snapshots when SNR of the two sources is 5 dB
is given in Figure 11d. We can see that the performance of
2D-MUSIC deteriorates when there are not enough snap-
shots (less than twice of the number of antennas) while
SSR based algorithms work properly.

6 Conclusions
In this paper, a new 2D estimation method called 2D-
l1-SVD and its improved version enhanced-2D-l1-SVD

are proposed for rectangular arrays. They are proved to
be able to work for rectangular arrays even with miss-
ing or faulty elements. Theoretical analysis and simulation
results indicate that 2D-l1-SVD has a much lower arith-
metic complexity due to successive parameter estimation
while performing close to the popular l1-SVD. What is
more, 2D-l1-SVD has better robustness to the assumed
number of sources and enhanced-2D-l1-SVD is able to
detect spurious peaks which are caused by inappropriate
regularization parameter.
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